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Abstract

In recent years, based on jointly modeling the mean and variance,
double regression models are widely used in practice. In order to as-
sess the effects of continuous covariates or of time scales in a flexible
way, a class of semiparametric mixed-effects double regression mod-
els(SMMEDRMs) is considered, in which we model the variance of the
mixed effects directly as a function of the explanatory variables. In
this paper, we propose a fully Bayesian inference for SMMEDRMs on
the basis of B-spline estimates of nonparametric components. A com-
putational efficient MCMC method which combines the Gibbs sampler
and Metropolis-Hastings algorithm is implemented to simultaneously
obtain the Bayesian estimates of unknown parameters and the smooth-
ing function, as well as their standard deviation estimates. Finally,
some simulation studies and a real example are used to illustrate the
proposed methodology.
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1. Introduction
Many different approaches have been suggested to the problem of flexibly modeling

of the mean. In statistical literature, compared with that of the mean, modeling of the
variance has often been neglected. In many applications, particularly in the econometric
area and industrial quality improvement experiments, modeling the variance will be of
direct interest in its own right, to identify the source of variability in the observations,
such as Taguchi-type experiments for robust design. On the other hand, modeling the
variance itself may be of scientific interest. Thus, modeling of the variance can be as
important as that of the mean. Furthermore, it is well known that efficient estimation
of mean parameters in regression depends on correct modeling of the variance. The
loss of efficiency may be substantial using constant variance models when the variance is
varying. In addition, modeling of the variance is also necessary to obtain correct standard
errors and confidence intervals, as well as for many other applications such as prediction
and so on. Recently, the joint mean and variance models have been receiving a lot of
attention. For example, Aitkin [1] provided maximum likelihood (ML) estimation for a
joint mean and variance model and applied it to the commonly cited Minitab tree data.
Xie et al. [22] investigated the score tests for homogeneity of a scalar parameter and a
skewness parameter in skew-normal nonlinear regression models, which are included in
the variance. Wu and Li [21] proposed a unified variable selection procedure which can
simultaneously select significant variables in mean and dispersion models of the inverse
Gaussian distribution. Zhao et al. [25] considered the issue of variable selection for beta
regression models with varying dispersion, in which both the mean and the dispersion
depend upon predictor variables. Wu [20] investigated the simultaneous variable selection
in joint location and scale models of the skew-t-normal distribution when the dataset
under consideration involves heavy tail and asymmetric outcomes. The similar works
can be also seen from [12, 13, 24] and so on. On the other hand, semiparametric mixed
models are useful extensions to linear mixed models and provide a flexible framework for
analyzing longitudinal data. Many authors have studied semiparametric mixed models
for longitudinal data (e.g., Ni et al. [15]). But, there is little work about the case in
which the variance is additionally modelled. Therefore, in this paper we are interested
in jointly modelling mean and variance of semiparametric mixed models.

Bayesian inference for the semiparametric mixed-effects models and the joint mean
and variance models have also receiving a lot of attention in recent years. For example,
Cepeda and Gamerman [2] summarized the Bayesian approach for modeling variance
heterogeneity in normal regression analysis. Chen [3] proposed a fully Bayesian infer-
ence for semiparametric mixed-effects models of zero-inflated count data based on a data
augmentation scheme that reflects both random effects of covariates and mixture of zero-
inflated distribution. Chen and Tang [4] developed a Bayesian procedure for analyzing
semiparametric reproductive dispersion mixed-effects models on the basis of P-spline es-
timates of nonparametric components. Lin and Wang [14] presented a fully Bayesian
approach to multivariate regression models whose mean vector and scale covariance ma-
trix are modelled jointly for analyzing longitudinal data. Tang and Duan [18] proposed a
semiparametric Bayesian approach to generalized partial linear mixed models for longi-
tudinal data. Xu and Zhang [23] proposed a fully Bayesian inference for semiparametric
joint mean and variance models on the basis of B-spline approximations of nonparamet-
ric components. However, to the best of our knowledge, there is little work done for
Bayesian analysis of semiparametric mixed-effects double regression models with longi-
tudinal data, in which we model the variance of the mixed effects directly as a function
of the explanatory variables.
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On the other hand, various methods are available for fitting the semiparametric mod-
els, such as, the kernel smoothing method and the spline method. See for example,[5,
19, 26] and so on. Recently, the B-spline method is widely used to fit semiparametric
models because of its advantages. Firstly, it does not need to estimate the nonparametric
component of model point by point, that is, instead of concerning the local quality, the
global quality is taken into consideration, which lead to the reduction of the computa-
tional complexity. Secondly, there are no boundary effects so that the splines can fit
polynomial data exactly. Thirdly, the B-spline base functions have bounded supports
and are numerically stable (Schumaker [17]).

