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A new Weibull-G family of distributions
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Abstract

Statistical analysis of lifetime data is an important topic in reliability
engineering, biomedical and social sciences and others. We introduce
a new generator based on the Weibull random variable called the new
Weibull-G family. We study some of its mathematical properties. Its
density function can be symmetrical, left-skewed, right-skewed, bath-
tub and reversed-J shaped, and has increasing, decreasing, bathtub,
upside-down bathtub, J, reversed-J and S shaped hazard rates. Some
special models are presented. We obtain explicit expressions for the
ordinary and incomplete moments, quantile and generating functions,
Rényi entropy, order statistics and reliability. Three useful characteri-
zations based on truncated moments are also proposed for the new fam-
ily. The method of maximum likelihood is used to estimate the model
parameters. We illustrate the importance of the family by means of
two applications to real data sets.
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1. Introduction

Broadly speaking, there has been an increased interest in defining new generators
for univariate continuous families of distributions by introducing one or more additional
shape parameter(s) to the baseline distribution. This induction of parameter(s) has been
proved useful in exploring tail properties and also for improving the goodness-of-fit of
the family under study. The well-known generators are the following: beta-G by Eugene
et al. [18], Kumaraswamy-G (Kw-G) by Cordeiro and de Castro [12], McDonald-G (Mc-
G) by Alexander et al. [1], gamma-G type 1 by Zografos and Balakrishanan [29] and
Amini et al. [7], gamma-G type 2 by Risti¢ and Balakrishanan [26] and Amini et al.
[7], odd exponentiated generalized (odd exp-G) by Cordeiro et al. [14], transformed-
transformer (T-X) (Weibull-X and gamma-X) by Alzaatreh et al. [4], exponentiated T-X
by Alzaghal et al. [6], odd Weibull-G by Bourguignon et al. [8], exponentiated half-
logistic by Cordeiro et al. [11], T-X{Y}-quantile based approach by Aljarrah et al. [3],
T-R{Y} by Alzaatreh et al. [5], Lomax-G by Cordeiro et al. [15], logistic-X by Tahir et
al. [28] and Kumaraswamy odd log-logistic-G by Alizadeh et al. [2].

Let r(t) be the probability density function (pdf) of a random variable T' € [a, b] for
—00 < a < b < coand let F(x) be the cumulative distribution function (cdf) of a random
variable X such that the link function W () : [0,1] — [a, b] satisfies the two conditions:
(i) W(-) is differentiable and monotonically non-decreasing, and (ii) W(0) — a and
W (1) — b. If the interval [a,b] is half-open or open, we replace W (0) and/or W (1) for
lim, ,o+ W (t) — a and lim,_,;,— W (t) —b.

Recently, Alzaatreh et al. [4] defined the T-X family of distributions by

W[G(z)]
1.1)  F(z) = / r(t) dt,

where W[G(z)] satisfies the conditions (i) and (ii). If T € (0,00), X is a continuous
random variable and W[G(z)] = —log[l — G(z)], then the pdf corresponding to (1.1) is
given by

(12 f@) = 725 (- loelt = G(o)) = h (o) 1y (),
where hg(xz) and Hg(z) are the hazard and cumulative hazard functions associated to
g(z), respectively.

The Weibull distribution is one of the most popular and widely used model for failure
time in life-testing and reliability theory. However, a drawback of this distribution as far
as lifetime analysis is concerned is the monotonic behaviour of its hazard date function
(hrf). In real life applications, empirical hazard rate curves often exhibit non-monotonic
shapes such as a bathtub, upside-down bathtub (unimodal) and others. So, there is a gen-
uine desire to search for some generalizations or modifications of the Weibull distribution
that can provide more flexibility in lifetime modeling.

If a random variable T" has the Weibull distribution with scale parameter o > 0 and
shape parameter 8 > 0, then its cdf and pdf are, respectively, given by

Fo@)=1—e" >0
and
1.3)  fw(t)=apt® e’ t>o0.

In the recent literature, four Weibull based generators have appeared, namely: the
beta Weibull-G by Cordeiro et al. [16], the Weibull-X by Alzaatreh et al. [4], the
Weibull-G by Bourguignon et al. [8] and the exponentiated Weibull-X by Alzaghal et al.

