On groups with relatively small normalizers of nonprimary subgroups

Vladimir Antonov *

Abstract

We consider the structure of a finite nonsolvable group G in which for any nonprimary subgroup A the index $\left|N_{G}(A): A \cdot C_{G}(A)\right|$ is equal unit or a prime number.

Keywords: finite group, subgroup, normalizer, centralizer.
If A is an arbitrary subgroup of a group G, then $N(A) \geq A \cdot C(A)$, and the index $|N(A): A \cdot C(A)|$ equals to the order of a subgroup of $\operatorname{Out}(A)$, which is induced by elements of G. In this paper we consider the structure of finite groups G in which for any nonprimary subgroup A the index $|N(A): A \cdot C(A)|$ is a divisor of a certain prime number, i.e., it is equal to 1 or a prime number. We'll call these groups $N P$-groups.

Note that any subgroup and factor-group of a $N P$-group is also a $N P$-group. The aim of this article is to describe the structure of nonsolvable $N P$-groups.
1.1. Lemma. If a nonsolvable $N P$-group G is a central product of two subgroups G_{1} and G_{2}, then one of the factors is abelian.

Proof. Suppose that G_{1} is nonabelian. Then ([1], Corollary of Lemma 2) there exists a subgroup A of G_{1} such that $\left|N_{G_{1}}(A): A \cdot C_{G_{1}}(A)\right|=p$ for a prime p. If A is nonprimary and B is an arbitrary subgroup of G_{2}, then from the fact that $|N(A B): A B \cdot C(A B)|$ divides a prime number, it follows that $N_{G_{2}}(B)=$ $B \cdot C_{G_{2}}(B)$. Then G_{2} is abelian (see [1]). If A is primary and $|A|=q^{n}$ for a prime q, then the equality $N_{G_{2}}(B)=B \cdot C_{G_{2}}(B)$ holds for any q^{\prime}-subgroup B of G_{2}. By Lemma 4 from [1], $G_{2}=Q \lambda H$, where H is an abelian Hall q^{\prime}-subgroup of G_{2}. i.e. G_{2} is solvable. If G_{2} is nonabelian, then for any q^{\prime}-subgroup A of G_{1}, the equality $\left|N_{G_{1}}(A): A \cdot C_{G_{1}}(A)\right|$ holds too. But then the group G_{1} is also solvable, which is impossible.
1.2. Lemma. If Q is a Sylow q-subgroup of a NP-group $G, C(Q) \leq Q$ and $N(Q)=(Q \lambda\langle a\rangle) \lambda\langle b\rangle$, where $a \neq 1 \neq b$, then a and b are elements of prime orders, and if $N(Q)=Q \lambda\langle x\rangle$, then $|x|$ is the product of no more than two prime factors.

[^0]Proof. In the first case, if we let $A=Q \lambda\langle a\rangle$, we get that $|b|=|N(A): A \cdot C(A)|$ is a prime. And supposing $A=Q \lambda\langle c\rangle$, where c is an element of prime order r from $\langle a\rangle$, then from the equality $|N(A): A \cdot C(A)|=\frac{|a|}{r}|b|$ we get that $|a|=r$. In second case, it's sufficient to choose a subgroup $A=Q \lambda\langle y\rangle$, where y is an element of prime order from $\langle x\rangle$.

Later on we will repeatedly use Frattini's argument ([7], theorem 1.3.7): if $H \triangleleft G$ and P is a Sylow p-subgroup of H, then $G=H \cdot N(P)$. In a solvable group all Hall π-subgroups are conjugate. Therefore a similar proposition is true in a case where P is a Hall π-subgroup of a solvable group H. We will call this Frattini's argument as well.
1.3. Theorem. A finite nonabelian simple group G is a $N P$-group if and only if G satisfies one of the following conditions:

1) $G \cong \operatorname{PSL}\left(2, q^{n}\right), \frac{q^{n}-1}{\left(2, q^{n}-1\right)}$ is either a prime or a product of two primes;
2) $G \cong \operatorname{PSU}\left(3,2^{2 n}\right)$, and either $n=2$ or each of the numbers $\left(2^{n}-1\right)$ and $\frac{2^{n}+1}{3}$ are primes;
3) $G \cong S z\left(2^{n}\right), n \in\{3,5\}$.

Proof. Necessity. Let G be a finite nonabelian simple $N P$-group. It is known that any nonabelian simple group is either an alternating group, a Lie type group, or a sporadic simple group.

First, assume that $G \cong A_{n}$. If $n=5$, then $G \cong P S L(2,4)$, and if $n=6$, then $G \cong \operatorname{PSL}(2,9)$. If, however, $n>6$ then G contains a subgroup which is isomorphic to A_{7}. Let $G=A_{7}, a=(12)(34), b=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right), c=\left(\begin{array}{lll}5 & 6 & 7\end{array}\right), x=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{l}5\end{array}\right)$, $y=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $A=\langle a\rangle \times\langle b\rangle \times\langle c\rangle$. Then $C(A)=A$ and $N(A)=A \lambda(\langle y\rangle \lambda\langle x\rangle)$, i.e. $|N(A): A \cdot C(A)|=6$, which is impossible.

