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Abstract

In this paper, we propse Bayes estimators of the parameters of
Marshall Olkin extended exponential distribution (MOEED) intro-
duced by Marshall-Olkin [2] for complete sample under squared
error loss function (SELF). We have used different approximation
techniques to obtain the Bayes estimate of the parameters. A
Monte Carlo simulation study is carried out to compare the per-
formance of proposed estimators with the corresponding maximum
likelihood estimator (MLE’s) on the basis of their simulated risk.
A real data set has been considered for illustrative purpose of the study.
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1. Introduction

Due to simple, elegant and closed form of distribution function, Exponential dis-
tribution is most popular distribution for life time data analysis. Further Borlow
and Proschan [22] have discussed the justification regarding the use of exponen-
tial distribution as the failure law of complex equipment. However its uses are
restricted to constant hazard rate, which is difficult to justify in many real situ-
ations. Thus one can think to develop alternative model which has non-constant
hazard rate. In the literature, various methods may be used to generalise exponen-
tial distributions and these generalized models have the property of non-constant
hazard rate like Weibull, gamma and exponentiated exponential distribution etc.
These generalized models are frequently used to analyse the life time data. In
addition Marshall and Olkin [2] introduced a method of adding a new parameter
to a specified distribution. The resulting distribution is known as Marshall Olkin
extended distribution. The general methodology regarding the introducing a new

aDepartment of Statistics and DST-CIMS, Banaras Hindu University, Varanasi-221005
∗Corresponding author e–mail: singhsk64@gmail.com



S. K. Singh et al.

parameters is as follows:
Let F̄ (x) be the survival function of existing or specified distribution then, the
survival function of new distribution can be obtained by using following relation

S̄(x) =
αF̄ (x)

1− ᾱF̄ (x)
; −∞ < x <∞, α > 0

where ᾱ = 1−α and S̄(x) is the survival function of new distribution. Note that,
when α = 1, S̄(x) = F̄ (x). Thus, the form of density corresponding to the survival
function S̄(x) is obtained as,

f(x, α) =
αf(x)

{
1− ᾱF̄ (x)

}2

Further more, Marshall and Olkin derived a distribution by introducing the sur-
vival function of exponential distribution say (F̄ (x) = e−λx). The resulting distri-
bution is known as Marshall Olkin extended exponential distribution (MOEED)
with increasing and decreasing failure rate functions see [2]. The probability den-
sity function (pdf) and cumulative distribution function (cdf) of this distribution
are given as:

(1.1) f(x, α, λ) =
αλe−λx

(1− ᾱe−λx)2
; x, α, λ ≥ 0

(1.2) F (x, α, λ) =
1− e−λx

1− ᾱe−λx ; x, α, λ ≥ 0

respectively. The considered distribution is very useful in life testing problem and
it may be used as a good alternative to the gamma, Weibull and other exponen-
tiated family of distributions. The basic properties related to this distribution
have been discussed in [2]. The density function (1) has increasing failure rate for
α ≥ 1 , decreasing failure rate for α ≤ 1 and constant failure rate for α = 1 similar
to one parameter exponential distribution. G. Srinivasa Rao et al [3] used this
distribution for making reliability test plan with sampling point of view. Shape
of this distribution is presented bellow see figure 1. for different choices of shape
and scale parameter.

In this paper, we mainly consider both the informative and non-informative
priors under squared error loss function to compute the Bayes estimators of pa-
rameters. It has been noticed that the Bayes estimators of the parameters cannot
be expressed in a nice closed form. Thus the different numerical approximation
procedures are used to obtain Bayes estimator. Here we use the Lindley’s, Tier-
ney and Kadane (T-K) approximation methods and Markov Chain Monte Carlo
(MCMC) technique to compute the Bayes estimators of the parameters.

