Coefficient bounds for certain classes of bi-univalent functions

B.A. Frasin *

Abstract

In this paper, we introduce two new subclasses of the function class Σ of bi-univalent functions defined in the open unit disk. Furthermore, we find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses.

Keywords: Analytic and univalent functions, bi-univalent functions, starlike and convex functions, coefficients bounds.

2000 AMS Classification: 30C45

1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathcal{U}=\{z:|z|<1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U}. A function $f(z)$ belonging to \mathcal{S} is said to be starlike of order α if it satisfies

$$
\begin{equation*}
\mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathcal{U}) \tag{1.2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $\mathcal{S}^{*}(\alpha)$ the subclass of \mathcal{S} consisting of functions which are starlike of order α in \mathcal{U}. Also, a function $f(z)$ belonging to \mathcal{S} is said to be convex of order α if it satisfies

$$
\begin{equation*}
\mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathcal{U}) \tag{1.3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $\mathcal{K}(\alpha)$ the subclass of \mathcal{S} consisting of functions which are convex of order α in \mathcal{U}.

[^0]Gao and Zhou [5] showed some mapping properties of the following subclass of \mathcal{A} :

$$
\mathcal{R}(\alpha, \beta)=\left\{f \in \mathcal{A}: \mathfrak{R}\left(\left(f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right)>\alpha, \quad \beta>0,0 \leq \alpha<1 ; z \in \mathcal{U}\right\}\right.
$$

Yang and Liu [12, Theorem 3.1, p.9], proved that the class $\mathcal{R}(\alpha, \beta) \subset \mathcal{S}$ iff

$$
2(1-\alpha) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1
$$

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathcal{U})
$$

and

$$
f^{-1}(f(w))=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function is said to be bi-univalent in \mathcal{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathcal{U}.

Let Σ denote the class of bi-univalent functions in \mathcal{U} given by (1.1). Example of functions in the class Σ are

$$
\frac{z}{1-z}, \quad \log \frac{1}{1-z}, \quad \log \sqrt{\frac{1+z}{1-z}}
$$

However, the familiar Koebe function is not a member of Σ. Other common examples of functions in \mathcal{U} such as

$$
\frac{2 z-z^{2}}{2} \text { and } \frac{z}{1-z^{2}}
$$

are also not members of Σ.
Lewin [6] investigated the bi-univalent function class Σ and showed that $\left|a_{2}\right|<$ 1.51. Subsequently, Brannan and Clunie [1] conjectured that $\left|a_{2}\right|<\sqrt{2}$. Netanyahu [7], on the other hand, showed that $\max _{f \in \Sigma}\left|a_{2}\right|=4 / 3$.

The coefficient estimate problem for each of the Taylor-Maclaurin coefficients $\left|a_{n}\right|(n \geq 3 ; n \in \mathbb{N})$ is presumably still an open problem.

Brannan and Taha [2] (see also [10]) introduced certain subclasses of the biunivalent function class Σ similar to the familiar subclasses $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ (see [3]). Thus, following Brannan and Taha [2] (see also [10]), a function $f \in \mathcal{A}$ is in the class $\mathcal{S}_{\Sigma}^{*}[\alpha]$ of strongly bi-starlike functions of order $\alpha(0<\alpha \leq 1)$ if each of the following conditions are satisfied:

$$
f \in \Sigma \text { and }\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in \mathcal{U})
$$

and

$$
\left|\arg \left(\frac{z g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in \mathcal{U})
$$

where g is the extension of f^{-1} to \mathcal{U}. The classes $\mathcal{S}_{\Sigma}^{*}(\alpha)$ and $\mathcal{K}_{\Sigma}(\alpha)$ of bistarlike functions of order α and bi-convex functions of order α, corresponding (respectively) to the function classes defined by (1.2) and (1.3), were also introduced analogously. For each of the function classes $\mathcal{S}_{\Sigma}^{*}(\alpha)$ and $\mathcal{K}_{\Sigma}(\alpha)$, they found non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ (for details, see $[7,8]$).

The object of the present paper is to introduce two new subclasses of the function class Σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the function class Σ employing the techniques used earlier by Srivastava et al. [9] (see also, [4] and [11]).

In order to derive our main results, we have to recall here the following lemma [8].
1.1. Lemma. If $h \in \mathcal{P}$ then $\left|c_{k}\right| \leq 2$ for each k,
where \mathcal{P} is the family of all functions h analytic in \mathcal{U} for which $\mathfrak{R} h(z)>0$ $h(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots$ for $z \in \mathcal{U}$.