Now let G be a simple Lie type group over the Galois field $G F\left(q^{n}\right)$, where q is a prime. Suppose that the Lie rank l of G is more than 2 . If J is a parabolic subgroup of G, corresponding to two nonadjoit nodes of the Dynkin diagram of G, then ([4], Proposition 2.17) $\bar{J}=J / O_{q}(J)=\left(\bar{Y}_{1} \times \bar{Y}_{2}\right) \cdot \bar{H}$, where \bar{Y}_{1} and \bar{Y}_{2} are Lie type groups of Lie rank 1 over $G F\left(q^{n}\right)$ and H is a Cartan subgroup of G. By Lemma 1.1 each of $\overline{Y_{i}}$ is a solvable group. Since ([4], Theorem 2.13) solvable Lie type groups are either $A_{1}(2), A_{1}(3),{ }^{2} A_{2}(2)$ or ${ }^{2} B_{2}(2)$, so $q^{n} \in\{2,3\}$. Let $p_{i} \in \pi\left(\bar{Y}_{i}\right) \backslash\{q\}, \overline{A_{1}}$ and \bar{A}_{2} be Sylow p_{1} - and p_{2}-subgroup from \bar{Y}_{1} and \bar{Y}_{2}, respectively, then for the nonprimary subgroup $A=A_{1} \cdot A_{2}$ the index $|N(A): A \cdot C(A)|$ is divisible by q^{2}, which is impossible.

Therefore $l \leq 2$. Let $l=2$, i.e., G is isomorphic to one of the groups $A_{2}\left(q^{n}\right)$, $B_{2}\left(q^{n}\right),{ }^{2} A_{3}\left(q^{n}\right),{ }^{2} A_{4}\left(q^{n}\right),{ }^{3} D_{4}\left(q^{n}\right),{ }^{2} F_{4}\left(2^{2 n+1}\right), n>0,\left({ }^{2} F_{4}(2)\right)^{\prime}$ 。

First suppose that the Cartan subgroup H of the group G is trivial. The group $\left({ }^{2} F_{4}(2)\right)^{\prime}$ contains a subgroup K isomorphic to $P S L(2,25)$, which is not $N P$ group, because it has a Cartan subgroup of order 12, which contradicts Lemma 1.2. Because of this, G is a group of classical type over the field $G F(2)$, i.e., either $G \cong A_{2}(2)=P S L(3,2)$, or $G \cong B_{2}(2)=P S p(4,2)$. It's left to be noticed that $\operatorname{PSL}(3,2) \cong P S L(2,7)$, and that the group $P S p(4,2) \cong S_{6}$ is not simple.

Therefore $H \neq 1$. Let J be a proper parabolic subgroup of G. Then $\bar{J}=$ $J / O_{q}(J)=\bar{Y} \cdot \bar{H}$, where \bar{Y} is a Lie type group of Lie rank 1. If $G \cong{ }^{2} F_{4}\left(2^{2 n+1}\right)$, $n>0$, then subgroup J can be chosen so that $\bar{Y} \cong{ }^{2} B_{2}\left(2^{2 n+1}\right)$, and if \bar{A} is a
subgroup of the order $2^{2 n+1}+2^{n+1}+1$ from \bar{Y}, then A is nonprimary and $\mid N_{Y}(A)$: $A \cdot C_{Y}(A) \mid=4$, which is imposible. If $G \cong{ }^{2} A_{4}\left(q^{n}\right)$, then $\bar{Y} \cong P S L\left(2, q^{2 n}\right)$, and if \bar{H}_{1} is a Cartan subgroup of \bar{Y}, then the index $\left|N\left(H_{1}\right): H_{1} \cdot C\left(H_{1}\right)\right|=2 \cdot\left|\bar{H} / \overline{H_{1}}\right|$ is not a prime.

In all the other cases, subgroup \bar{J} may choosen in such a way that $\bar{Y} \cong A_{1}\left(q^{n}\right)$. If $q^{n}=2$ and \bar{A} is a subgroup of order 3 of \bar{Y}, then by Frattini's argument we assume that $\bar{H} \leq N(\bar{A})$ which also leads to a contradiction. However, if $q^{n} \neq 2$, then as \bar{A} we can take a Cartan subgroup of \bar{Y}.

Therefore $l=1$. If Q is a Sylow q-subgroup of G, then $C(Q) \leq Q$ and $N(Q)=$ $Q \lambda H$, where H is a Cartan subgroup of G. From the definition of an $N P$-group and the fact that H is abelian, one of the following is true: $|H|=1,|H|$ is a prime number or $|H|=p r$ where p and r are primes. Since group $A_{1}(2)$ is solvable, then the first case is impossible.