The rest of the paper is organized as follows: In section 2.1, we describe the
classical estimation with maximum likelihood estimator (MLE) of parameters. In
section 2.2, we compute Bayes estimator of parameters with gamma prior and in
section 2.2.1, 2.2.2 and 2.2.3 we describe different Bayesian approaches like Lind-
ley Approximation, Tierney and Kadane approximation and Monte Carlo Markov
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Figure 1. Density plot with different choice of α and λ

chain (MCMC) method for estimating the unknown parameters respectively. Sec-
tion 3 provides the simulation and numerical result and one real data set has been
analysed in section 4. Finally conclusion of the paper is provided in section 5.

2. Estimation of the parameters

2.1. Maximum likelihood estimators. Suppose {x1, x2, ..., xn} be a indepen-
dently identically distributed (iid) random sample of size n from Marshall Olkin
extended exponential distribution (MOEED) defined in (1). Thus the likelihood
function of α and λ for the samples is,

(2.1) L(x|α, λ) = αnλne
−λ

n∑
i=1

xi
n∏

i=1

(1− ᾱe−λxi)−2; x, α, λ ≥ 0

The maximum likelihood estimators of the parameters have obtained by differ-
entiating the log of likelihood function w.r.t.to parameters and equating to zero.
Thus two normal equations have been obtained as,

(2.2)
n

α
− 2

n∑

i=1

e−λxi(1− ᾱe−λxi)−1 = 0

and

(2.3)
n

λ
−

n∑

i=1

xi − 2

n∑

i=1

ᾱxie
−λxi(1− ᾱe−λxi)−1 = 0

Above normal equation of α and λ form an implicit system and does not exist an
unique root for above system of equations, so they can not be solved analytically.
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Thus maximum likelihood estimators (MLE) have been obtained By using Newton-
Raphson (N-R) method.

2.2. Bayesian Estimation of the parameters. The Bayesian estimation pro-
cedure of the parameters related to various life time models has been extensively
discussed the literature (see in[5],[6],[8] and so on). It may be mentioned here, that
most of the discussions on Bayes estimator are confined to quadratic loss function
because this loss function is most widely used as symmetrical loss function which
has been justified in classical method on the ground of minimum variance unbiased
estimation procedure and associates equal importance to the losses for overesti-
mation and underestimation of equal magnitudes. This may be defined as,

L(θ̂, θ) ∝ (θ̂ − θ)2

where θ̂ is the estimate of the parameter θ.
Under the above mentioned loss function, Bayes estimators are the posterior

mean of the distributions. In Bayesian analysis, parameters of the models are
considered to be a random variable and following certain distribution. This dis-
tribution is called prior distribution. If prior information available to us which
may be used for selection of prior distribution. But in many real situation it is
very difficult to select a prior distribution. Therefore selection of prior distribution
plays an important role in estimation of the parameters. A natural choice for the
prior of α and λ would be two independent gamma distributions i.e. gamma(a, b)
and gamma(c, d) respectively . It is important to mention that Gamma prior has
flexible nature as a non-informative prior in particular when the values of hyper
parameters are considered to be zero. Thus the proposed prior for α and λ may
be considered as,

ν1(α) ∝ αa−1e−bα and ν2(λ) ∝ λc−1e−dλ

respectively. Where a, b, c and d are the hyper-parameters of the prior distribu-
tions. Thus, the joint prior of α and λ may be taken as;

(2.4) ν(α, λ) ∝ αa−1λc−1e−dλ−bα ; α, λ, a, b, c, d ≥ 0

Substituting L(x|α, λ) and ν(α, λ) form equation no. (3) and (6) respectively then
we can find the posterior distribution of α and λ i.e.p(α, λ|x) is given as,

(2.5) p(α, λ|x) = Kαn+a−1λn+c−1e
−dλ−bα−λ

n∑
i=1

xi
n∏

i=1

(1− ᾱe−λxi)−2

where,

(2.6) K−1 =

∫

α

∫

λ

αn+a−1λn+c−1e
−dλ−bα−λ

n∑
i=1

xi
n∏

i=1

(1− ᾱe−λxi)−2dαdλ

Here, we see that the posterior distribution involves an integral in the denominator
which is not solvable and consequently the Bayes estimators of the parameters are
the ratio of the integral, which are not in explicit form. Hence the determination of
posterior expectation for obtaining the Bayes estimator of α and λ will be tedious.
There are several methods available in literature to solve such type of integration
problem. Among the entire methods we consider T-K, Lindley’s and Monte Carlo
Markov Chain (MCMC) approximation method, which approach the ratio of the
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integrals as a whole and produce a single numerical result. These methods are
described bellow:

2.2.1. Bayes estimator using Lindley’s Approximation. We consider the Lindley’s
approximation method to obtain the Bayes estimates of the parameters, which
includes the posterior expectation is expressible in the form of ratio of integral as
follow:

(2.7) I(x) = E(α, λ|x) =

∫
u(α, λ)eL(α,λ)+G(α,λ)d(α, λ)∫

eL(α,λ)+G(α,λ)d(α, λ)

where,
u(α, λ)= is a function of α and λ only
L(α, λ)= Log- likelihood function
G(α, λ)= Log of joint prior density
According to D. V. Lindley [1], if ML estimates of the parameters are available
and n is sufficiently large then the above ratio of the integral can be approximated
as:

I(x) = u(α̂, λ̂) + 0.5[(ûλλ + 2ûλτ̂λ)σ̂λλ + (ûαλ + 2ûατ̂λ)σ̂αλ + (ûλα + 2ûλτ̂α)σ̂λα +

(ûαα + 2ûατ̂α)σ̂αα] +
1

2
[(ûλσ̂λλ + ûασ̂λα)(L̂λλλσ̂λλ + L̂λαλσ̂λα + L̂αλλσ̂αλ +

L̂ααλσ̂αα) + (ûλσ̂αλ + ûασ̂αα)(L̂αλλσ̂λλ + L̂λαασ̂λα + L̂αλασ̂αλ + L̂ααασ̂αα)]

where α̂ and λ̂ is the MLE of α and λ respectively, and

ûα =
∂u(α̂, λ̂)

∂α̂
, ûλ =

∂u(α̂, λ̂)

∂λ̂
, ûαλ =

∂u(α̂, λ̂)

∂α̂∂λ̂
, ûλα =

∂u(α̂, λ̂)

∂λ̂∂α̂
, ûαα =

∂2u(α̂, λ̂)

∂α̂2
,

ûλλ =
∂2u(α̂, λ̂)

∂λ̂2
, L̂αα =

∂2L(α̂, λ̂)

∂α̂2
, L̂λλ =

∂2L(α̂, λ̂)

∂λ̂2
, L̂ααα =

∂3L(α̂, λ̂)

∂α̂3
,

L̂ααλ =
∂3L(α̂, λ̂)

∂α̂∂α̂∂λ̂
, L̂λλα =

∂3L(α̂, λ̂)

∂λ̂∂λ̂∂α̂
, L̂λαλ =

∂3L(α̂, λ̂)

∂λ̂∂α̂∂λ̂
, L̂ααλ =

∂3L(α̂, λ̂)

∂α̂∂α̂∂λ̂
,

L̂αλλ =
∂3L(α̂, λ̂)

∂α̂∂λ̂∂λ̂
, L̂λαα =

∂3L(α̂, λ̂)

∂λ̂∂α̂∂α̂
, p̂α =

∂G(α̂, λ̂)

∂α̂
, p̂λ =

∂G(α̂, λ̂)

∂λ̂

After substitution of p(α, λ|x) from (7) in above equation (9) then this integral
must be reduces like Lindley’s integral, where:

u(α, λ) = α

L(α, λ) = n lnα+ n lnλ− λ
n∑

i=1

xi − 2

n∑

i=1

ln(1− ᾱe−λxi) and

G(α, λ) = (a− 1) lnα+ (c− 1) lnλ− (bα+ dλ)