2. Coefficient bounds for the function class $\mathcal{H}_{\Sigma}(\alpha, \beta)$

2.1. Definition. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}(\alpha, \beta)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \text { and }\left|\arg \left(f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathcal{U}) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(g^{\prime}(w)+\beta w g^{\prime \prime}(w)\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathcal{U}) \tag{2.2}
\end{equation*}
$$

where $\beta>0,0<\alpha<1,2(1-\alpha) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1$, and the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{2.3}
\end{equation*}
$$

We begin by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $\mathcal{H}_{\Sigma}(\alpha, \beta)$.
2.2. Theorem. Let $f(z)$ given by (1.1) be in the class $\mathcal{H}_{\Sigma}(\alpha, \beta)$ where $\beta>0,0<$ $\alpha<1$, and $2(1-\alpha) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2(\alpha+2)+4 \beta(\alpha+\beta+2-\alpha \beta)}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\alpha^{2}}{(1+\beta)^{2}}+\frac{2 \alpha}{3(1+2 \beta)} \tag{2.5}
\end{equation*}
$$

Proof. It follows from (2.1) and (2.2) that

$$
\begin{equation*}
f^{\prime}(z)+\beta z f^{\prime \prime}(z)=[p(z)]^{\alpha} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{\prime}(w)+\beta w g^{\prime \prime}(w)=[q(w)]^{\alpha} \tag{2.7}
\end{equation*}
$$

where $p(z)$ and $q(w)$ in \mathcal{P} and have the forms

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots \tag{2.9}
\end{equation*}
$$

Now, equating the coefficients in (2.6) and (2.7), we get

$$
\begin{align*}
2(1+\beta) a_{2} & =\alpha p_{1} \tag{2.10}\\
3(1+2 \beta) a_{3} & =\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2} \tag{2.11}\\
-2(1+\beta) a_{2} & =\alpha q_{1} \tag{2.12}
\end{align*}
$$

and

$$
\begin{equation*}
3(1+2 \beta)\left(2 a_{2}^{2}-a_{3}\right)=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} \tag{2.13}
\end{equation*}
$$

From (2.10) and (2.12), we get
(2.14) $p_{1}=-q_{1}$
and

$$
\begin{equation*}
8(1+\beta)^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.15}
\end{equation*}
$$

Now from (2.11), (2.13) and (2.15), we obtain

$$
\begin{aligned}
6(1+2 \beta) a_{2}^{2} & =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right) \\
& =\alpha\left(p_{2}+q_{2}\right)+\frac{4(\alpha-1)(1+\beta)^{2}}{\alpha} a_{2}^{2}
\end{aligned}
$$

Therefore, we have

$$
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{2(\alpha+2)+4 \beta(\alpha+\beta+2-\alpha \beta)} .
$$

Applying Lemma 1.1 for the coefficients p_{2} and q_{2}, we immediately have

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2(\alpha+2)+4 \beta(\alpha+\beta+2-\alpha \beta)}}
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in (2.4).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.13) from (2.11), we get

$$
\begin{equation*}
6(1+2 \beta) a_{3}-6(1+2 \beta) a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}-\left(\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2}\right) \tag{2.16}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (2.15) and observing that $p_{1}^{2}=q_{1}^{2}$, it follows that

$$
a_{3}=\frac{\alpha^{2} p_{1}^{2}}{4(1+\beta)^{2}}+\frac{\alpha\left(p_{2}-q_{2}\right)}{6(1+2 \beta)}
$$

Applying Lemma 1.1 once again for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we readily get

$$
\left|a_{3}\right| \leq \frac{\alpha^{2}}{(1+\beta)^{2}}+\frac{2 \alpha}{3(1+2 \beta)}
$$

This completes the proof of Theorem 2.2.

Putting $\beta=1$ in Theorem 2.2, we have
2.3. Corollary. Let $f(z)$ given by (1.1) be in the class $\mathcal{H}_{\Sigma}(\alpha, 1)$ where $0<\alpha<1$, and $2(1-\alpha) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m+1} \leq 1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2(\alpha+2)+12}} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{9 \alpha^{2}+8 \alpha}{36} \tag{2.18}
\end{equation*}
$$

3. Coefficient bounds for the function class $\mathcal{H}_{\Sigma}(\gamma, \beta)$

3.1. Definition. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}(\gamma, \beta)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \text { and } \Re\left(f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right)>\gamma \quad(z \in \mathcal{U}) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{R}\left(g^{\prime}(w)+\beta w g^{\prime \prime}(w)\right)>\gamma \quad(w \in \mathcal{U}) \tag{3.2}
\end{equation*}
$$

where $\beta>0,0 \leq \gamma<1,2(1-\gamma) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1$, and the function g is given by (2.3).
3.2. Theorem. Let $f(z)$ given by (1.1) be in the class $\mathcal{H}_{\Sigma}(\gamma, \beta)$, where $\beta>0,0 \leq$ $\gamma<1$, and $2(1-\gamma) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\gamma)}{3(1+2 \beta)}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{(1-\gamma)^{2}}{(1+\beta)^{2}}+\frac{2(1-\gamma)}{3(1+2 \beta)} \tag{3.4}
\end{equation*}
$$