[6]-
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If r(t) follows (1.3) and setting W [G(z)] = —log[l — G(z)] in (1.1), Alzaatreh et al.
[4] defined the cdf of the Weibull-X family by

— log[1—G(z)]
(14) F(qj) = aﬂ / l'£71 efazﬁ dt=1— e—a{— lOg[l*G(z)]}ﬁ.
0
The pdf corresponding to (1.4) is

(15)  fla) =ap L GO gl - Gy

Zagrafos and Balakrishnan [29] pioneered a versatile and flexible gamma-G class of
distributions based on Stacy’s generalized gamma distribution and record value theory.
More recently, Bourguignon et al. [8] proposed the Weibull-G family of distributions
influenced by the Zografos-Balakrishnan-G class. Bourguignon et al. [8] replaced the
argument = by G(z;0)/G(x;0), where G(r;0) = 1 — G(x;0), and defined the cdf of
their class (for @ > 0 and 8 > 0), say Weibull-G(«, 3, ©), by

G(z;0) G (x:0)

s
(1.6) F(z;0,8,0)=ap /[G(w;e)] P le P g =1- eia[a’“’@)] , ¢ € R
0

The Weibull-G family density function becomes

. _ o) [Ga; 6)5’1] ~o[gzg]”
(1.7) flz;a,8,0) =aBg(z;0) [@(m;@)ﬁﬂ e [ ] ,
where G(z;©) and g(z; ©) are the cdf and pdf of any baseline distribution that depend
on a parameter vector ©.

In this paper, we propose a class of distributions called the new Weibull-G (“NWG” for
short) family, which is flexible because of the hazard rate shapes: constant, increasing,
decreasing, bathtub, upside-down bathtub, J, reversed-J and S. The paper unfolds as
follows. In Section 2, we define the new family. Six special models are presented in
Section 3. The forms of the density and hazard rate functions are described analytically
in Section 4. In Section 5, we obtain explicit expressions for the quantile function (qf),
ordinary and incomplete moments, generating function and entropies. In Sections 6
and 7, we investigate the order statistics and the reliability. Section 8 refers to some
characterizations of the NWG family. In Section 9, the parameters of the new family
are estimated by the method of maximum likelihood. In Section 10, we illustrate its
performance by means of two applications to real data sets. The paper is concluded in
Section 11.

2. The new family

In equation (1.1), let a = 0, r(¢) be as in (1.3) and W [G(z)] = — log[G(z; &)]. Then,
we define the cdf of the NWG family by

— log[G(z;€)]
(2.1) F(z;0,8,6)=1-— / aBftP? o ot? gp — ol —log[G(z:9)] }*
0

Hereafter, a random variable X with cdf (2.1) is denoted by X ~ NWG(a, 3, €&). We can
motivate equation (2.1) based on linearization of the baseline cdf G(x; &) as follows. Let
Y be a Weibull random variable with scale parameter « > 0 and shape parameter 8 > 0.
The extreme value random variable V' can be defined as minus the log of the Weibull
random variable, say V = —log(Y). It gives the limiting distribution for the smallest
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or largest values in samples drawn from a variety of distributions. The NWG random
variable having cdf (2.1) can be derived by

P(X>z)= P(Y > —log[G(w;ﬁ)]) = P(V < —10g{_10g[G($§§)}})7

where — log{— log[G(z; €)]} is a simple linearization of the baseline cdf.
Then, the pdf of X reduces to

: _ o I8 ey VT gmat-loslG@en 1
(22)  f@a.8,8=ap oo { ~loslCwe]} e :
where g(z;€) is the parent pdf. Further, we can omit sometimes the dependence on
the vector £ of the parameters and write simply G(z) = G(z;€) and g(z) = g(z; §).
Equation (2.2) will be most tractable when the cdf G(x) and pdf g(z) have simple analytic
expressions.

The quantile function (qf) of X is obtained by inverting (2.1). We have

X = Q) = Qo (¢"s¢),
where Qc(+;-) = G7(+;-) is the baseline qf and t(u) = [log(1/u)'/*]*/#. Then, if U has

a uniform distribution on (0,1), X = Q(U) follows the NWG(a, 8, €) family.
Let h(z;&) be the hrf of the parent G. The hrf h(z; «, 3, &) of X is given by

x; - T IA ’
h(z; o, B,€) = aﬁé((zé)) {—log [G(JZ;E)]}B 1 emal-log[G@ol}
o, 5,8) = 1 — e—of —log [G(=:€)] }° '

3. Special models

In this section, we provide six special models of the NWG distributions. Suppose that
the parent distribution is uniform on the interval (0,6), § > 0. We have g(z;0) = 1/0,
0 <z <6< o0, and G(z;0) = /0, and then the Weibull-uniform (WU) cdf is given by

0 8,0) = ool osF))
Fwu(z;a,B,0) =e o/ 0<x<f<oo a,8,0>0.