it may verified that,

uα = 1, uαα = uλλ = uαλ = uλα = 0, pα =
a− 1

α
− b, pλ =

c− 1

λ
− d

Lα =
n

α
− 2

n∑
i=1

e−λxi

(1− ᾱe−λxi) , Lαα =
−n
α2

+ 2
n∑
i=1

e−2λxi

(1− ᾱe−λxi)2 ,

Lααα =
2n

α3
− 4

n∑
i=1

e−3λxi

(1− ᾱe−λxi)3 , Lλ =
n

λ
−

n∑
i=1

xi − 2
n∑
i=1

xiᾱe
−λxi

(1− ᾱe−λxi) ,
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Lλλ =
−n
λ2

+ 2
n∑
i=1

x2
i ᾱe
−λxi

(1− ᾱe−λxi) + 2
n∑
i=1

x2
i ᾱ

2e−2λxi

(1− ᾱe−λxi)2 ,

Lλλλ =
2n

λ3
− 2

n∑
i=1

x3
i ᾱe
−λxi

(1− ᾱe−λxi) − 6
n∑
i=1

x3
i ᾱ

2e−2λxi

(1− ᾱe−λxi)2 − 4
n∑
i=1

x3
i ᾱ

3e−3λxi

(1− ᾱe−λxi)3 ,

Lααλ = Lλαα = −4
n∑
i=1

xie
−2λxi

(1− ᾱe−λxi)2 − 4
n∑
i=1

xiᾱe
−3λxi

(1− ᾱe−λxi)3 ,

Lαλλ = Lλλα = −2
n∑
i=1

x2
i e
−λxi

(1− ᾱe−λxi) − 6
n∑
i=1

x2
i ᾱe
−2λxi

(1− ᾱe−λxi)2 − 4
n∑
i=1

x2
i ᾱ

2e−3λxi

(1− ᾱe−λxi)3

If α and λ are orthogonal then σij = 0 for i 6= j and σij =
(
− 1

Lij

)
for i = j After

evaluation of all U-terms, L-terms, and p- terms at the point (α̂, λ̂) and using the
above expression, the approximate Bayes estimator of α under SELF is,

(2.8) α̂LS = α̂+ ûαp̂ασ̂αα + 0.5
(
ûασ̂αασ̂λλL̂αλλ + ûασ̂

2
ααL̂ααα

)

and similarly the Bayes estimate for λ under SELF is,
uλ = 1, uαα = uλλ = uαλ = uλα = 0 and remaining L-terms and -terms will be
same as above thus we have,

(2.9) λ̂LS = λ̂+ ûλp̂λσ̂λλ + 0.5
(
ûλσ̂

2
λλL̂λλλ + ûλσ̂αασ̂λλL̂ααλ

)

2.2.2. Bayes estimators using Tierney and Kadane’s (T-K) Approximation. Lind-
ley’s method of solving integral is accurate enough but one of the problems of this
method is that it requires evaluation of third order partial derivatives and in

p-parameters case the total number of derivatives is
p(p+ 1)(p+ 2)

6
then this ap-

proximation will be quite complicated. thus one can think about T-K approxima-
tion method and this method may be used as an alternative to Lindley’s method.
According to the Tierney and Kadane’s approximation any ratio of the integral of
the form,

(2.10) û(α, λ) = Ep(α,λ|x)[u(α, λ|x)] =

∫
α,λ

enL∗(α,λ)d(α, λ)

∫
α,λ

enL0(α,λ)d(α, λ)

where,

(2.11) L0(α, λ) =
1

n
[L(α, λ) + ln ν(α, λ)] and L∗(α, λ) = L0(α, λ) +

1

n
lnu(α, λ)

Thus estimate can be obtained as,

(2.12) û(α, λ) =

√
|Σ∗|
|Σ0|

e[n{L∗(α∗,λ∗)−L0(α0,λ0)}]

where (α∗, λ∗) and (α0, λ0) maximize L∗(α, λ) and L0(α, λ) respectively, and Σ∗
and Σ0 are the negative of the inverse of the matrices of second derivatives of
L∗(α, λ) and L0(α, λ) at the point (α∗, λ∗) and (α0, λ0) respectively. In our study,
based on (14) the function L0(α, λ) is given as,

