$\bigwedge^{}_{N}$ Hacettepe Journal of Mathematics and Statistics Volume 43 (3) (2014), 383 – 389

Coefficient bounds for certain classes of bi-univalent functions

B.A. Frasin *

Abstract

In this paper, we introduce two new subclasses of the function class Σ of bi-univalent functions defined in the open unit disk. Furthermore, we find estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in these new subclasses.

Keywords: Analytic and univalent functions, bi-univalent functions, starlike and convex functions, coefficients bounds.

2000 AMS Classification: 30C45

1. Introduction and definitions

Let ${\mathcal A}$ denote the class of functions of the form :

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disc $\mathcal{U} = \{z : |z| < 1\}$. Further, by S we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U} . A function f(z) belonging to S is said to be starlike of order α if it satisfies

(1.2)
$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (z \in \mathfrak{U})$$

for some $\alpha(0 \leq \alpha < 1)$. We denote by $S^*(\alpha)$ the subclass of S consisting of functions which are starlike of order α in \mathcal{U} . Also, a function f(z) belonging to S is said to be convex of order α if it satisfies

(1.3)
$$\Re\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha$$
 $(z \in \mathfrak{U})$

for some $\alpha(0 \leq \alpha < 1)$. We denote by $\mathcal{K}(\alpha)$ the subclass of S consisting of functions which are convex of order α in \mathcal{U} .

^{*}Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan Email:bafrasin@yahoo.com

Gao and Zhou [5] showed some mapping properties of the following subclass of \mathcal{A} :

 $\Re(\alpha,\beta) = \{ f \in \mathcal{A} : \Re((f'(z) + \beta z f''(z)) > \alpha, \beta > 0, 0 \le \alpha < 1; z \in \mathcal{U} \}.$

Yang and Liu [12, Theorem 3.1, p.9], proved that the class $\Re(\alpha, \beta) \subset S$ iff $2(1-\alpha)\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \le 1.$

It is well known that every function $f \in S$ has an inverse f^{-1} , defined by

$$f^{-1}(f(z)) = z \qquad (z \in \mathcal{U})$$

and

$$f^{-1}(f(w)) = w$$
 $(|w| < r_0(f); r_0(f) \ge \frac{1}{4})$

where

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

A function is said to be bi-univalent in \mathcal{U} if both f(z) and $f^{-1}(z)$ are univalent in \mathcal{U} .

Let Σ denote the class of bi-univalent functions in \mathcal{U} given by (1.1). Example of functions in the class Σ are

$$\frac{z}{1-z}, \qquad \log \frac{1}{1-z}, \qquad \log \sqrt{\frac{1+z}{1-z}}.$$

However, the familiar Koebe function is not a member of Σ . Other common examples of functions in \mathcal{U} such as

$$\frac{2z-z^2}{2}$$
 and $\frac{z}{1-z^2}$

are also not members of Σ .

Lewin [6] investigated the bi-univalent function class Σ and showed that $|a_2| < 1$ 1.51. Subsequently, Brannan and Clunie [1] conjectured that $|a_2| < \sqrt{2}$. Netanyahu [7], on the other hand, showed that $\max_{f \in \Sigma} |a_2| = 4/3$.

The coefficient estimate problem for each of the Taylor-Maclaurin coefficients $|a_n| \ (n \geq 3; n \in \mathbb{N})$ is presumably still an open problem.

Brannan and Taha [2] (see also [10]) introduced certain subclasses of the biunivalent function class Σ similar to the familiar subclasses $S^*(\alpha)$ and $\mathcal{K}(\alpha)$ (see [3]). Thus, following Brannan and Taha [2] (see also [10]), a function $f \in \mathcal{A}$ is in the class $S_{\Sigma}^{*}[\alpha]$ of strongly bi-starlike functions of order $\alpha(0 < \alpha \leq 1)$ if each of the following conditions are satisfied:

$$f \in \Sigma$$
 and $\left| \arg\left(\frac{zf'(z)}{f(z)}\right) \right| < \frac{\alpha\pi}{2}$ $(0 < \alpha \le 1, \ z \in \mathfrak{U})$