Now, take the parent distribution as Weibull with pdf and cdf given by g(z) =
Ayz" e ™" and G(z) =1 —e ** for A,y > 0. Then, the Weibull-Weibull (WW)
cdf becomes

Az B
FWW(»’C;%@)\,W)=e_a[_1°g(1_e > , x>0, o B8,Ay>0.

For v = 1 and v = 2, we obtain as special cases the Weibull-exponential (WE) and
Weibull-Rayleigh (WR) distributions, respectively.

For the Weibull-logistic (WLo) distribution, we have g(z) = Ae™*® (1+ e”‘g”)f2 and
G(z) = (1+ e*Az)fl. Then, the WLo cdf reduces to
“Az\—1118
FWLO(QZ';OQﬂ,)\) :e—a{—log[(1+c ) ]} ) $>O, 047/67A > 0.

Consider the parent log-logistic distribution with parameters s > 0 and ¢ > 0 given
by g(z;s,¢) =cs “a®" [1+ (2)0}72 and G(z;s,¢) =1— [1+ (%)c}fl.
Then, the Weibull-log-logistic (WLL) cdf becomes

z\¢1— B
FWLL(x;a7ﬂ7S7C) :eia[ilog{17[1+(;) ] 1}} ’ T > 07 Oé,ﬁ,S,C> 0.
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We take the parent Burr XII distribution with pdf and cdf given by
g(x) = cks  z " [1+ (z/5)°] " ! and G(x) = 1 — [1 + (z/s)°]*. Then, the Weibull-
Burr XII (WBXII) cdf reduces to

z\e1—k 18
FWBXII(:I:;aaﬂ7S7cv k) = e*a[*IOg{I*[l+(§) ] }] ) T > 07 CY,/B,S,C,]C > 0.

For ¢ =1 and k = 1, we obtain as a special case the Weibull-Lomax (WLx) distribution.

Finally, if we consider the baseline normal distribution, the pdf and cdf are g(z; u, o) =
o ¢[(x —p)/o] and G(z;p,0) = @ [(x — p)/o]. Then, the Weibull-normal (WN) cdf
becomes (for z € R)

Fwn(zia, 8,p5,0) = e o2 L e R w80 0,ue R

The density of the new family can be symmetrical, left-skewed, right-skewed, bathtub
and reversed-J shaped, and has constant, increasing, decreasing, bathtub, upside-down
bathtub, J, reversed J and S shaped hazard rates. In Figures 1 and 2, we display some
plots of the pdf and hrf of (a) WU, (b) WW, (¢) WLL, (d) WLo, (¢) WBXII and
(f) WN distributions for selected parameter values. Figure 1 indicates that the NWG
family generates distributions with various shapes such as symmetrical, left-skewed, right-
skewed, bathtub and reversed-J. Also, Figure 2 reveals that this family can produce
flexible hazard rate shapes such as increasing, decreasing, bathtub, upside-down bathtub,
J, reversed-J and S. This fact implies that the NWG family can be very useful to fit
different data sets with various shapes.

4. Shapes of the pdf and hrf

The shapes of the density and hazard rate functions can be described analytically.
The critical points of the NWG density are the roots of the equation:

g'(x) | g(x) (1-8)g(=x) afg(z) {—log[G(=)]}" " _
(4.1) o) T 6@ T @G G(a) =0
The critical points of h(z) are obtained from the equation
g gz  (A-Ppgx) | aBglx){—log[G()]}""
(@) " G@) T G@)leglG)] Glo)
af g(x) {~ log [G(x)]} ! e~ leslGEIN
G(z) [1 — e {=1oslGCI7]

By using most symbolic computation software platforms, we can examine equations (4.1)
and (4.2) to determine the local maximums and minimums and inflexion points.

=0.

(4.2)
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Figure 1. Plots of the (a) WU (b) WW (¢) WLL (d) WLo (e) WBXII
and (f) WN densities.
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Figure 2. Plots of the (a) WU (b) WW (¢) WLL (d) WLo (e) WBXII
and (f) WN hazard rates.