(2.13)
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L0(α, λ) =
1

n
[(n+a−1) lnα−bα+(n+c−1) lnλ−λ(d+

n∑

i=1

xi)−2
n∑

i=1

ln(1−ᾱe−λxi)]

and thus for the Bayes estimator of α and λ under SELF using this approximation
(17) can be written as,

(2.14) α̂T−KS (α, λ) =

√
|Σ∗|
|Σ0|

e[n{Lα∗ (α∗,λ∗)−L0(α0,λ0)}]

(2.15) λ̂T−KS (α, λ) =

√
|Σ∗|
|Σ0|

e[n{Lλ∗ (α∗,λ∗)−L0(α0,λ0)}]

where

Lα∗ (α, λ) = Lα0 (α, λ) +
1

n
lnα and Lλ∗(α, λ) = Lλ0 (α, λ) +

1

n
lnλ

2.2.3. Bayes estimator using Monte Carlo Markov Chain (MCMC) method. In
this section, we propose Monte Carlo Markov Chain (MCMC) method for ob-
taining the Bayes estimates of the parameters. Thus we consider the MCMC
technique namely Gibbs sampler and Metropolis-Hastings algorithm to generate
sample from the posterior distribution and then compute the Bayes estimate. The
Gibbs sampler is best applied on problems where the marginal distributions of the
parameters of interest are difficult to calculate, but the conditional distributions of
each parameter given all the other parameters and the data have nice forms. If the
conditional distributions of the parameters have standard forms, then they can be
simulated easily. But generating samples from full conditionals corresponding to
joint posterior is not easily manageable. Therefore we considered the Metropolis-
Hastings algorithm. Metropolis step is used to extract samples from some of the
full conditional to complete a cycle in Gibbs chain . For more detail about MCMC
method see for example Gelfand and Smith [23], Upadhya and Gupta [24] . Thus
utilizing the concept of Gibbs sampling procedure as mentioned above, generates
sample from the posterior density function (7) under the assumption that parame-
ters α and λ have independent Gamma density function with hyper parameters a,
b and c, d respectively. To incorporate this technique we consider full conditional
posterior densities of α and λ are written as ,

(2.16) π(α|λ, x) ∝ αn+a−1e−bα
n∏

i=1

(1− ᾱe−λxi)−2

(2.17) π(λ|α, x) ∝ λn+c−1e
−λ(d+

n∑
i=1

xi)
n∏

i=1

(1− ᾱe−λxi)−2

The Gibbs algorithm consist the following steps

• Start with k=1 and initial values (α0, λ0)
• Using M-H algorithm generate posterior sample for α and λ from (18) and

(19) respectively, where asymptotic normal distribution of full conditional
densities are considered as the proposal.
• Repeat step 2, for all k = 1, 2, 3, . . . ,M and obtain (α1, λ1), (α2, λ2), ...(αM , λM )
• After obtaining the posterior sample the Bayes estimates of α and λ with

respect to the SELF are as follows:
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(2.18) α̂MC = [Eπ(α|x)] ≈
(

1

M −M0

M−M0∑

i=1

αi

)

(2.19) λ̂MC = [Eπ(λ|x)] ≈
(

1

M −M0

M−M0∑

i=1

λi

)

Where, M0 is the burn-in-period of Markov Chain.

3. Simulation Study

This section, consists of simulation study to compare the performance of the
various estimation techniques described in the previous section 2. Comparison of
the estimators have been made on the basis of simulated risk (average loss over
whole sample space). It is not easy to obtain the risk of the estimators directly.
Therefore the risk of the estimators are obtained on the basis of simulated sample.
For this purpose, we generate 1000 samples of size n (small sample size n = 20,
moderate sample size n = 30, and large sample size n = 50) from Mrshall-Olkin
Extended exponential distribution. In order to consider MCMC method for ob-
taining the Bayes estimate of the parameters, we generate 20000 deviates for the
parameters α and λ using algorithm discussed in section 2.2.3. First five hundred
MCMC iterations (Burn-in period) have discarded from the generated sequence.
We have also checked the convergence of the sequences of α and λ for their sta-
tionary distributions through different starting values. It was observed that all
the Markov chains reached to the stationary condition very quickly. Further, in
Bayes estimation choice of hyper-parameters have great importance. Therefore
the values of hyper- parameters have been considered as follows:

• The values of hyper parameters are assumed in such a way that prior
mean is equal to the guess value of the parameters when prior variances
are taken as small (see Table 1), large (see Table 2) along with variation
of sample size and for fixed value of parameters.
• The value of hyper parameters are assumed to be zero (i.e. non-informative

case) along with variation of sample sizes and for fixed value of parameters
(see Tables 3).