First, suppose that G is a twisted group. Let $G \cong{ }^{2} A_{2}\left(q^{n}\right)=\operatorname{PSU}\left(3, q^{2 n}\right)$. Then $|H|=\frac{q^{2 n}-1}{\left(3, q^{n}+1\right)}=\left(q^{n}-1\right) \cdot \frac{q^{n}+1}{\left(3, q^{n}+1\right)}$. If $q>2$ then $|H|$ is divisible by 8 , which is impossible. Therefore $q=2$ and all of the numbers $\left(2^{n}-1\right)$ and $\frac{2^{n}+1}{\left(3,2^{n}+1\right)}$ are primes. The primarity of $\left(2^{n}-1\right)$ implies that either $n=2$ or n is an odd prime and then $\left(2^{n}+1,3\right)=3$, i.e., G is a group of type 2$)$ from this Theorem.

The group ${ }^{2} B_{2}\left(2^{2 n+1}\right)$ contains, as subgroups, the Frobenius groups of orders $\left(2^{2 n+1} \pm 2^{n+1}+1\right) \cdot 4$. Therefore each of the numbers $2^{2 n+1}+2^{n+1}+1$ and $2^{2 n+1}-2^{n+1}+1$ must be powers of the primes. Because their product is equal $\left(2^{2}\right)^{2 n+1}+1$ it is divisible by 5 . But then either $2^{2 n+1}+2^{n+1}+1=5^{m}$, or $2^{2 n+1}-2^{n+1}+1=5^{m}$ for some number m.

Consider the first case. If $2^{2 n+1}+2^{n+1}+1=5^{m}$, then either $n=4 t$ or $n=4 t-1$ for some $t>0$. Since $2^{7}+2^{4}+1=145 \neq 5^{m}$, then $n \geq 4$ in any case. Let $m=2^{k} r$, where r is an odd number. Then from

$$
2^{n+1}\left(2^{n}+1\right)=5^{m}-1=2^{k+2} \cdot \frac{5^{r}-1}{4} \cdot \prod_{i=0}^{k-1} \frac{5^{2^{i} r}+1}{2}
$$

it follows that $k=n-1 \geq 3$. But the inequality

$$
\prod_{i=0}^{k-1} \frac{5^{2^{i} r}+1}{2}>2^{k+1}+1=2^{n}+1
$$

is true for $k \geq 3$, which is impossible.
If, however, $2^{2 n+1}-2^{n+1}+1=5^{m}$, then either $n=4 t+1$ or $n=4 t+2$ for some $t \geq 0$. The equality

$$
2^{n+1}\left(2^{n}-1\right)=5^{m}-1=2^{k+2} \cdot \frac{5^{r}-1}{4} \cdot \prod_{i=0}^{k-1} \frac{5^{2^{i} r}+1}{2}
$$

implies $k=n-1$. If $k>1$ then from $k \in\{4 t, 4 t+1\}$ it follows that $k \geq 4$ and we have the contradiction again. Therefore, $k \in\{0,1\}$ and, consequently, $n \in\{1,2\}$, i.e., G is a group of the type 3) from this Theorem.

Let $G \cong{ }^{2} G_{2}\left(3^{2 n+1}\right)$. Since the group ${ }^{2} G_{2}(3)$ is nonsimple, then $n>0$. In this case (see [8]) G has a subgroup H such that $H=\left(V_{4} \times D\right) \lambda\langle b\rangle$, where
$|b|=3, V_{4}=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle,\left|a_{i}\right|=2$, and D is isomorphic to the dihedral group of order $\frac{3^{2 n+1}+1}{2}$. If a is an element of order $\frac{3^{2 n+1}+1}{4}$ from D, then the subgroup $A=V_{4} \times\langle a\rangle$ is nonprimary and $\left|N_{H}(A): A \cdot C_{H}(A)\right|=6$, which is impossible.

Now suppose that G is a classical nontwisted group of Lie type rank 1, i.e., $G \cong A_{1}\left(q^{n}\right) \cong P S L\left(2, q^{n}\right)$. In this case $|H|=\frac{q^{n}-1}{\left(2, q^{n}-1\right)}$. Because of this $\frac{q^{n}-1}{\left(2, q^{n}-1\right)}$ is either be a prime, or a product of two primes, i.e., G is a group of the type 1) from this Theorem.

Now using the survey [10] we can show that G cannot be a sporadic simple group. To demonstrate this, it's sufficient to show that any sporadic simple group contains a subgroup, which is not $N P$-group. Let G_{p} denote a Sylow p-subgroup of G for a prime p.