Therefore, in this paper we extend the Bayesian methodology proposed in [2, 23]
to fit semiparametric mixed-effects double regression models. Hence, a semiparametric
Bayesian approach to SMMEDRMs is developed based on the B-spline approximation
of nonparametric function and the hybrid algorithm combining the Gibbs sampler and
Metropolis-Hastings algorithm in this article.

The outline of the paper is as follows. In Section 2 we first describe semiparametric
mixed-effects double regression models. A Bayesian procedure based on a data aug-
mentation scheme, Gibbs sampler and the Metropolis-Hastings algorithm for obtaining
estimates is developed in Section 3. The full conditional distributions for implementing
the sampling-based methods are also derived. To illustrate the proposed methodology,
results obtained from some simulation studies are presented in Section 4. We further
illustrate the proposed methodology through an analysis of the CD4 data in Section 5.
The article is concluded with a brief discussion in Section 6.

2. Semiparametric Mixed-Effects Double Regression Models
Suppose that there are n independent subjects and the ith subject has mi repeated

measurements. Specifically, denote the response vector Yi = (Yi1, · · · , Yimi)T for the
ith subject, i = 1, · · · , n, which are observed at time ti = (ti1, · · · , timi)T . We assume
that the response is normally distributed as Yij |(Xij , vi, tij) ∼ N(µij , σ

2). Here, the
superscript T denotes the transposed of a vector (or matrix).

In this paper we consider

(2.1)


µij = XT

ijβ + vi + g(tij),
i = 1, 2, · · · , n,
j = 1, 2, · · · ,mi,

where tij is a univariate observed covariate, g(·) is an unknown smooth function in
the mean model, vi is a random effect with vi ∼ N(0, σ2

i ). Furthermore, if we have
variance heterogeneity of the random effect, it is convenient to assume an explicit variance
modeling related to some explanatory variables, that is:

(2.2) σ2
i = h(Zi, γ),

where Zi = (Zi1, · · · , Ziq)T is the observation of explanatory variables associated with
the variance of vi and γ = (γ1, · · · , γq)T is a q × 1 vector of regression coefficients in
the variance model. Furthermore, we let Z = (Z1, Z2, · · · , Zn)T . In addition, h(·, ·) >
0 is a known function. Here two specific forms of h(·, ·) are usually taken to model
varying variance: (i) log-linear model: h(Zi, γ) = exp(

∑q
j=1 Zijγj); (ii) power product

model: h(Zi, γ) =
∏q
j=1 Z

γj
ij = exp(

∑q
j=1 γj logZij). Of course, (ii) requires that the

Zij is strictly positive, while no such restriction is needed for (i). In practice, one may
make a choice of the variance weight h(·, ·), even a choice of the explanatory variables
Zi, according to the domain knowledge or modeling convenience. Therefore, in this



282

article we consider the following semiparametric mixed-effects double regression models
(SMMEDRMs):

(2.3)



Yij = XT
ijβ + vi + g(tij) + εij ,

εij ∼ N(0, σ2),
vi|Zi ∼ N(0, σ2

i ),
σ2
i = h(Zi, γ),
i = 1, 2, · · · , n,
j = 1, 2, · · · ,mi,

based on the independent observations (Yij , Xij , Zi, tij), i = 1, 2, · · · , n, j = 1, 2, · · · ,mi.

3. Bayesian Analysis of SMMEDRMs
3.1. B-splines for the Nonparametric Function. Without loss of generality, we
assume that the covariate tij is valued on [0, 1]. Let T = (tT1 , t

T
2 , · · · , tTn )T . From the

model (2.3), we obtain the likelihood function

(3.1)

L(β, γ, φ2, v|Y,X,Z, T ) =

n∏
i=1

{
f(vi|Zi, γ)

mi∏
j=1

f(Yij |Xij , vi, tij , β)

}

∝
{

n∏
i=1

σi

}−1

(φ2)
N
2 exp

{
−φ

2

2

n∑
i=1

mi∑
j=1

(Yij −XT
ijβ − vi − g(tij))

2 −
n∑
i=1

v2i
2σ2
i

}
,

where φ2 = 1/σ2, N =
n∑
i=1

mi, v = (v1, · · · , vn)T , Y = (Y T1 , · · · , Y Tn )T , X = (XT
1 , · · · , XT

n )T ,

Xi = (Xi1, · · · , Ximi)T .
Since g(·) is nonparametric, (3.1) is not yet ready for optimization. So, we first use

B-splines to approximate the nonparametric function g(·). Any computational algorithm
developed for generalized linear models (GLM) can be used for fitting a semiparametric
extension of GLM, since one can treat a nonparametric function as a linear function with
the basis functions as covariates. For simplicity, let 0 = s0 < s1 < · · · < skn < skn+1 = 1
be a partition of the interval [0, 1]. Using {si} as the internal knots, we have K = kn+M
normalized B-spline basis functions of order M that form a basis for the linear spline
space. Selection of knots is generally an important aspect of spline smoothing. In this
paper, similar to He et al. [10], the number of internal knots is taken to be the integer
part of N1/5. Thus g(t) is approximated by πT (t)α , where π(t) = (π1(t), ..., πK(t))T is
the vector of basis functions and α ∈ RK . With this notation, the mean model in (2.3)
can be linearized as

(3.2) µij = xTijβ + vi + πT (tij)α.