5. Mathematical properties

The formulae derived throughout the paper can be easily handled in analytical soft-
wares such as Maple and Mathematica which have the ability to deal with analytic
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expressions of formidable size and complexity. Established algebraic expansions to de-
termine some mathematical properties of the NWG family can be more efficient than
computing those directly by numerical integration of its density function, which can be
prone to rounding off errors among others. The infinity limit in these sums can be sub-
stituted by a large positive integer such as 20 or 30 for most practical purposes. Here,
we provide some mathematical properties of X.

5.1. Expansion for the NWG cdf. Let A = ¢~ { ~108lG(@:8)] ¥ Then, using a power
series expansion for A, we can write (2.2) as

oo

(5.1) F(zio,B,€) = Z o loglG; )]}

=0

The following formula holds for ¢ > 1
(http:// functions.wolfram.com/ ElementaryFunctions/Log/06/01/04/03/),
and then we can write

. 1)kt -1 i
{—loglG(z:€)]}'" = Z Z (iB - J) B( k B) <I;> (ﬁ l+k>

k,l1=0 5=0
X pik (G0,
where (for j > 0) pjo =1 and (for k =1,2,...)
k

1 (=D"[m( +1) — k]
Z (m+1)

pik =k

Djk—m-

m=1

By inserting the above power series in equation (5.1) gives

(52)  F(z;0,8,6) =Y bG(x:6) = b Hi(z;6),
1=0 =0

where H;(z;€) = G(x;€)" (for I > 1), is the exponentiated-G (exp-G) density function
with power parameter I, Ho(z;&) =1,

> z’“: Dititettig (k—ig\ (k\ [iB+k )
= ) j ko
s tap—y) k j ! ’
We can write the NWG family density as a mixture of exp-G densities

(5.3)  f(z;,8,€) = Z b1 higi(x; €),

where hi1(x;€) = (14 1) g(x; &) G(x; €)' is the exp-G density function with power pa-
rameter [ 4 1.

Thus, some mathematical properties of the proposed family can be derived from (5.3)
and those of exp-G properties. For example, the ordinary and incomplete moments and
moment generating function (mgf) of X can be obtained from those exp-G quantities.
Some mathematical properties of the exp-G distributions are studied by [20, 21, 23] and
others.
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5.2. Moments. Let Y] be a random variable having the exp-G density function hj4+1(x).
A first formula for the nth moment of X follows from (5.3) as

(5.4) E(X")=> by E(Y").
=0

Expressions for moments of several exp-G distributions are given by Nadarajah and
Kotz [23], which can be used to obtain E(X™).
A second formula for E(X™) can be written from (5.4) in terms of the G gf as

o]

(5.5) B(X™) =Y (I+1)bir1 Tay,
1=0

where 7, = [ 2" G(z)' g(z) dz = fol Qc(w)" v du.

Cordeiro and Nadarajah [13] obtained 7, for some well-known distributions such as
normal, beta, gamma and Weibull, which can be used to determine the NWG moments.

For empirical purposes, the shapes of many distributions can be usefully described by
what we call the incomplete moments. These types of moments play an important role
for determining Lorenz and Bonferroni curves.

The nth incomplete moment of X is obtained as

oo

G(y)
(5.6) mn(y) = Z(l + 1) b1 /0 Qc(u)"” ul du.

1=0

The last integral can be computed for most G distributions. Equations (5.4)-(5.6) are
the main results of this section.

5.3. Generating function. Let Mx () = E(e'™) be the mgf of X. Then, we can write

(5.7) Mx(t) = > bip1 Mi(t),

=0

where M, (t) is the mgf of ;. Hence, Mx (t) can be determined from the exp-G generating
function.
A second formula for Mx (t) can be expressed as

(5.8) Mx(t) =Y (I + 1) b p(t,1),
=0

where p(t,1) = [*_e'* G(x)' g(x) dx = fol et Qe yl qu.

— 0o €
We can obtain the mgfs of several distributions directly from equation (5.8).

5.4. Rényi entropy. Entropy has wide application in science, engineering and proba-
bility theory, and has been used in various situations as a measure of variation of the
uncertainty. The entropy of a random variable X is a measure of variation of uncertainty.
Here, we derive explicit expressions for the Rényi entropy [25] of the NWG family. The
Shannon entropy [27] of a random variable X is defined by E {—log[f(X)]}. It is the
special case of the Rényi entropy when ~ 1 1.