1) In the group M_{11} the subgroup G_{3} is self-centralizing and its normaliser has a form $N\left(G_{3}\right)=G_{3} \lambda K$, where K is isomorphic to the semi-dihedral group of order 16, again contrary with Lemma 1.2.
2) $M_{12}, M_{23}, M_{24}, C o_{3}, S u z$ and $M c L$ contain M_{11}.
3) M_{22} and M_{24} contain A_{7}, F_{22} contains S_{10}, and F_{23} and F_{24}^{\prime} contain S_{12}.
4) The group $O^{\prime} N$ contains J_{1}, and in the group J_{1} the subgroup $N\left(G_{3}\right)$ is a direct product of two dihedral groups of orders 6 and 10 . If A is a subgroup from $N\left(G_{3}\right)$ of order 15 , then $|N(A): A \cdot C(A)|$ is divisible by 4 .
5) In the group J_{2} we have $N\left(G_{3}\right)=G_{3} \lambda\langle a\rangle$, where $C\left(G_{3}\right)=G_{3}$ and $|a|=8$.
6) In the groups J_{3} and He the subgroup $N\left(G_{17}\right)$ is a Frobenius group of order $17 \cdot 8$; in J_{4} and $C o_{2}$ the subgroup $N\left(G_{29}\right)$ is a Frobenius group of order $29 \cdot 28$, again contrary to Lemma 1.2 and $C o_{1}$ and F_{2} contain $C o_{2}$.
7) The group F_{1} contain an involution τ such that $C(\tau) / O_{2}(C(\tau)) \cong C o_{2}$.
8) In the groups $L y$ and F_{3} the subgroups $N\left(G_{37}\right)$ and $N\left(G_{19}\right)$ are Frobenius groups of orders $37 \cdot 18$ and $19 \cdot 18$, respectively.
9) The group F_{5} contains $H S$, and in the group $H S$ the subgroup $N\left(G_{3}\right)$ is isomorphic to $S_{3} \times S_{5}$, and if $A_{3} \times A_{5} \cong A \leq N\left(G_{3}\right)$, then $|N(A): A \cdot C(A)|$ is divisible by 4 .
10) The group $R u$ contains an involution τ such that $C(\tau) \cong V_{4} \times S z(8)$, and if $A \cong V_{4} \times H$, where H is a subgroup of order 5 from $S z(8)$, then $|N(A): A \cdot C(A)|$ is divisible by 4 .

Sufficiency. If A is a proper nonprimary subgroup of G, then $N(A)<G$. Therefore, it is sufficient to prove, that any maximal subgroup of G is a $N P$ group.

Suppose first that $G \cong P S L\left(2, q^{n}\right)$, where q is a prime. Since $\frac{q^{n}-1}{\left(2, q^{n}-1\right)}$ is either a prime or a product of two primes, then, it is not difficult to see, that either $n=1$ or $q \in\{2,3\}$ and n is either a prime or the square of a prime (odd, if $q=3$).From Dickson's Theorem ([6], Theorem 2.8.27) it follows that the maximal subgroups of G are the groups from the following list: $N(Q)=Q \lambda\langle a\rangle$, where Q is a Sylow q-subgroup of $G,|a|=\frac{q^{n}-1}{\left(2, q^{n}-1\right)}$; the dihedral groups of the orders $2 \cdot \frac{q^{n} \pm 1}{\left(2, q^{n}-1\right)} ; S_{4}$ for $q^{n} \equiv \pm 1(8), A_{4}$ for $q^{n} \equiv \pm 3(8), A_{5}$ for $q^{n} \equiv \pm 1(10) ; \operatorname{PSL}\left(2, q^{p}\right)$ for $n=p^{2}$. It's not difficult to check that all these groups are $N P$-groups.

If $G \cong \operatorname{PSU}\left(3,2^{2 n}\right)$, then since $\left(2^{n}-1\right)$ is a prime, n is a prime too. From [5] it follows that the maximal subgroups of G are the groups of the following
types: $N(Q)=Q \lambda\langle a\rangle$, where Q is a Sylow 2-subgroup of $G,|a|=\frac{2^{2 n}-1}{\left(3,2^{n}+1\right)}$; $C(b)=\langle b\rangle \times B$, where $|b|=\frac{2^{n}+1}{\left(3,2^{n}+1\right)}, B \cong P S L\left(2,2^{n}\right)$; the Frobenius group $\langle a\rangle \lambda\langle b\rangle,|a|=\frac{2^{2 n}-2^{n}+1}{\left(3,2^{n}+1\right)},|b|=3$; the Frobenius groups $(\langle a\rangle \times\langle b\rangle) \lambda C,|a|=2^{n}+1$, $|b|=\frac{2^{n}+1}{\left(3,2^{n}+1\right)}, C \cong S_{3}$.

In the groups $S z\left(2,2^{2 n+1}\right)$ for a prime n, the maximal subgroups are the groups of the following types (see [9]): $N(Q)=Q \lambda\langle a\rangle, Q$ is a Sylow 2-subgroup, $|a|=$ $2^{n}-1$; the dihedral group of order $2 \cdot\left(2^{n}-1\right)$; the Frobenius groups $\langle a\rangle \lambda\langle b\rangle$, $|a|=2^{n} \pm 2^{\frac{n+1}{2}}+1,|b|=4$.

Below F and F^{*} denote the Fitting subgroup and the generalized Fitting subgroup of G, respectively.
1.4. Theorem. Let G be a nonsolvable nonsimple NP-group. Then one of the following holds:

1) subgroup $F=F^{*}$ is a nontrivial p-group for some prime p, and $G / F \cong$ $\operatorname{PSL}(2,4)$;
2) $G \cong \operatorname{Aut}\left(P S L\left(2,2^{n}\right)\right), n \in\{2,3\}$;
3) $G=Z(G) \cdot L, L \cong P S L\left(2, q^{n}\right)$ or $S L\left(2, q^{n}\right)$, the number $\frac{q^{n}-1}{\left(2, q^{n}-1\right)}$ is a prime, and if $n=1$ then either $q \not \equiv \pm 1(8)$ or $Z(G)$ is a 2 -group;
4) $G=Z(G) \times L$ and either $L \cong P S L\left(2, q^{n}\right), \frac{q^{n}-1}{\left(2, q^{n}-1\right)}$ is a product of the two prime numbers and $Z(G)$ is a q-group, or $Z(G)$ is a 2 -group and $L \cong \operatorname{PSU}\left(2,2^{2 n}\right)$ is a group from Theorem 1.3;
5) $G=Z(G) \cdot L, Z(G)$ is a 3-group and L is isomorphic to the covering group for $P S L(2,9)$ with $|Z(L)|=3$.