and

$$\arg\left(\frac{zg'(w)}{g(w)}\right) \bigg| < \frac{\alpha\pi}{2} \qquad (0 < \alpha \le 1, \ w \in \mathfrak{U}),$$

where g is the extension of f^{-1} to \mathcal{U} . The classes $\mathcal{S}_{\Sigma}^{*}(\alpha)$ and $\mathcal{K}_{\Sigma}(\alpha)$ of bistarlike functions of order α and bi-convex functions of order α , corresponding (respectively) to the function classes defined by (1.2) and (1.3), were also introduced analogously. For each of the function classes $\mathcal{S}_{\Sigma}^{*}(\alpha)$ and $\mathcal{K}_{\Sigma}(\alpha)$, they found non-sharp estimates on the first two Taylor–Maclaurin coefficients $|a_2|$ and $|a_3|$ (for details, see [7,8]).

The object of the present paper is to introduce two new subclasses of the function class Σ and find estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in these new subclasses of the function class Σ employing the techniques used earlier by Srivastava *et al.* [9] (see also, [4] and [11]).

In order to derive our main results, we have to recall here the following lemma [8].

1.1. Lemma. If $h \in \mathcal{P}$ then $|c_k| \leq 2$ for each k,

where \mathcal{P} is the family of all functions h analytic in \mathcal{U} for which $\Re h(z) > 0$ $h(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots$ for $z \in \mathcal{U}$.

2. Coefficient bounds for the function class $\mathcal{H}_{\Sigma}(\alpha,\beta)$

2.1. Definition. A function f(z) given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}(\alpha, \beta)$ if the following conditions are satisfied:

(2.1)
$$f \in \Sigma$$
 and $|\arg(f'(z) + \beta z f''(z))| < \frac{\alpha \pi}{2}$ $(z \in \mathcal{U})$

and

(2.2)
$$\left|\arg\left(g'(w) + \beta w g''(w)\right)\right| < \frac{\alpha \pi}{2} \qquad (w \in \mathfrak{U}),$$

where $\beta > 0, 0 < \alpha < 1$, $2(1-\alpha) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1$, and the function g is given by

(2.3)
$$g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

We begin by finding the estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in the class $\mathcal{H}_{\Sigma}(\alpha, \beta)$.

2.2. Theorem. Let f(z) given by (1.1) be in the class $\mathfrak{H}_{\Sigma}(\alpha,\beta)$ where $\beta > 0, 0 < \alpha < 1$, and $2(1-\alpha) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1$. Then (2.4) $|a_2| \leq \frac{2\alpha}{\sqrt{2(\alpha+2)+4\beta(\alpha+\beta+2-\alpha\beta)}}$

and

(2.5)
$$|a_3| \le \frac{\alpha^2}{(1+\beta)^2} + \frac{2\alpha}{3(1+2\beta)}.$$

Proof. It follows from (2.1) and (2.2) that

(2.6)
$$f'(z) + \beta z f''(z) = [p(z)]^{\alpha}$$

and

(2.7)
$$g'(w) + \beta w g''(w) = [q(w)]^{\alpha}$$

where p(z) and q(w) in \mathcal{P} and have the forms

(2.8)
$$p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$$

and

(2.9)
$$q(w) = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \cdots$$

Now, equating the coefficients in (2.6) and (2.7), we get

(2.10)
$$2(1+\beta)a_2 = \alpha p_1,$$

(2.11)
$$3(1+2\beta)a_3 = \alpha p_2 + \frac{\alpha(\alpha-1)}{2}p_1^2,$$

(2.12)
$$-2(1+\beta)a_2 = \alpha q_1$$

and

(2.13)
$$3(1+2\beta)(2a_2^2-a_3) = \alpha q_2 + \frac{\alpha(\alpha-1)}{2}q_1^2.$$