The Rényi entropy is defined by
1
14(6) = < log [1(5)],

where I(5) = [*_ f°(z)dz,6 >0 and § # 1.
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Let us consider

P'@) = (@p) ¢’ (2) G~ (@) {~log [G@)]} ) e~ PG,

Expanding the exponential function in power series and then expanding the power of
{—log [G(x)]} as in Section 5.1, we obtain

X0 (1) (@d) [5(8 — 1) +if] (k ~5(8-1) - w)

k

3 —d S(p) GO(x) 11 — G(x)]F—8B-1—iB
XZWﬁ-D—H}B—ﬂ 9" (z) G°(2)[1 - G(z)] ,

where the constants p; x are given in Section 5.1.
Further, using the binomial expansion in the last equation, we can write

Z S ¢’ (x) G (2),

where

_ 5 ’*“’f“(aé) [5(8 ~1) +ip]
= Z 65— 1) +i6 — 4]

() (e

Hence, the Rényi entropy reduces to

1 - >
13(6)271_51(% |:E Sz/ 95
1=0

—o0

(z) G°F(x) dm:| .

6. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, ..., X, be observed values of a sample from the NWG family of distributions.
We can write the density of the ith order statistic, say X;.,, as

Forle) = G 2 Z D’ ("‘ ) fl@) Py,

Following similar algebraic developments of Nadarajah et al. [22], we can write

(61) fzn Z mrkhr+k+l( )

r,k=0

where hriry1(x) is the exp-G density function with power parameter r + k + 1,

(1) (= Dlbegs S~ (1) firioak
Mk = (r+k+1) Jgo (n—i—j'j’

and by is deﬁned in equation (5.2). Here, the quantities f;1;_1,x are obtained recursively
by firi—1,0="0""" and (for k > 1)

k
fj+7, 1k—kbO 12 ]+Z _k]b fj+z 1,k—m-
m=1
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Based on the expansion (6.1), we can obtain some mathematical properties (ordinary
and incomplete moments, generating function, etc.) for the NWG order statistics from
those exp-G properties.

7. Reliability

We derive the reliability R = P(X2 < X1) when X; ~ NWG(au, f1,£1) and Xo ~
NWG(a, B2, &2) are independent random variables with a positive support. It has many
applications especially in engineering concepts. Let f;(z) and F;(x) denote the pdf and
cdf of X; for i = 1,2. By using the mixture representations for F»>(x) and fi(z) given in
Section 5.1, we obtain

o0
R= 5" 0" b, Ry opr,
k,s=0

where bl(l) and bii)l are given in these representations and

R st1 2/ Hy(x; a1, B1,€1) hsi1(z; az, B2, €2) dx
0

If a1 = Q2 and /31 = ,62, then

(1) 1(2)
k= E: +k+1b bosr:
Finally, if a1 = a2, f1 = B2 and &1 = €2, then R = 1/2 as expected.

8. Characterizations of the NWG family

Various characterizations of distributions have been established in many different di-
rections. In this section, three characterizations of the NWG family are presented based
on: (i) a simple relationship between two truncated moments; (ii) a single function of
the random variable, and (iii) the hazard function.

8.1. Characterization based on truncated moments. Here, we present a charac-
terization of the NWG family in terms of a simple relationship between two truncated
moments. The characterization results employ an interesting result due to Glanzel [19]
(Theorem 1, below). It has the advantage that the cdf F is not required to have a closed-
form and is given in terms of an integral whose integrand depends on the solution of
a first order differential equation, which can serve as a bridge between probability and
differential equation.

8.1. Theorem. Let (Q, %, P) be a given probability space and let H = [a, b] be an interval
for some a < b (a = —o00,b = oo might as well be allowed). Let X : Q@ — H be a
continuous random variable with distribution function F(x) and let ¢1 and q2 be two real
functions defined on H such that

Elg (X) [X 2 2]=Elg (X) [X > 2] n(z), ze€H,
is defined with some real function 1. Assume that q1, go € C*(H), n € C*(H) and G(x)
is twice continuously differentiable and strictly monotone function on the set H. Finally,

assume that the equation qan = q1 has no real solution in the interior of H. Then G is
uniquely determined by the functions qi, q2 and n, particularly

) = ‘ 7]/ (u) e—s(u) w
F=) / C’nw)quu)—ql(u) du,
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where the function s is a solution of the differential equation s’ = nz;?tn and C is a

constant, chosen to make fH dF =1.