Proof. Let G be a group satisfiy conditions of this Theorem. Let's assume first that $F=F^{*}$. Then $C(F) \leq F$. If F is a nonprimary group, then $|G: F|$ is a prime and G is a solvable group. Therefore, F is a p-group for some prime p. Moreover, if A / F is a p^{\prime}-subgroup of G / F, then $|N(A): A|$ divides a prime number.

Let G_{1} / F is a minimal normal subgroup of G / F. Then G_{1} is a non-nilpotent group, and consequently, is nonprimary. Therefore $\left|G: G_{1}\right|$ is a divisor of a prime. Assume that $G=G_{1}$. Then G / F is a simple $N P$-group. i.e., a group from Theorem 1.3.

Let $G / F \cong \operatorname{PSU}\left(3,2^{2 n}\right)$. If $p \neq 2$ and A / F is a Sylow 2-subgroup of G / F, then A is nonprimary, and $|N(A): A \cdot C(A)|=\frac{2^{2 n}-1}{\left(3,2^{n}+1\right)}$ is not a prime. Therefore $p=2$. Then ([4], p.166), for subgroup H / F of order $\frac{2^{2 n}-1}{\left(3,2^{n}+1\right)}$ from $N_{G / F}(A / F)$ the equality $C_{G / F}(H / F)=H / F \times L / F$, where $L / F \cong P S L\left(2,2^{n}\right)$, is true. Therefore, for the nonprimary subgroup H, the index $|N(H): H \cdot C(H)|$ divides by $|L / F|$, which is impossible.

In the case $G / F \cong S z(8)$, a Sylow 2-subgroup of G / F has the order 2^{6}. Hence $p=2$. If A / F is a subgroup of order 5 from G / F, then $|N(A): A|=4$, which is impossible. If $G / F \cong S z\left(2^{5}\right)$, then by analogy $p=2$ and if A / F is a subgroup of order 25 , then $|N(A): A|=4$.

Therefore, $G / F \cong P S L\left(2, q^{n}\right)$. If $q \neq p$ and Q / F is a Sylow q-subgroup of G / F, then Q is nonprimary and the primarity of the number $\left|N_{G / F}(Q / F): Q / F\right|$
implies that $\frac{q^{n}-1}{\left(2, q^{n}-1\right)}$ is a prime. If $a F$ is an element of order q from Q / F then the index $|N(\langle a, F\rangle):\langle a, F\rangle|$ divides a prime number and, therefore, $n \leq 2$.

If $n=2$ then from the primarity of $\frac{q^{2}-1}{\left(2, q^{2}-1\right)}$ we get that $q=2$, i.e. $G / F \cong$ $\operatorname{PSL}(2,4)$. Let $n=1$. Since the groups $\operatorname{PSL}(2,2)$ and $P S L(2,3)$ are solvable, and $P S L(2,5) \cong P S L(2,4)$ then we can suppose that $q>5$. Let A / F is a subgroup of the prime order r, where r divides $\frac{q+1}{2}$. If $r \neq p$ then the primarity of $|N(A): A|=2 \cdot \frac{q+1}{2 r}$ implies $r=\frac{q+1}{2}$. But the numbers $\frac{q-1}{2}$ and $\frac{q+1}{2}$ are primes at the same time only when $q=5$. Suppose now that $r=p$. Then by the arbitrariness of r, the equation $\frac{q+1}{2}=p^{k}$ is solvable. Since $q>5$ then the prime number $\frac{q-1}{2}$ is odd. But then $q+1$ is divisible by 4. i.e. $p=2$. Since one of the numbers, either k or $k+1$, is even, then the numbers $q=2^{k+1}-1$ and $\frac{q-1}{2}=2^{k}-1$ cannot both be prime at the same time.

Assume now that $q=p$ and $a F$ is an element of prime order from a subgroup of order $\frac{q^{n} \pm 1}{\left(2, q^{n}-1\right)}$ from G / F. Because $N_{G / F}(\langle a F\rangle)$ is isomorphic to the dihedral group of order $\frac{q^{n} \pm 1}{\left(2, q^{n}-1\right)} \cdot 2$, and $|N(\langle a, F\rangle):\langle a, F\rangle|$ is a prime, then the numbers $\frac{q^{n} \pm 1}{\left(2, q^{n}-1\right)}$ are primes. If q is odd, then $q^{n}=5$. But $\operatorname{PSL}(2,5) \cong \operatorname{PSL}(2,4)$. If $q=2$, then because $\left(2^{n}-1\right)$ is a prime it follows that n is a prime. But then in the case $n>2$ the number $2^{n}+1$ is not prime. Therefore, $G / F \cong \operatorname{PSL}(2,4)$.