Hence, based on (3.2), the likelihood function (3.1) can be rewritten as follows:
(3.3)

L(β, α, γ, φ2, v|Y,X,Z, T ) =

n∏
i=1

{
f(vi|Zi, γ)

mi∏
j=1

f(Yij |Xij , vi, tij , β)

}

∝
{

n∏
i=1

σi

}−1

(φ2)
N
2 exp

{
−φ

2

2

n∑
i=1

mi∑
j=1

(Yij −XT
ijβ − vi − πT (tij)α)2 −

n∑
i=1

v2i
2σ2
i

}
.

3.2. Prior Density of Parameters. To implement a Bayesian approach to estimate
the parameters of the models (2.3), we need to specify a prior distribution for the param-
eters involved. For simplicity, we suppose that β, α and γ are independent and normally
distributed in prior as β|φ2 ∼ N(β0, φ

−2bβ), α ∼ N(α0, τ
2IK) and γ ∼ N(γ0, Bγ), where
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the hyperparameters β0, α0, γ0, bβ and Bγ are assumed known, and τ2 is assumed to be
distributed as Gamma(aτ , bτ ) with density function

p(τ2|aτ , bτ ) ∝ (τ2)aτ−1 exp
(
−bττ2

)
,

where aτ and bτ are known positive constants. In addition, we also suppose that φ2 is
distributed in prior as Gamma(aφ2 , bφ2), where aφ2 and bφ2 are known positive constants.

3.3. Gibbs Sampling and Conditional Distribution. Let θ = (β, α, γ, φ2), Bi =
(π(ti1), · · · , π(timi))

T and B = (BT1 , · · · , BTn )T . Based on (3.3), we can sample from joint
posterior distribution p(θ, v|Y,X,Z, T ) by Gibbs sampling along the following process.

Step 1. Setting initial values of parameters as θ(0) = (β(0), α(0), γ(0), φ2(0)).

Step 2. Based on θ(l) = (β(l), α(l), γ(l), φ2(l)), compute Σ(l) = diag{h(Z1, γ
(l)),

· · · , h(Zn, γ
(l))}, ṽ(l)i = v

(l)
i

⊗
1mi and ṽ

(l) = ((ṽ
(l)
1 )T , · · · , (ṽ(l)n )T )T .

Step 3. Based on θ(l) = (β(l), α(l), γ(l), φ2(l)), sample θ(l+1) = (β(l+1), α(l+1),

γ(l+1), φ2(l+1)
), v(l+1) and τ2(l+1) as follows:

• Sampling φ2(l+1):
(3.4)

p(φ2|Y,X, v, β, γ, α) ≈ (φ2)
N+p

2
+a

φ2
−1

exp

{
− φ2

[
1

2
(Y −Xβ(l) − ṽ(l) −Bα(l))T

(Y −Xβ(l) − ṽ(l) −Bα(l)) + 1
2
(β(l) − β0)T (β(l) − β0) + bφ2

]}
.

• Sampling τ2(l+1):

(3.5) p(τ2|α) ∝ (τ2)−
K
2
−aτ−1 exp

{
− (α(l) − α0)T (α(l) − α0) + 2bτ

2τ2

}
.

• Sampling α(l+1):

(3.6) p(α|Y,X,Z, T, β, γ, τ2, φ2) ∝ exp

{
−1

2
(α− α∗

0)T b∗α
−1

(α− α∗
0)

}
,

where α∗
0 = b∗α(τ2(l+1)−1

IKα0 + φ2(l+1)
BT (Y −Xβ(l) − ṽ(l))) and b∗α = (τ2(l+1)−1

IK +

φ2(l+1)
BTB)−1, IK is the identity matrix.

• Sampling β(l+1):

(3.7) p(β|Y,X,Z, T, α, γ, φ2) ∝ exp

{
−1

2
(β − β∗

0 )T b∗β
−1

(β − β∗
0 )

}
,

where β∗
0 = b∗β((φ−2(l+1)

bβ)−1β0+φ2(l+1)
XT (Y−ṽ(l)−Bα(l+1))) and b∗β = ((φ−2(l+1)

bβ)−1+

φ2(l+1)
XTX)−1.