From (2.10) and (2.12), we get

$$(2.14) \quad p_1 = -q_1$$

and

(2.15)
$$8(1+\beta)^2 a_2^2 = \alpha^2 (p_1^2 + q_1^2)$$

Now from (2.11), (2.13) and (2.15), we obtain

$$6(1+2\beta)a_2^2 = \alpha(p_2+q_2) + \frac{\alpha(\alpha-1)}{2}(p_1^2+q_1^2)$$
$$= \alpha(p_2+q_2) + \frac{4(\alpha-1)(1+\beta)^2}{\alpha}a_2^2$$

Therefore, we have

$$a_2^2 = \frac{\alpha^2(p_2 + q_2)}{2(\alpha + 2) + 4\beta(\alpha + \beta + 2 - \alpha\beta)}.$$

Applying Lemma 1.1 for the coefficients p_2 and q_2 , we immediately have

$$|a_2| \le \frac{2\alpha}{\sqrt{2(\alpha+2) + 4\beta(\alpha+\beta+2-\alpha\beta)}}.$$

This gives the bound on $|a_2|$ as asserted in (2.4).

Next, in order to find the bound on $|a_3|$, by subtracting (2.13) from (2.11), we get

(2.16)
$$6(1+2\beta)a_3 - 6(1+2\beta)a_2^2 = \alpha p_2 + \frac{\alpha(\alpha-1)}{2}p_1^2 - \left(\alpha q_2 + \frac{\alpha(\alpha-1)}{2}q_1^2\right).$$

Upon substituting the value of a_2^2 from (2.15) and observing that $p_1^2 = q_1^2$, it follows that

$$a_3 = \frac{\alpha^2 p_1^2}{4(1+\beta)^2} + \frac{\alpha(p_2 - q_2)}{6(1+2\beta)}.$$

Applying Lemma 1.1 once again for the coefficients p_1 , p_2 , q_1 and q_2 , we readily get

$$|a_3| \le \frac{\alpha^2}{(1+\beta)^2} + \frac{2\alpha}{3(1+2\beta)}.$$

This completes the proof of Theorem 2.2.

Putting $\beta = 1$ in Theorem 2.2, we have

2.3. Corollary. Let
$$f(z)$$
 given by (1.1) be in the class $\mathcal{H}_{\Sigma}(\alpha, 1)$ where $0 < \alpha < 1$,
and $2(1-\alpha) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m+1} \leq 1$. Then
(2.17) $|a_2| \leq \frac{2\alpha}{\sqrt{2(\alpha+2)+12}}$

and

$$(2.18) \quad |a_3| \le \frac{9\alpha^2 + 8\alpha}{36}.$$

3. Coefficient bounds for the function class $\mathcal{H}_{\Sigma}(\gamma,\beta)$

3.1. Definition. A function f(z) given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}(\gamma, \beta)$ if the following conditions are satisfied:

(3.1)
$$f \in \Sigma$$
 and $\Re \left(f'(z) + \beta z f''(z) \right) > \gamma$ $(z \in U)$
and

(3.2)
$$\Re \left(g'(w) + \beta w g''(w)\right) > \gamma \qquad (w \in \mathcal{U}),$$

where $\beta > 0, 0 \le \gamma < 1$, $2(1-\gamma) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \le 1$, and the function g is given by (2.3).

3.2. Theorem. Let f(z) given by (1.1) be in the class $\mathfrak{H}_{\Sigma}(\gamma,\beta)$, where $\beta > 0, 0 \le \gamma < 1$, and $2(1-\gamma) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \le 1$. Then

(3.3)
$$|a_2| \le \sqrt{\frac{2(1-\gamma)}{3(1+2\beta)}}$$

and

(3.4)
$$|a_3| \le \frac{(1-\gamma)^2}{(1+\beta)^2} + \frac{2(1-\gamma)}{3(1+2\beta)}.$$

Proof. It follows from (3.1) and (3.2) that there exist p and $q \in \mathcal{P}$ such that (3.5) $f'(z) + \beta z f''(z) = \gamma + (1 - \gamma)p(z)$ and