Suppose now that $G_{1}<G$. Then, by using what's already been proved, $G_{1} / F \cong$ $\operatorname{PSL}(2,4)$ and $G / F=\left(G_{1} / F\right) \lambda\langle a F\rangle$, where $a F$ is an automorphism of the group G_{1} / F. Let A / F be a subgroup of order 5 from G_{1} / F. By Frattini's argument we can assume that $a F \in N_{G / F}(A / F)$. But then $|N(A): A \cdot C(A)|$ is divisible by 4.

Therefor, if $F=F^{*}$, then by the theorem conditions, G is of type 1). Because of this, we'll further assume that $F<F^{*}$. Then $F^{*}=F \cdot L$, when L is the layer of the group G. By Lemma 1.1, the subgroup F is abelian and F^{*} / F is a simple group, i.e., a group from Theorem 1.3. Moreover, one of the following holds: $F=1, G=F^{*}$ or $1<F<F^{*}<G$.

In the first case F^{*} is a group from Theorem 1.3 and $F^{*}<G \leq \operatorname{Aut}\left(F^{*}\right)$. From the definition of the $N P$-group it follows that $\left|G / F^{*}\right|$ is a prime. The structure of the automorphism groups of Lie type groups (e.g. [4], theorem 4.238) implies that in our case $G=F^{*} \lambda\langle a\rangle, a$ is a prime order automorphism of group F^{*}. Set $|a|=p$.

First assume that $F^{*} \cong P S L\left(2, q^{n}\right)$. Let Q be a Sylow q-subgroup of F^{*} and $B=Q \lambda H$ be a Borel subgroup of group F^{*}. By Frattini's argument we can assume that $a \in N(Q)$. But then $a \in N\left(N_{F^{*}}(Q)\right)=N(B)$. Since $C(Q) \leq Q$ and $|N(Q): Q|=|H| \cdot p$, then, by Lemma 1.2 , the number $|H|=\frac{q^{n}-1}{\left(2, q^{n}-1\right)}$ must be a prime number. But then, as it was noted in the proof of Theorem 1.3, either $q \in\{2,3\}$, or $n=1$. By analogy, for a subgroup A of order $\frac{q^{n}+1}{\left(2, q^{n}-1\right)}$ from F^{*} the equality $|N(A): A \cdot C(A)|=2 p$ implies that subgroup A must be a primary group.

Let $q=2$. The primarity of the number $\left(2^{n}-1\right)$ implies that n is a prime. If $n>2$, then $2^{n}+1$ is divisible by 3 and, consequently, $2^{n}+1=3^{k}$ for a number k. Let $k>2$. If $k=2 r$ is even, then $2^{n}=3^{k}-1=\left(3^{r}-1\right)\left(3^{r}+1\right)$, which is impossible. However, if $k=2 r+1$, then $3^{k}-1=2\left(1+3+3^{2}+\cdots+3^{2 r}\right) \neq 2^{n}$
where the second factor is odd. Therefor, if $q=2$, then the group F^{*} is isomorphic to one of the groups $P S L(2,4)$ or $P S L(2,8)$.

If $q=3$ then the primarity of the number $\frac{3^{n}-1}{2}$ implies that n is an odd prime. However, from that fact that $\frac{3^{n}+1}{2}$ is even and prime it follows that $\frac{3^{n}+1}{2}=2^{k}$, i.e., $3^{n}=2^{k+1}-1$ for a number k. Since the number $\frac{3^{n}-1}{2}=2^{k}-1$ is prime, then k is an odd prime. But then $k+1=2 r$ and $3^{n}=\left(2^{r}-1\right)\left(2^{r}+1\right)$, which is impossible for $r>1$. However if $r=1$, then $k=1$. But then $n=1$ as well, which contradicts the primarity of the group F^{*}.

Finally, let q and $\frac{q-1}{2}$ be primes. If $q=5$, then $F^{*} \cong \operatorname{PSL}(2,4)$. However if $q>5$, then $\frac{q-1}{2}$ is odd. Because $\frac{q+1}{2}$ is primary, we obtain that $\frac{q+1}{2}=2^{k}$, i.e. $q=2^{k+1}-1$. But then $\frac{q-1}{2}=2^{k}-1$. Since one of the numbers $k, k+1$ is even, and $k>2$, then the numbers $\left(2^{k}-1\right)$ and $\left(2^{k+1}-1\right)$ can't both be prime simultaneously.

Suppose now that $F^{*} \cong \operatorname{PSU}\left(3,2^{2 n}\right)$. If $p \neq 2$ and A is a Sylow 2-subgroup of F^{*}, then $|N(A): A \cdot C(A)|=p \cdot\left(2^{n}-1\right) \cdot \frac{2^{n}+1}{\left(3,2^{n}+1\right)}$, which is impossible. However, if $p=2$ and H is a Cartan subgroup of F^{*}, then H is nonprimary and $\mid N(H)$: $H \cdot C(H) \mid=4$.