8.2. Proposition. Let X : Q — (0,00) be a continuous random variable and let g2 () =
(= 1eslGCaO}” g q1 (z) = g2 (z) {—log [G (z; &)} for z > 0. The pdf of X is (2.2) if
and only if the function n defined in Theorem 1 has the form

1) = 55 (- loglG @)}, @ >0

Proof. Let X have density (2.2), then
[1-F(2)]Elg2 (X) | X > 2] = a{-log[G(z;€)]}’, =z >0,
1= F@]Eln (X)X > 0] = 2 { ~loglG @]}, >0,
and then
1
n(z) Q2(w)—m(r)=—5+1

Conversely, if n is given as above, then

J(a) = 1D ) :6[9(‘?_?]{—1og[G(x;g)]}_l, >0,

g2 (x) { —log [G (z;¢)] } <0 forz > 0.

n(z) g2(x) — q1(x) G (2:€)
and hence
s(2) = —plog ({~log [G (:0)]} ), = >0,
or
e ™ = { —log [G (z;€)] }ﬂ, x > 0.
Now, in view of Theorem 1, X has density function (2.2). O

8.3. Corollary. Let X : Q — (0,00) be a continuous random variable and let g2 (x) be
as in Proposition 1. The pdf of X is (2.2) if and only if there exist functions qi and 7
defined in Theorem 1 satisfying the differential equation
!
' (x) g2(x) g (;8) -1
:ﬂ[ } —log [G (z;& , x>0.
@0 -a@ L le@el LB

Remark 1. (a)The general solution of the differential equation in Corollary 1 is ob-
tained as follows:

n'(@) - 8|

g (z;6)
G (2;€)

| (-roglG @
= B [829] { - 108G @01} @],

or

L {108 [G (@ 1Y ()]
= —Ba(@) [£25] {1081 @)} (@) "

From the above equation, we obtain
n@) = {—log[G(z:)]} "
<[- [pae [4E9] {~1gl6@ o1} n) ! @),

(2;€)
where D is a constant. One set of appropriate functions is given in Proposition 1 with
D =0.
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(b) Clearly there are other triplets of functions (g2, q1,7n) satisfying the conditions of
Theorem 1. We present one such triplet in Proposition 1.

8.2. Characterization based on single function of the random variable. Here,
we employ a single function 1 of X and state characterization results in terms of 1 (X).

8.4. Proposition. Let X : Q — (0,00) be a continuous random variable with cdf F(x).
Let ¢ (x) be a differentiable function on (0,00) with limy— oo ¥ () = 1. Then for § # 1,

E[¢ (X)X <a]=6¢(x), € /(0,00)
if and only if
Y (x)=F(x)i ", z€(0,00).
Proof. The proof is straightforward. O

Remark 2. For ¢ (z) = e_{_log[c(”@]}ﬂ, z € (0,00) and § = %, Proposition 2
provides a cdf F(z) given by (2.1).

8.3. Characterizations based on the hazard function. The hrf hp(z) of a twice
differentiable distribution function F'(x) and pdf f(x) satisfies the first order differential
equation
hip ()
hr(z)
where ¢ (y) is an appropriate integrable function. Although this differential equation has
an obvious form since

- hF(x) = q(x)’

/ /
f (iL') _ hF(x) 7hF($),

f(@)  he(z)
for many univariate continuous distributions (8.1) seems to be the only differential equa-
tion in terms of the hrf. The goal of the characterization based on the hazard function
is to establish a differential equation in terms of the hrf, which has a simple form as
possible and is not of the trivial form (8.1). For some general families of distributions
this may not be possible.

(8.1)

8.5. Proposition. Let X : Q — (0,00) be a continuous random variable. The random
variable X has pdf (2.2) (for B = 1) and G(z) = (1 — e %) if and only if its hazard
function hp(z) satisfies the differential equation

/ Az -1 _ Oé2 )‘2 6_2/\96 alog 1—e AT
hF(x)—l—)\(l—e ) hp(x)—me ( )

ey —2
(82) % |:1 _ ealog(l—e A )] ’

with initial condition hr(0) = 0.