• Sampling v(l+1):

(3.8)

p(v|Y,X, T, Z, β, γ, φ2) ∝ exp

{
− φ2(l+1)

2

n∑
i=1

mi∑
j=1

(Yij −XT
ijβ

(l+1)

−π(tij)
Tα(l+1) − vi)2 −

n∑
i=1

v2i

2σ
2(l)
i

}
,

where σ2(l)
i = h(Zi, γ

(l)).
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• Sampling γ(l+1):

(3.9)

p(γ|Y,X,Z, β, φ2) ∝ |Σ1|−
1
2 exp

{
−1

2
v(l+1)TΣ1v

(l+1) − 1

2
(γ − γ0)TB−1

γ (γ − γ0)

}
.

Here, Σ1 = diag{h(Z1, γ), · · · , h(Zn, γ)}.

Step 4. Repeating Steps 2 and 3.

Then, we can generate sample series (β(t), α(t), γ(t), φ2(t), τ2
(t)

), t = 1, 2, · · · by the
above program. It is easily seen from (3.4), (3.5), (3.6) and (3.7) that conditional distribu-
tions p(τ2|α), p(α|Y,X,Z, T, β, γ, τ2, φ2), p(β|Y,X,Z, T, α, γ, φ2) and p(φ2|Y,X, T, v, β, γ, α)
are some familiar distributions, such as the Gamma and normal distributions. Sampling
observations from these standard distributions is straightforward and fast. But condi-
tional distributions p(v|Y,X,Z, T, β, γ, φ2) and p(γ|Y,X,Z, β, φ2) are some unfamiliar
and rather complicated, thus drawing observations from the distributions are rather dif-
ficult. Hence, the commonly used Metropolis-Hastings algorithm is employed to sample
observations from them. To this end, we choose normal distribution N(v(l), σ2

vΩ−1
v ) and

N(γ(l), σ2
γΩ−1

γ ) as the proposal distribution [11, 16], where σ2
v and σ2

γ are chosen such
that the average acceptance rate is about between 0.25 and 0.45 (Gelman et al. [8]), and
take

Ωv = E

(
−∂

2 log p(v|Y,X, T, Z, β(l+1), γ(l), φ2(l+1)
)

∂v∂vT

)
,

Ωγ = E

(
−∂

2 log p(γ|Y,X,Z, β(l+1), φ2(l+1)
)

∂γ∂γT

)
.

The Metropolis-Hastings algorithm is implemented as follows: at the (l + 1)th itera-
tion with the current value v(l), γ(l), new candidates v∗ and γ∗ are generated from
N(v(l), σ2

vΩ−1
v ), N(γ(l), σ2

γΩ−1
γ ) and are accepted respectively with probability

min

{
1,

p(v∗|Y,X,Z, β, γ, φ2)

p(v(l)|Y,X,Z, β, γ, φ2)

}
and

min

{
1,

p(γ∗|Y,X,Z, β, φ2)

p(γ(l)|Y,X,Z, β, φ2)

}
.

3.4. Bayesian Inference. Observations generated from the above proposed computa-
tional procedure are used to obtain Bayesian estimates of parameters β, α, γ and φ2 and
their standard deviations.

Let {θ(j) = (β(j), α(j), γ(j), φ2(j)) : j = 1, 2, · · · , J} be the observations of (β, α, γ, φ2)
generated from the joint conditional distribution p(β, α, γ, φ2|Y,X,Z, T ) via the proposed
hybrid algorithm. The Bayesian estimates of β, α, γ and φ2 are given as:

β̂ =
1

J

J∑
j=1

β(j), α̂ =
1

J

J∑
j=1

α(j),

γ̂ =
1

J

J∑
j=1

γ(j), φ̂2 =
1

J

J∑
j=1

φ2(j).

As is shown by Geyer [9], θ̂ = (β̂, α̂, γ̂, φ̂2) is a consistent estimate of the correspond-
ing posterior mean vector as J goes to infinity. Similarly, a consistent estimate of the
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posterior covariance matrix Var(θ|Y,X,Z, T ) can be obtained via the sample covariance
matrix of the observations {θ(j) : j = 1, 2, · · · , J}, that is

V̂ar(θ|Y,X,Z, T ) = (J − 1)−1
J∑
j=1

(θ(j) − θ̂)(θ(j) − θ̂)T .

Thus, the posterior standard deviations for the components can be obtained from the
diagonal elements of the matrix.

4. Simulation Studies
In this section, some simulation studies are used to illustrate various aspects of the

proposed Bayesian method. In the following simulations, σ2 = 0.5 and the structure
of the mean model is µij = XT

ijβ + vi + 0.5 sin(2πtij), i = 1, 2, · · · , n, j = 1, 2, · · · ,m,
where m = 4, tij follows uniform distribution U(0, 1), Xij is a 3× 1 vector with elements
independently sampled from normal distribution N(0, 1), and β = (1,−0.8, 1)T . The
structure of the variance model of the random effect vi will be taken to be different
models in the following examples.