Here, we know that the Gamma prior provides flexible approach to handle estima-
tion procedure in both scenarios i.e. informative and non-informative. The case
of non-informative prior has been obtained by assuming the values of hyper pa-
rameters as zero i.e.a = b = c = d = 0. For informative prior, we take prior mean
(say,µ ) to be equal to the guess value of the parameter with varying prior variance
(say,ν ). The prior variance indicates the confidence of our prior guess. A large
prior variance shows less confidence in prior guess and resulting prior distribution
is relatively flat. On the other hand, small prior variance indicates greater confi-
dence in prior guess. Several variations of sample size and hyper-parameters have
been obtained and due to similar patterns some of them are presented below. In
Table 1 the variation of various sample sizes has been observed through fixing the
value of shape and scale parameter i.e α = λ = 2 and choice of hyper-parameter is
assumed as a=4, b=2 and c=4, d=2, such that, prior mean is 2 and prior variance
is small (say 1). Table 2 shows the same patterns described as above for different
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choice of hyper-parameters which is assumed as a=0.4, b=0.2 and c=0.4, d=0.2,
such that prior mean is 2 but prior variance is very large (say 10). Table 3 exhibits
similar results under consideration of non-informative prior scenario. It is also ob-
served that the risks of all the estimators decrease as sample size increases in all
the considered cases. As we expected, it is also observed that when we consider
informative prior, the proposed Bayes estimators behave better than the classical
maximum likelihood estimators. But in case of non-informative prior, their be-
haviour are almost same as MLE, which may be seen in the following connected
tables (see Table 1,2 and 3).

4. Real Illustration

In this section; we analyze a real data set from A. Wood [21] to illustrate our
estimation procedure. The data is based on the failure times of the release of
software given in terms of hours with average life time be 1000 hours from the
starting of the execution of the software. This data can be regarded as an ordered
sample of size 16 are given as,

0.519 0.968 1.430 1.893 2.490 3.058 3.625 4.442
5.218 5.823 6.539 7.083 7.485 7.846 8.205 8.564

Given data set have been already considered by Rao et al.[3] to construct a sam-
pling plan only if the life time has Marshall-Olkin extended exponential distribu-
tion. To identify the validity of proposed model criterion of log-likelihood, Akaike
information criterion (AIC) and Bayesian information criterion (BIC) have been
discussed. It has been verified that the given data set provides better fit than other
exponetiated family such as exponential, Generalized exponential and gamma dis-
tributions see Table (5) and empirical cumulative distribution function (ECDF)
plot of this data is represented in figure (2).
To calculate the Bayes estimates of the parameters in absence of prior informa-
tion, we consider the non-informative prior. Further we calculate the Maximum
likelihood estimates of the parameter and also Bayes estimates of the parameters
under different considered estimation methods which are presented in Table 4. The
MCMC iterations of α and λ are plotted respectively. Density and Trace plots are
indicating that the MCMC samples are well mixed and stationary achieved see
figure 3.

5. Conclusion

In this paper, we have considered the classical as well as Bayesian estimation of
the unknown parameters of the Marshall- Olkin extended exponential distribution
under various approximation techniques. On the basis of extensive study we may
conclude the followings:

• Under informative setup the performance of Bayes estimators of the pa-
rameters is better than the maximum likelihood estimators (MLE’s) in
all considered approximation techniques and also Lindley’s approximation
technique works quite well than rest of other methods such as T-K and
MCMC.
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• Under non-informative set up, we observed that T-K approximation method
behaves like maximum likelihood estimators (MLE’s) and performs well
than Lindleys and MCMC approximation methods.
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Table 1. This table represents the estimates of the parameters
obtained through various estimation techniques when prior mean
is 2 and prior variance is 1 i.e.µ = 2,ν = 1 and also the quantity in
second row exhibits the average expected loss over sample space
i.e. risks of corresponding estimators.