Proof. The f(x) has pdf (2.2), then clearly (8.2) holds. Now, if (8.2) holds, then
i Az o AT _ i _ alog[lfe_’\m] -1
L (- ) o () )

where C'is an appropriate constant. Letting C' = —1 , we obtain from the above equation
Oé)\eiAz alog(lfef)‘m) alog(lfef)‘z) -1

Integrating both sides of the last equation from 0 to =, we arrive at

—log [1 — F(m)] = —log [1 . ea1og(1,e—xm)] 7
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from which, we obtain
Az
)

1—Fz)=1—e*et== ") 2 >0,

9. Estimation

We consider the estimation of the unknown parameters of the NWG family of distri-
butions by the method of maximum likelihood. Let z1,...,z, be a sample of size n from
the NWG family given by (2.2). The log-likelihood function for the vector of parameters
® = (a,,€)" can be expressed as

(©) = nloga+nlogf+ Zlog [9(z,&)] — Zlog {G(z, &)}

+(B—1) ) log {~log[G(z, )]} —a > _{—log[G(z, )]}
=1 =1
The components of the score vector U(®) are given by

Us = g—Z{flog[G(m,s)}}",

Us = 5= [loe {~log[Clx &)}

—a Z [ (~log [G(z, )]} log {~los[G(x.&)]} ],
Ue . [(ag(’;&)) 3 (*5&<)

k

9(.&) | = | G8

3

9G(x,€)
&y

{—log[G(z, 8]} G(x,€)

n {—log[G(xvg)]}ﬁ_l (%)
+af |3 G, €)

Setting U, Ug and Ug, equal to zero and solving numerically these equations simulta-
neously yields the maximum likelihood estimates (MLEs) © = (a, B, Z)T The estimates
can be obtained using the R language.

For interval estimation and hypothesis tests, we can use standard likelihood techniques
based the observed information matrix, which can be obtained from the authors upon
request.

10. Applications

We provide two applications to real life data sets to prove the flexibility of the Weibull-
log-logistic (WLL) and Weibull-Weibull (WW) models presented in Section 3. The
MLEs of the model parameters and the goodness-of-fit statistics are calculated for the
WLL and WW models, and other competitive models. We compare these models with
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other Weibull-G models under the same baseline distribution, namely the WLL (BSC-
WLL, ALF-WLL) and WW (BSC-WW, ALF-WW) models based on Bourguignon et al.
(2014)’s generator G(z)/[1—G(z)] and Alzaatreh et al. (2013)’s generator — log[1—G(z)].
We note that the BSC-LL, ALF-LL, BSC-WW and ALF-WW models are not known in
the literature. Further, we also compare the gamma exponentiated-exponential (GEE)
(Risti¢ and Balakrishnan [26]) and exponential-exponential geometric (EEG) (Rezaei et
al. [24]) models with the proposed and other competitive models. The density functions
of the GEE and EEG distributions are, respectively, given by (for > 0)

feee(T; N\, 0,0) = %e_ew [1 — e_gx]a ' [—alog (1 — e_‘”)}A ' ,

Ao, 0> 0,
af(l —p)e?fc
e Ty p (1= ety
0<p<l, a,0>0.

fepc(z;p,0,0) =

The first real data represents the breaking strength of 100 yarn reported by Duncan [17].
The second real data set corresponds to the survival times (in days) of 72 guinea pigs
infected with virulent tubercle bacilli reported by Bjerkedal [9].

The measures of goodness-of-fit including the log-likelihood function evaluated at
the MLEs (), Akaike information criterion (AIC), Anderson-Darling (A*), Cram er-
von Mises (W*) and Kolmogorov-Smirnov (K-S), are calculated to compare the fitted
models. The statistics A* and W* are described by Chen and Balakrishnan [10]. In
general, the smaller the values of these statistics, the better the fit to the data. The
required computations are carried out using the R software.

Table 1: MLEs and their standard errors (in parentheses) for the first data set.