To investigate sensitivity of Bayesian estimates to prior inputs, we consider the fol-
lowing three types of hyperparameter values for unknown parameters β, α, γ, τ2, φ2:

Type I: β0 = (1,−0.8, 1)T , bβ = I3,γ0 = (1,−0.5)T , Bγ = I2, aτ = 1, bτ = 1, aφ2 =
1, bφ2 = 1. This can be regarded as a situation with good prior information.

Type II: β0 = 1.5× (1,−0.8, 1)T , bβ = I3,γ0 = 1.5× (1,−0.5)T , Bγ = I2, aτ = 1, bτ =
1, aφ2 = 1, bφ2 = 1. This can be regarded as a situation with inaccurate prior information.

Type III: β0 = (0, 0, 0)T , bβ = I3,γ0 = (0, 0)T , Bγ = I2, aτ = 1, bτ = 1, aφ2 =
1, bφ2 = 1. These hyperparameter values represent a situation with noninformative prior
information.

For the above various settings, the preceding proposed hybrid algorithm combining the
Gibbs sampler and the Metropolis-Hastings algorithm is used to evaluate the Bayesian
estimates of unknown parameters and the smoothing function. In the following simula-
tions, we use the cubic B-splines. Different sample sizes are employed in the simulations
to show the effect of sample sizes. For each setting, 100 replications are carried out.
For each data set generated in a replication, the convergence of the MCMC sampler is
checked by estimated potential scale reduction (EPSR) value [7], and we observe that
in all runs, the EPSR values are less than 1.2 after 4000 iterations. Observations are
collected after 4000 iterations with J = 4000 in producing the Bayesian estimates for
each replication.

4.1. Example 1: Comparisons for different prior inputs and sample sizes. In
this example, we take the log-linear model as the structure of the variance model of the
random effect vi,

log(σ2
i ) = ZTi γ, i = 1, 2, · · · , n

with γ = (1,−0.5)T and Zi is a 2 × 1 vector with elements generated randomly from
normal distribution N(0, 1), n is the sample size ranging from n=30, 50, 100, 150. The
summary of the simulation results for parameters is presented in Tables 1 and 2. To
investigate accuracy of estimate of function g(t), we plot the true value of function g(t)
against its estimates for three types of prior inputs under different sample sizes in Figures
1-4.
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Table 1. Bayesian estimates of parameters under different priors when n = 30
and n = 50 in Example 1

n = 30 n = 50
Type Parameters BIAS RMS SD BIAS RMS SD
I β1 0.0103 0.0769 0.0748 0.0028 0.0553 0.0577

β2 0.0041 0.0693 0.0743 0.0028 0.0542 0.0577
β3 0.0100 0.0731 0.0743 0.0055 0.0559 0.0573
γ1 0.0711 0.3301 0.3532 0.0093 0.2727 0.2649
γ2 0.0154 0.3218 0.3520 0.0141 0.2160 0.2576
σ2 0.0058 0.0704 0.0769 0.0065 0.0553 0.0588

II β1 0.0002 0.0799 0.0747 0.0037 0.0660 0.0579
β2 0.0019 0.0752 0.0749 0.0029 0.0627 0.0585
β3 0.0102 0.0717 0.0741 0.0038 0.0606 0.0579
γ1 0.0744 0.3294 0.3448 0.0227 0.2620 0.2727
γ2 0.0271 0.3318 0.3453 0.0526 0.2770 0.2641
σ2 0.0028 0.0695 0.0764 0.0107 0.0603 0.0595

III β1 0.0181 0.0708 0.0775 0.0009 0.0613 0.0578
β2 0.0163 0.0778 0.0765 0.0029 0.0481 0.0581
β3 0.0139 0.0786 0.0778 0.0053 0.0567 0.0580
γ1 0.1190 0.3099 0.3403 0.0139 0.2387 0.2518
γ2 0.0358 0.2739 0.3264 0.0132 0.2323 0.2467
σ2 0.0409 0.0851 0.0818 0.0194 0.0595 0.0605
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Figure 1. The average of the estimates versus the true value of g(t) under three priors
in Example 1: type I (left panel), type II (middle panel) and type III( right panel) when
n = 30.
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Figure 2. The average of the estimates versus the true value of g(t) under three priors
in Example 1: type I (left panel), type II (middle panel) and type III( right panel) when
n = 50.