If $F^{*} \cong S z\left(2^{3}\right)$ or $S z\left(2^{5}\right)$ and A is a subgroup of order 5 or 25 of F^{*}, respectively, then $|N(A): A|=4 p$, which contradicts Lemma 1.2.

Therefore, if $F=1$, then G is of a type 2) from this Theorem.
Consider the case when $G=F^{*}$, i.e., $G=F \cdot L$, where L is the layer of the group G. By Lemma 1.1, the subgroup F is abelian, i.e., $F=Z(G)$, and L is a quasi simple group. Since the group G isn't simple, then $F \neq 1$. If F is nonprimary, then the index $\left|N_{L}(A): A \cdot C_{L}(A)\right|$ divides a prime for any subgroup $A \leq L$. By theorem 4 from $[2] L \cong P S L\left(2, q^{n}\right)$ or $S L\left(2, q^{n}\right)$, the number $\frac{q^{n}-1}{\left(2, q^{n}-1\right)}$ is a prime and if $n=1$, then $q \not \equiv \pm 1(8)$, i.e., G is of type 3$)$ from this Theorem.

Now suppose that F is a p-group for a prime p. Since the Schur multiplier of group $S z\left(2^{5}\right)$ is trivial then either L is a group from Theorem 1.3 or L is isomorphic to a covering of group $P S L\left(2, q^{n}\right), S z(8)$ or $P S U\left(3,2^{2 n}\right)$.

Let $L / Z(L) \cong S z(8)$. Then $L / Z(L)$ contains the subgroups $A_{1} / Z(L)$ and $A_{2} / Z(L)$ of order 5 and 13 , respectively, such that $\left|N_{L}\left(A_{i}\right): A_{i} \cdot C\left(A_{i}\right)\right|=4$. Since p isn't at least one of the numbers 5 or 13 , then supposing $A=F \cdot A_{i}$, we get a contradiction with the definition of $N P$-group. If $L \cong S z\left(2^{5}\right)$ then subgroups of order 25 and 41 should be taken as subgroups A_{1} and A_{2} in the group G.

Therefore, we can assume that $L / Z(L) \cong \operatorname{PSL}\left(2, q^{n}\right)$ or $\operatorname{PSU}\left(3,2^{2 n}\right)$.
First, assume that $Z(L)=1$, i.e., $G=Z(G) \times L$. If $L \cong P S L\left(2, q^{n}\right)$ and $p \neq q$, then the number $\frac{q^{n}-1}{\left(2, q^{n}-1\right)}$ should be prime. Moreover, if $n=1$ and $q \equiv \pm 1(8)$, then $L / Z(L)$ contains a subgroup $H / Z(L) \cong S_{4}$. If $V / Z(L)$ is a four-group from $H / Z(L)$, then the equality $\left|N_{H / Z(L)}(V / Z(L)): V / Z(L)\right|=6$ implies that in this case subgroup V is primary, i.e., $p=2$. However, if $p=q$, then the number $\frac{q^{n}-1}{\left(2, q^{n}-1\right)}$ could be the product of two primes. But, if $q^{n} \equiv \pm 1(8)$, then when checking a four-group $V / Z(L)$ again, we get that $p=2$. But then $q^{n}=2^{n} \not \equiv \pm 1(8)$. If, however $L / Z(L) \cong \operatorname{PSU}\left(3,2^{2 n}\right)$ and $p \neq 2$, then for a Sylow 2-subgroup A of L, the subgroup $A \cdot Z(L))$ is nonprimary and again we get a contradiction with the definition of $N P$-group.

Now suppose that $Z(L) \neq 1$. Since the Schur multiplier is trivial for groups $\operatorname{PSL}\left(2,2^{n}\right)$ when $n>2$, we can assume that in the case of $L / Z(L) \cong \operatorname{PSL}\left(2, q^{n}\right)$ the number q is odd. Then the order of the Schur multiplier is equal to 2 (i.e. $\left.L \cong S L\left(2, q^{n}\right)\right)$ for $q^{n} \neq 9$ and 6 for $q^{n}=9$. Consider the second case. If $|Z(L)|$ is divisible by 2 and $Q / Z(L)$ is a Sylow 3 -subgroup of the group $L / Z(L)$, then the subgroup Q is nonprimary and $|N(Q): Q \cdot C(Q)|=4$, which is impossible. Hence, when $q^{n}=9$ the order of $Z(L)$ is equal to 3 . In the case of $L / Z(L) \cong \operatorname{PSU}\left(3,2^{2 n}\right)$ the Schur multiplier order is equal to 3 , and if $A / Z(L)$ is a Sylow 2-subgroup of $L / Z(L)$, then subgroup A is nonprimary and $\left|N_{L}(A): A \cdot C_{L}(A)\right|$ is not a prime.