Distribution B c s A [eY 6 p
WLL 0.6612 25.5915 97.7523 - - - -
(0.1395) (6.2313) (1.0425) - - - -
BSC-WLL 4.7898 1.5601 105.0254 - - - -
(195.4617)  (63.6652)  (1.4938) - - - -
ALF-WLL 0.6528 25.9621 99.6537 - - - -
(0.1423) (6.4490) (1.0920) - - - -
GEE - - - 20.4987 78.3734 0.0150 -
- - - (5.4222) (11.2681) (0.0022) -

EEG - - - - 38.9807 0.0198 0.9974

_ - - - (5.8133)  (0.0015)  (0.0004)

Table 2: MLEs and their standard errors (in parentheses) for the second data set.

Distribution B 0% A e 6 p

WW 2.6594  0.6933  0.0270
(0.7129)  (0.1707)  (0.0193)
BSC-WW 11.1576  0.0881  0.4574
(4.5449)  (0.0355)  (0.0770)

ALF-WW 1.7872  0.7795  0.0255
(0.7821)  (0.3332)  (0.0400) - -
GEE - - 2.1138  2.6006  0.0083
- - (1.3288)  (0.5597)  (0.0048) -
EEG - - - 2.5890  0.0004  0.9999

_ B (0.4820)  (0.0041)  (0.1036)
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Table 3: The statistics ¢, AIC, A*, W* and K-S for the fitted models to the first data

set.
Distribution i AIC A* w* K-S  p-value (K-S)
WLL -383.5896 773.1792 0.8402 0.1254 0.0805 0.5354
BSC-WLL -404.7074 815.4147 4.7296 0.7951 0.1948 0.0010
ALF-WLL -383.6181 773.2361 0.7432 0.1332 0.0888 0.4091
GEE -392.7053 791.4106 2.3551 0.3976 0.1423 0.0348
EEG -390.5435 787.0869 1.4894 0.2676 0.1442 0.0312

Table 4: The statistics £, AIC, A*, W* and K-S for the fitted models to the second data

set.
Distribution i AIC A* w* K-S  p-value (K-S)
WW -390.2338 786.4676 0.7811 0.1427 0.1055 0.3994
BSC-WwW -397.8399 801.6797 2.4764 0.4494 0.1510 0.0749
ALF-WW -397.1477 800.2953 2.3938 0.4348 0.1465 0.0911
GEE -393.6235 793.2470 1.7208 0.3150 0.1347 0.1467
EEG -389.9445 785.8890 0.5789 0.1047 0.0861 0.6282

0.04
I

0.03
I

Density

0.01

0.00
I

(a) Estimated pdfs (b) Estimated cdfs

Figure 3. Plots of the estimated pdfs and cdfs of the WLL, BSC-
WLL, ALF-WLL, GEE and EEG models.

The MLEs and the corresponding standard errors (in parentheses) of the model pa-
rameters are given in Tables 1 and 2. The numerical values of the statistics AIC, A™,
W™ and K-S are listed in Tables 3 and 4. The histograms of the two data sets and the
estimated pdfs and cdfs of the proposed and competitive models are displayed in Figures
3 and 4. Based on the figures in Tables 2 and 4, we conclude that the new WLL and WW
models provide adequate fits as compared to other Weibull-G models in both applications
with small values for AIC, A*, W* and K-S, and large p-values. In Application 1, the
proposed WLL model is much better than the BSC-WLL, GEE and EEG models, and
a good alternative to the ALF-WLL model. In Application 2, the proposed WW model
outperforms the BSC-WEW, ALF-WW and GEE models but it is not better than EEG
model. Figures 3 and 4 also support the results in Tables 2 and 4.
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Figure 4. Plots of the estimated pdfs and cdfs of the WW, BSC-WW,
ALF-WW, GEE and EEG models.

11. Concluding remarks

In this paper, we propose and study the new Weibull-G (NWG) family. We investigate
some of its mathematical properties including an expansion for the density function and
explicit expressions for the quantile function, ordinary and incomplete moments, gener-
ating function, entropies, reliability and order statistics. Three useful characterizations,
based on truncated moments, single function of the random variable and hazard function,
are formulated for the NWG family. The advantage of the characterizations given here
is that the cumulative distribution is not required to have a closed-form and are given in
terms of an integral whose integrand depends on the solution of a first order differential
equation. They can serve as a bridge between probability and differential equation. The
maximum likelihood method is employed to estimate the model parameters. We fit two
special models of the new family to two real data sets to demonstrate the flexibility of the
proposed family. These special models can give better fits than other competing models.
We hope that the new family and its generated models will attract wider application
in areas such as engineering, survival and lifetime data, hydrology, economics, among
others.
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