Table 2. Bayesian estimates of parameters under different priors when n = 100
and n = 150 in Example 1

n = 100 n = 150
Type Parameters BIAS RMS SD BIAS RMS SD
I β1 0.0028 0.0394 0.0398 0.0019 0.0349 0.0323

β2 0.0005 0.0393 0.0398 0.0017 0.0340 0.0325
β3 0.0005 0.0394 0.0393 0.0012 0.0346 0.0323
γ1 0.0074 0.2050 0.1809 0.0290 0.1384 0.1449
γ2 0.0059 0.1642 0.1723 0.0057 0.1465 0.1394
σ2 0.0026 0.0405 0.0403 0.0036 0.0324 0.0332

II β1 0.0012 0.0450 0.0400 0.0005 0.0341 0.0323
β2 0.0055 0.0368 0.0398 0.0013 0.0319 0.0324
β3 0.0001 0.0389 0.0398 0.0014 0.0351 0.0323
γ1 0.0016 0.1507 0.1743 0.0281 0.1449 0.1434
γ2 0.0303 0.1777 0.1729 0.0113 0.1583 0.1366
σ2 0.0037 0.0409 0.0409 0.0020 0.0302 0.0328

III β1 0.0002 0.0379 0.0402 0.0036 0.0345 0.0322
β2 0.0008 0.0427 0.0401 0.0009 0.0323 0.0326
β3 0.0000 0.0398 0.0399 0.0028 0.0348 0.0323
γ1 0.0587 0.1764 0.1729 0.0018 0.1398 0.1400
γ2 0.0318 0.1857 0.1734 0.0016 0.1531 0.1367
σ2 0.0089 0.0380 0.0414 0.0060 0.0302 0.0332
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Figure 3. The average of the estimates versus the true value of g(t) under three priors
in Example 1: type I (left panel), type II (middle panel) and type III (right panel) when
n = 100.
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Figure 4. The average of the estimates versus the true value of g(t) under three priors
in Example 1: type I (left panel), type II (middle panel) and type III (right panel) when
n = 150.

In Tables 1 and 2, “BIAS" denotes the absolute difference between the true value
and the average of the Bayesian estimates of the parameters based on 100 replications,
“SD" denotes the average of the estimated posterior standard deviation obtained from
the formula in Section 3.4, and “RMS" denotes the root of mean square errors of the
Bayesian estimates based on 100 replications. From Tables 1-2, we can make the following
observations:

(i) the Bayesian estimates are reasonably accurate regardless of prior inputs in the
sense of bias values of the estimates and their RMS values and SD values;

(ii) the estimates are mild sensitive to prior inputs for smaller sample size, but the
infection clear away rapidly as the sample size goes large;

(iii) the estimates become better as the sample size increases, especially for the esti-
mates of the parameters in the variance model.

Examination of Figures 1-4 shows that the shapes of the estimated nonparametric
function are very close to the corresponding true line regardless of prior inputs. All in
all, all the above findings show that the preceding proposed estimation procedures can
well recover the true information in SMMEDRMs.
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4.2. Example 2: Comparisons for different prior inputs and the different
number of internal knots. To investigate the sensitivity of the Bayesian estimate for
g(t) to the selection of the number of internal knots, we consider the other two different
choices of K in this example, i.e. K1 = bK0/1.5c and K2 = b1.5K0c, where K0 is the
optimal number of interior knots and buc denotes the largest integer not greater than
u. To save space, here we only present the results of Bayesian estimates in Table 3 and
Figures 5-6 for n = 50 under different choices of K.

Table 3. Bayesian estimates of parameters for different choices ofK when n = 50
in Example 2

(n = 50,K1) (n = 50,K2)
Type Parameters BIAS RMS SD BIAS RMS SD
I β1 0.0091 0.0543 0.0572 0.0031 0.0606 0.0575

β2 0.0054 0.0612 0.0572 0.0022 0.0612 0.0573
β3 0.0001 0.0570 0.0577 0.0030 0.0522 0.0572
γ1 0.0198 0.2432 0.2624 0.0314 0.2589 0.2631
γ2 0.0145 0.2677 0.2579 0.0244 0.2377 0.2509
σ2 0.0102 0.0605 0.0598 0.0053 0.0643 0.0589

II β1 0.0052 0.0551 0.0570 0.0161 0.0566 0.0572
β2 0.0117 0.0523 0.0576 0.0020 0.0585 0.0573
β3 0.0023 0.0608 0.0567 0.0003 0.0540 0.0575
γ1 0.0719 0.2630 0.2681 0.0913 0.2571 0.2711
γ2 0.0467 0.2382 0.2529 0.0398 0.2303 0.2565
σ2 0.0077 0.0674 0.0586 0.0016 0.0590 0.0587

III β1 0.0092 0.0578 0.0585 0.0030 0.0568 0.0581
β2 0.0121 0.0575 0.0580 0.0042 0.0584 0.0581
β3 0.0014 0.0566 0.0586 0.0024 0.0524 0.0585
γ1 0.0476 0.2737 0.2540 0.0669 0.2323 0.2510
γ2 0.0267 0.2554 0.2634 0.0643 0.2392 0.2507
σ2 0.0249 0.0589 0.0610 0.0190 0.0624 0.0604
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Figure 5. The average of the estimates versus the true value of g(t) under three priors
in Example 2: type I (left panel), type II (middle panel) and type III (right panel) for
n = 50 and K1.
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Figure 6. The average of the estimates versus the true value of g(t) under three priors
in Example 2: type I (left panel), type II (middle panel) and type III (right panel) for
n = 50 and K2.