Therefore, if $G=F^{*}$ then G is a group of type 3) or 5) from this Theorem. Finally, consider the case when $1<F<F^{*}<G$. Then, by using what's already been proved, F^{*} is a group of type 3) or 4), while G / F is a group of type 2) from this Theorem. Let $G=F^{*} \cdot\langle a\rangle, a^{p} \in F^{*}$. If A / F is a Sylow q-subgroup from F^{*} / F, then the fact that $|N(A): A \cdot C(A)|$ is divisible by $p \cdot|H / F|$, where H / F is a Cartan subgroup of group F^{*} / F, implies that subgroup F is a q-group for a prime q. But then, for the nonprimary subgroup H, the index $|N(H): H \cdot C(H)|$ is divisible by $2 p$, which is impossible.
1.5. Note. It isn't difficult to see that the groups type 2) and 5) of Theorem 1.4 are $N P$-groups. For type 1) groups, the proof of the sufficiency requires the fulfillment of a number of additional restrictions. Let's note some of them.

Let t be a p^{\prime}-element from G, A be a t-invariant subgroup from F and $H=$ $F \lambda\langle t\rangle$. Then the index $\left|N_{H}(A \lambda\langle t\rangle):(A \lambda\langle t\rangle) \cdot C_{H}(A \lambda\langle t\rangle)\right|$ divides p. Looking at the intersections of these subgroups with F and taking into account that $N_{F}(A \lambda$ $\langle t\rangle)=A \cdot\left(N_{F}(A) \cap C(t)\right)$, we get that

$$
\left|A \cdot\left(N_{F}(A) \cap C(t)\right): A \cdot\left(C_{H}(A) \cap C(t)\right)\right|=\left|N_{F}(A) \cap C(t):\left(C_{H}(A) \cap C(t)\right) \cdot(A \cap C(t))\right|,
$$

i.e., $\left|C_{N_{F}(A)}(t): C_{A}(t) \cdot C_{C_{F}(A)}(t)\right|$ divides p.

Let $N_{G / F}(\langle t F\rangle)=\langle t F\rangle \lambda\langle h F\rangle$ and A be a $\langle t, h\rangle$-invariant subgroup from F. Since $h \in N(A \lambda\langle t\rangle)$, then in the same notation $N_{H}(A \lambda\langle t\rangle)=(A \lambda\langle t\rangle) \cdot C_{H}(t)$. But then $C_{N_{F}(A)}(t)=C_{A}(t) \cdot C_{C_{F}(A)}(t)$. Since the subgroup $N_{F}(A)$ is also $\langle t, h\rangle-$ invariant, then

$$
C_{N_{F}\left(N_{F}(A)\right)}(t)=\left(N_{F}(A) \cap C(t)\right) \cdot C_{C_{F}\left(N_{F}(A)\right)}(t)=C_{A}(t) \cdot C_{C_{F}(A)}(t)
$$

Continuing this process and taking into account that F satisfies the normaliser conditions, we get the equality $C_{F}(t)=C_{A}(t) \cdot C_{C_{F}(A)}(t)$.

Supposing that in this equation $A=[F, a]$ and taking into account that $F=$ $[F, a] \cdot C_{F}(a)$, we get that $C_{F}(a)=C_{[F, a]}(a) \cdot C_{C_{F}([F, a])}(a)$, i.e., $F=[F, a]$. $C_{F}([F, a])$.

By analogy we can prove, that if $p \neq 2$ and $(\langle a F\rangle \times\langle b F\rangle) \lambda\langle c F\rangle$ is a subgroup of order 12 from G / F and subgroup $A \leq F$ is $\langle a, b, c\rangle$-invariant, then $C_{F}(\langle a, b\rangle)=$ $C_{A}(\langle a, b\rangle) \cdot C_{C_{F}(A)}(\langle a, b\rangle)$ and $F=[F,\langle a, b\rangle] \cdot C_{F}([F,\langle a, b\rangle])$.

Note that all these properties hold if subgroup F is abelian, i.e., in this case G is a $N P$-group.

References

[1] Antonov, V.A. Locally finite groups with a small normalizators, Math. Notes, 41 (3), 169-172, 1987.
[2] Antonov, V.A. On groups vith relatively small normalizers of all (all abelian) subgroups, Theory of groups and its aplications, Vork of 8 Intern. conf., KBGU (Nalchik, 2010), 8-16.
[3] Carter, R.G. Simple groups of Lie type (John Wiley \& Sons., 1972).
[4] Gorenstein, D. Finite simple groups. An introduction to their classification, (Plenum Press, 1982).
[5] Hartley, R.W. Determination of the ternary collineation groups whose cotfficient Lie in $G F\left(2^{n}\right)$, Ann. Math. 27 (137), 49-72, 1925.
[6] Huppert, B. Endliche Gruppen, 1, (Springer-Verlag, 1967).
[7] Kargapolov, M.I. and Merzliakov, Yu. I. Fondations of group Theory (M. Nauka. Fizmatlit, 1996).
[8] Levchuk, V.M and Nuzhin, Ya.N. Structure of a Ree groups, Algebra and Logika, 24 (1), 26-41, 1985.
[9] Suzuki, M. On a class of doubly transitiv groups, 1, 2, Ann. Math. 75, 105-144 and 514-589, 1962.
[10] Syskin C.A. Abstract properties of a sporadic simple groups, Usp. Math. Nauk, 35 (5), 181-207, 1980.

[^0]: *South Ural State University, Chelyabinsk, Russia Email: antonovva@susu.ac.ru