Size MLE T-K Lindley’s MCMC

n α̂M λ̂M α̂T−KS λ̂T−KS α̂LS λ̂LS α̂MC
S λ̂MC

S

20
2.23773 2.06460 2.23737 2.06445 1.77297 1.98913 2.28136 2.07794
1.39995 0.39985 1.40010 0.39962 0.26508 0.26972 1.15025 0.30349

30
2.21472 2.04999 2.21469 2.04986 1.95451 2.00332 2.23035 2.05050
1.19207 0.26914 1.19255 0.26902 0.24508 0.21117 0.96397 0.19768

50
2.26295 2.06143 2.26278 2.06138 2.11909 2.03343 2.25792 2.05326
1.00657 0.19669 1.00657 0.19668 0.39802 0.16998 0.88427 0.16388

Table 2. This table represents the estimates of the parameters
obtained through various estimation techniques when prior mean
is 2 and prior variance is 10 i.e.µ = 2,ν = 10 and also the quantity
in second row exhibits the average expected loss over sample space
i.e. risks of corresponding estimators.

Size MLE T-K Lindley’s MCMC

n α̂M λ̂M α̂T−KS λ̂T−KS α̂LS λ̂LS α̂MC
S λ̂MC

S

20
2.23773 2.06460 2.23834 2.06459 2.28362 2.00365 2.18074 2.00827
1.39995 0.39985 1.40243 0.40017 1.32136 0.36720 1.40399 0.42792

30
2.21472 2.04999 2.21525 2.05007 2.24926 2.00974 2.14724 1.99070
1.19207 0.26914 1.19239 0.26918 1.14257 0.25448 1.18310 0.28731

50
2.26295 2.06143 2.26265 2.06135 2.28564 2.03720 2.21927 2.02727
1.00657 0.19669 1.00658 0.19668 0.98506 0.18914 0.99635 0.20304
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Table 3. Table represents the estimates of the parameters ob-
tained through various estimation techniques and also the quan-
tity in square bracketed exhibits the average expected loss over
sample space i.e. risks under non-informative prior.

Size MLE T-K Lindley’s MCMC

n α̂M λ̂M α̂T−KS λ̂T−KS α̂LS λ̂LS α̂MC
S λ̂MC

S

20
2.23773 2.06460 2.23750 2.06448 2.34036 2.00526 2.15852 1.98538
1.39995 0.39985 1.40114 0.40005 1.60352 0.37905 1.46574 0.47475

30
2.21472 2.04999 2.21514 2.05005 2.28201 2.01046 2.12848 1.97225
1.19207 0.26914 1.19233 0.26916 1.30748 0.25955 1.23519 0.32177

50
2.26295 2.06143 2.26262 2.06137 2.30415 2.03762 2.21263 2.02207
1.00657 0.19669 1.00659 0.19669 1.07019 0.19134 1.01519 0.21145

Table 4. This table represents the estimates of the parameters
obtained by various methods of estimation for real data set under
the assumption that prior information assume to be non-
informative.

Size MLE T-K Lindley’s MCMC

n α̂M λ̂M α̂T−KS λ̂T−KS α̂LS λ̂LS α̂MC
S λ̂MC

S

16 8.62532 0.50074 8.62534 0.50074 9.12253 0.48963 8.62581 0.49910

Table 5. This Table represents the values of Log-likelihood, AIC
and BIC for different models in real data set.

Distribution -log L
Information Criterion
AIC BIC

Exponential 40.762 83.524 84.296
Generalized Exponential 38.836 81.673 83.218

Gamma 38.629 81.258 82.803
MOEED 38.044 80.089 81.634
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Figure 2. CDF plot for considered real data set
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Figure 3. Posterior density and trace plot for considered real
data set.
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