By viewing Table 3 and comparing the results with Tables 1-2, we can see that the
Bayesian estimates are reasonably accurate regardless of the values of K in the sense of
their SD values and RMS values. From Figures 5-6, we can obtain that the shapes of the
estimated nonparametric function are very similar to those in Figure 2. Therefore, the
Bayesian estimates for parameter estimates and the nonparametric function g(t) are not
very sensitive to the selection of the number of internal knots.

4.3. Example 3: Comparisons for different prior inputs and different variance
model. To investigate the sensitivity of the proposed Bayesian method to the structure
of the variance model in SMMEDRMs, we consider the other common structure of the
variance model of the random effect vi (i.e. power product model), which can be defined
as

σ2
i =

q∏
j=1

Z
γj
ij

with γ = (1,−0.5)T and Zi is a 2 × 1 vector with elements generated randomly from
uniform distribution U(0, 2). The simulation results for the parameters and the nonpara-
metric function are reported in Table 4 and Figures 7-8.

The results in Table 4 show that with using power product model as the variance
structure, which is different with the variance model in example 1, the proposed Bayesian
method also has the desired performance, which is substantively similar to the results in
example 1.

In addition, to consider the effect of variance structure misspecification on parameter
estimates, here we do some simulations with n=50 and n=100 under Type I. The main
measurements for comparison are differences between the fitted mean parameters β̂ and
the true mean parameters β, the fitted variances σ̂2

i (i = 1, 2, · · · , n) to the true variances
σ2
i (i = 1, 2, · · · , n), and the fitted error variance σ̂2 to the true error variance σ2. In

particular, we define three relative errors:

RERR(β̂) =

∣∣∣∣∣∣∣∣
p∑
j=1

(β̂j − βj)

p∑
j=1

βj

∣∣∣∣∣∣∣∣ ;RERR(σ̂2
i ) =

∣∣∣∣∣∣∣∣
n∑
i=1

(σ̂2
i − σ2

i )

n∑
i=1

σ2
i

∣∣∣∣∣∣∣∣ ;RERR(σ̂2) =

∣∣∣∣ σ̂2 − σ2

σ2

∣∣∣∣ .
Here variance structure misspecification means we use the variance structure in example
1 to model the variance of random effect. The results are reported in Table 5. From Table
5 we can find that when the true variance structure follows power product model, the
errors in estimating β̂, σ̂2

i and σ̂2 increase when incorrectly modeling the variance using
log-linear model. However, for this simulation study, variance model misspecification
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seems to affect the fitted results not larger, especially for the mean parameters and the
error variance.

Table 4. Bayesian estimates of parameters under different priors in Example 3

n = 50 n = 100
Type Parameters BIAS RMS SD BIAS RMS SD
I β1 0.0005 0.0566 0.0579 0.0025 0.0411 0.0399

β2 0.0029 0.0530 0.0572 0.0014 0.0431 0.0395
β3 0.0000 0.0494 0.0576 0.0055 0.0421 0.0398
γ1 0.0614 0.3186 0.3712 0.0368 0.2915 0.2398
γ2 0.0287 0.2471 0.2383 0.0001 0.1540 0.1611
σ2 0.0071 0.0592 0.0587 0.0021 0.0487 0.0405

II β1 0.0024 0.0572 0.0580 0.0004 0.0411 0.0399
β2 0.0063 0.0539 0.0574 0.0017 0.0432 0.0396
β3 0.0033 0.0494 0.0576 0.0067 0.0402 0.0398
γ1 0.1226 0.3470 0.3748 0.0722 0.3187 0.2375
γ2 0.0507 0.2515 0.2422 0.0062 0.1550 0.1623
σ2 0.0116 0.0597 0.0593 0.0032 0.0483 0.0405

III β1 0.0042 0.0589 0.0585 0.0050 0.0432 0.0405
β2 0.0005 0.0563 0.0580 0.0110 0.0469 0.0402
β3 0.0085 0.0512 0.0583 0.0068 0.0479 0.0401
γ1 0.0583 0.2874 0.3503 0.0493 0.2521 0.2416
γ2 0.0130 0.2423 0.2365 0.0663 0.1766 0.1581
σ2 0.0221 0.0627 0.0606 0.0154 0.0462 0.0416
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Figure 7. The average of the estimates versus the true value of g(t) under three priors
in Example 3: type I (left panel), type II (middle panel) and type III( right panel) when
n = 50.
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Figure 8. The average of the estimates versus the true value of g(t) under three priors
in Example 3: type I (left panel), type II (middle panel) and type III (right panel) when
n = 100.