Proof. It follows from (3.1) and (3.2) that there exist p and $q \in \mathcal{P}$ such that

$$
\begin{equation*}
f^{\prime}(z)+\beta z f^{\prime \prime}(z)=\gamma+(1-\gamma) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{\prime}(w)+\beta w g^{\prime \prime}(w)=\gamma+(1-\gamma) q(w) \tag{3.6}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (2.8) and (2.9), respectively. Equating coefficients in (3.5) and (3.6) yields

$$
\begin{align*}
2(1+\beta) a_{2} & =(1-\gamma) p_{1} \tag{3.7}\\
3(1+2 \beta) a_{3} & =(1-\gamma) p_{2} \tag{3.8}\\
-2(1+\beta) a_{2} & =(1-\gamma) q_{1} \tag{3.9}
\end{align*}
$$

and
(3.10) $3(1+2 \beta)\left(2 a_{2}^{2}-a_{3}\right)=(1-\gamma) q_{2}$

From (3.7) and (3.9), we get
(3.11) $p_{1}=-q_{1}$
and
(3.12) $8(1+\beta)^{2} a_{2}^{2}=(1-\gamma)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)$.

Also, from (3.8) and (3.10), we find that

$$
6(1+2 \beta) a_{2}^{2}=(1-\gamma)\left(p_{2}+q_{2}\right)
$$

Thus, we have

$$
\left|a_{2}^{2}\right| \leq \frac{(1-\gamma)}{6(1+2 \beta)}\left(\left|p_{2}\right|+\left|q_{2}\right|\right)=\frac{2(1-\gamma)}{3(1+2 \beta)}
$$

which is the bound on $\left|a_{2}^{2}\right|$ as given in (3.3).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (3.10) from (3.8), we get

$$
6(1+2 \beta) a_{3}-6(1+2 \beta) a_{2}^{2}=(1-\gamma)\left(p_{2}-q_{2}\right)
$$

or, equivalently,

$$
a_{3}=a_{2}^{2}+\frac{(1-\gamma)\left(p_{2}-q_{2}\right)}{6(1+2 \beta)}
$$

Upon substituting the value of a_{2}^{2} from (3.12), we obtain

$$
a_{3}=\frac{(1-\gamma)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{8(1+\beta)^{2}}+\frac{(1-\gamma)\left(p_{2}-q_{2}\right)}{6(1+2 \beta)}
$$

Applying Lemma 1.1 for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we readily get

$$
\left|a_{3}\right| \leq \frac{(1-\gamma)^{2}}{(1+\beta)^{2}}+\frac{2(1-\gamma)}{3(1+2 \beta)}
$$

which is the bound on $\left|a_{3}\right|$ as asserted in (3.4).
Putting $\beta=1$ in Theorem 3.2, we have
3.3. Corollary. Let $f(z)$ given by (1.1) be in the class $\mathcal{H}_{\Sigma}(\gamma, 1)$, where $0 \leq \gamma<$ 1, and $2(1-\gamma) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m+1} \leq 1$.

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{1}{3} \sqrt{2(1-\gamma)} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{(1-\gamma)(9(1-\gamma)+8)}{36} \tag{3.14}
\end{equation*}
$$

Acknowledgements. The author would like to thank the referees for their helpful comments and suggestions.

References

[1] Brannan, D. A. and Clunie, J. G. (Eds.), Aspects of Contemporary Complex Analysis Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979, (Academic Press, New York and London, 1980).
[2] Brannan, D. A. and Taha, T. S. On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70-77.
[3] Brannan, D. A., Clunie, J. and Kirwan, W. E. Coefficient estimates for a class of starlike functions, Canad. J. Math., 22, 476-485, 1970.
[4] Frasin, B. A. and Aouf, M. K New subclasses of bi-univalent functions, Appl. Math. Letters, 24, no. 9, 1569-1573, 2011.
[5] Gao, C. Y. and Zhou, S. Q. Certain subclass of starlike functions, Applied Mathematics and Computation, vol. 187, no. 1, pp. 176-182, 2007.
[6] Lewin, M On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63-68, 1967.
[7] Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32, 100-112, 1969.
[8] Pommerenke, C. Univalent functions, (Vandenhoeck and Rupercht, Göttingen, 1975).
[9] Srivastava, H. M., Mishra, A. K. and Gochhayat, P. Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23, 1188-1192, 2010.
[10] Taha, T. S. Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
[11] Xu, Q, Gui, Y. and Srivastava, H. M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25, 990-994, 2012.
[12] Yang, D. G. and Liu, J. L A class of analytic functions with missing coefficients, Abstract and Applied Analysis, Volume 2011, Article ID 456729, 2011.

[^0]: *Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan Email:bafrasin@yahoo.com