(3.6)
$$g'(w) + \beta w g''(w) = \gamma + (1 - \gamma)q(w)$$

where p(z) and q(w) have the forms (2.8) and (2.9), respectively. Equating coeffi-

cients in (3.5) and (3.6) yields

(3.7)
$$2(1+\beta)a_2 = (1-\gamma)p_1,$$

(3.8)
$$3(1+2\beta)a_3 = (1-\gamma)p_2$$

(3.9)
$$-2(1+\beta)a_2 = (1-\gamma)q_1$$

and

$$(3.10) \quad 3(1+2\beta)(2a_2^2-a_3) = (1-\gamma)q_2$$

From (3.7) and (3.9), we get

$$(3.11) \quad p_1 = -q_1$$

and

(3.12)
$$8(1+\beta)^2 a_2^2 = (1-\gamma)^2 (p_1^2+q_1^2).$$

Also, from (3.8) and (3.10), we find that

$$6(1+2\beta)a_2^2 = (1-\gamma)(p_2+q_2).$$

Thus, we have

$$|a_2^2| \le \frac{(1-\gamma)}{6(1+2\beta)}(|p_2|+|q_2|) = \frac{2(1-\gamma)}{3(1+2\beta)}$$

which is the bound on $|a_2^2|$ as given in (3.3).

Next, in order to find the bound on $|a_3|$, by subtracting (3.10) from (3.8), we get

$$6(1+2\beta)a_3 - 6(1+2\beta)a_2^2 = (1-\gamma)(p_2 - q_2)$$

or, equivalently,

$$a_3 = a_2^2 + \frac{(1-\gamma)(p_2 - q_2)}{6(1+2\beta)}.$$

Upon substituting the value of a_2^2 from (3.12), we obtain

$$a_3 = \frac{(1-\gamma)^2(p_1^2+q_1^2)}{8(1+\beta)^2} + \frac{(1-\gamma)(p_2-q_2)}{6(1+2\beta)}.$$

Applying Lemma 1.1 for the coefficients p_1 , p_2 , q_1 and q_2 , we readily get

$$|a_3| \le \frac{(1-\gamma)^2}{(1+\beta)^2} + \frac{2(1-\gamma)}{3(1+2\beta)}$$

which is the bound on $|a_3|$ as asserted in (3.4).

Putting $\beta = 1$ in Theorem 3.2, we have

3.3. Corollary. Let
$$f(z)$$
 given by (1.1) be in the class $\mathcal{H}_{\Sigma}(\gamma, 1)$, where $0 \le \gamma < 1$, and $2(1-\gamma) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m+1} \le 1$.
(3.13) $|a_2| \le \frac{1}{3}\sqrt{2(1-\gamma)}$
and
(3.14) $|a_3| \le \frac{(1-\gamma)(9(1-\gamma)+8)}{36}$.

Acknowledgements. The author would like to thank the referees for their helpful comments and suggestions.

References

- Brannan, D. A. and Clunie, J. G. (Eds.), Aspects of Contemporary Complex Analysis Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979, (Academic Press, New York and London, 1980).
- [2] Brannan, D. A. and Taha, T. S. On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70-77.
- [3] Brannan, D. A., Clunie, J. and Kirwan, W. E. Coefficient estimates for a class of starlike functions, Canad. J. Math., 22, 476-485, 1970.
- [4] Frasin, B. A. and Aouf, M. K New subclasses of bi-univalent functions, Appl. Math. Letters, 24, no. 9, 1569-1573, 2011.
- [5] Gao, C. Y. and Zhou, S. Q. Certain subclass of starlike functions, Applied Mathematics and Computation, vol. 187, no. 1, pp. 176–182, 2007.
- [6] Lewin, M On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63-68, 1967.
- [7] Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., **32**, 100-112, 1969.
- [8] Pommerenke, C. Univalent functions, (Vandenhoeck and Rupercht, Göttingen, 1975).
- [9] Srivastava, H. M., Mishra, A. K. and Gochhayat, P. Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23, 1188-1192, 2010.
- [10] Taha, T.S. Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
- [11] Xu, Q, Gui, Y. and Srivastava, H. M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25, 990-994, 2012.
- [12] Yang, D. G. and Liu, J. L A class of analytic functions with missing coefficients, Abstract and Applied Analysis, Volume 2011, Article ID 456729, 2011.