Table 5. Average of relative errors using different variance structures and sample
size under Type I in Example 3

n = 50 n = 100

correct specification RERR(β̂) 0.0048 0.0013
RERR(σ̂2

i ) 0.9226 0.6868
RERR(σ̂2) 0.0068 0.0003

misspecification RERR(β̂) 0.0067 0.0024
RERR(σ̂2

i ) 2.4665 1.3371
RERR(σ̂2) 0.0069 0.0007

5. Application to Real Data
In this section, we illustrate the proposed method through analysis of a data set from

the MultiCenter AIDS Cohort study. The dataset contains the human immunodeficiency
virus (HIV) status of 283 homosexual men who were infected with HIV during a follow-up
period between 1984 and 1991. This dataset has been used by many authors to illustrate
semiparametric linear regression models, such as [6, 26]. The objective of their analysis
is to describe the trend of the mean CD4 percentage depletion over time and evaluate the
effects of smoking, the pre-HIV infection CD4 percentage, and age at HIV infection on
the mean CD4 percentage after infection. This motivates us to use the semiparametric
models for this dataset.

Let Y be the individual’s CD4 percentage, X1 be the smoking status:(1 for a smoker
and 0 for a nonsmoker), X2 be the centered age at HIV infection, X3 be the centered
preCD4 percentage. To model jointly the mean for the CD4 cell data and the variance
of random effect in the model, we use the following semiparametric mixed-effects double
regression models:

Yij = β1X1ij + β2X2ij + β3X3ij + vi + g(tij) + εij ,
εij ∼ N(0, σ2),
vi ∼ N(0, σ2

i ),
log(σ2

i ) = γ1Z1i + γ2Z2i,
i = 1, 2, · · · , 283,

where Z1 = X1, Z2 = X3, g(t), the baseline CD4 percentage, represents the mean CD4
percentage t years after the infection.
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The preceding proposed hybrid algorithm is used to obtain Bayesian estimates of β’s,
γ’s and σ2, where we use noninformative prior information for all unknown parameters. In
the Metropolis-Hastings algorithm, we set σ2

γ = 1.8 and σ2
v = 0.015 in their corresponding

proposal distributions, which give approximate acceptance rates 43.76% and 31.37%.
To test the convergence of the algorithm, plot of the EPSR values for all the unknown
parameters against iterations is presented in Figure 9, which indicates that the algorithm
converges about 5000 iterations because EPSR values of all unknown parameters are
less than 1.2 about 5000 iterations. We calculate Bayesian estimates (EST), standard
deviation estimates (SD) of the Bayesian estimates of β’s, γ’s and σ2. Results are given in
Table 6, which indicate that X3 has significant impact on the mean of Y and is somehow
consistent with the results of variable selection seen in Fan and Li [6]. In addition, the
curve of the estimated baseline function is shown in Figure 10. From Figure 10, we find
that the mean baseline CD4 percentage decreases very quickly at the beginning of HIV
infection, and the rate of decrease somewhat slows down four years after infection. The
findings basically agree with that which was discovered by the local linear fitting method
of Fan and Li [6].

Table 6. The real example: Bayesian estimates and their standard deviations

Parameter EST SD
β1 0.4431 0.5775
β2 -0.1955 0.2648
β3 3.2706 0.2696
γ1 2.0399 0.3593
γ2 2.3333 0.2186
σ2 80.9993 2.7830
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Figure 9. EPSR values of all parameters against iterations in the real example
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Figure 10. Application to AIDS data. The Bayesian estimate of the mean CD4 percent-
age g(t). The solid line represents the estimated function.

6. Conclusion and Discussion
In this article, based on jointly modeling the mean and variance, we propose semi-

parametric mixed-effects double regression models, in which we model the variance of
the mixed effects directly as a function of the explanatory variables. Then we extend
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the Bayesian methodology proposed in [2, 23] to fit SMMEDRMs. A fully Bayesian ap-
proach is developed to analyze this models via B-spline estimate of the nonparametric
part by combining the Gibbs sampler and Metropolis-Hastings algorithm. Some simu-
lation studies and a real data are used to show the efficiency of the proposed Bayesian
approach. The results show that the developed Bayesian method is highly efficient and
computationally fast. A possible extension of the current model is being considered when
covariates are missing under different missingness mechanisms.
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