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Application of nonhomogenous Cauchy-Euler
differential equation for certain class of analytic

functions
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Abstract

In this paper, some new subclasses of analytic functions with complex
order are introduced by means of a family of nonhomogenous Cauchy-
Euler differential equations as well as some differential operators avail-
able in literature. The main object of the paper is to determine coeffi-
cient bounds for the classes already mentioned, and obtain the results
relevant to well-known work.
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1. Introduction and preliminaries

Let A denote the class of analytic functions f in the open unit disk U = {z :
|z| < 1} normalized by f(0) = f ′(0)− 1 = 0. Thus each f ∈ A has a Taylor series
representation

f(z) = z +

∞∑
i=2

aiz
i·(1.1)

A function f ∈ A is said to belong to the class S∗(ξ) if it satisfies

<

(
1 +

1

ξ

(
zf ′(z)

f(z)
− 1

))
> 0, (z ∈ U; ξ ∈ C \ {0})·(1.2)
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In 1936, Roberton [7] proved that if f(z) = z +
∑∞
i=2 aiz

i is in S∗(1 − β) and
C(1− β), then

|ai| ≤
∏i−2
k=0[k + 2(1− β)]

(i− 2)!
and |ai| ≤

∏i−2
k=0[k + 2(1− β)]

i!
(i ∈ N∗; 0 ≤ β < 1)·

In 1983, Nasr and Aouf [8] proved that if f(z) = z +
∑∞
i=2 aiz

i is in S∗(b), then

|ai| ≤
∏i−2
k=0[k + 2|b|]

i!
(i ∈ N∗; 0 ≤ β < 1)·

A function f ∈ A is said to be in the class C∗(ξ1) if it satisfies the following
inequality

<

(
1 +

1

ξ1

zf ′′(z)

f ′(z)

)
> 0, (z ∈ U; ξ1 ∈ C \ {0})·(1.3)

A function f ∈ A is said to be in the class K∗(λ, α, ξ2) if it also satisfies the
following inequality

<

[
1 +

1

ξ2

(
z[λzf ′(z) + (1− λ)f(z)]′

λzf ′(z) + (1− λ)f(z)
− 1

)]
> α, 0 ≤ α, λ ≤ 1, z ∈ U; ξ2 ∈ C \ {0}·(1.4)

To get more detailed information about the class of function K∗(λ, α, ξ2), we will
refer the reader to Altintas et al. (see for example [9]–[16]).

For a function f ∈ A, we define the following differential operator:

D0f(z) = f(z),

D1
λ(α, β, µ)f(z) = (

α− µ+ β − λ
α+ β

)f(z) + (
µ+ λ

α+ β
)zf ′(z),

D2
λ(α, β, µ)f(z) = D(D1

λ(α, β, µ)f(z)),

...

Dn
λ(α, β, µ)f(z) = D(Dn−1

λ (α, β, µ)f(z))·(1.5)

If f is given by (1.1) then from (1.5) we have

Dn
λ(α, β, µ)f(z) = z +

∞∑
i=2

(α+ (µ+ λ)(i− 1) + β

α+ β

)n
aiz

i(1.6)

(f ∈ A,α, β, µ, λ ≥ 0, α+ β 6= 0, n ∈ No)

By specializing the parameters of Dn
λ(α, β, µ)f(z) we get the following differential

operators. If we substitute

• β = 1, µ = 0, we getDn
λ(α, 1, 0)f(z) = Dnf(z) = z+

∑∞
i=2(α+λ(i−1)+1

α+1 )naiz
i

of differential operator given by Aouf, El-Ashwah and El-Deeb [1].
• α = 1, β = o, and µ = 0, we get Dn

λ(1, 0, 0)f(z) = Dnf(z) = z+
∑∞
i=2(1+

λ(i− 1))naiz
i of differential operator given by Al-Oboudi [2].

• α = 1, β = o, µ = 0 and λ = 1, we get Dn
1 (1, 0, 0)f(z) = Dnf(z) =

z +
∑∞
i=2(i)naiz

i of Sălăgean’s differential operator [3].
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• α = 1, β = 1, λ = 1 and µ = 0, we get Dn
1 (1, 1, 0)f(z) = Dnf(z) =

z +
∑∞
i=2( i+1

2 )naiz
i of differential operator given by Uralegaddi and So-

manatha [4].
• β = 1, λ = 1 and µ = 0, we get Dn

1 (α, 1, 0)f(z) = Dnf(z) = z +∑∞
i=2( i+αα+1 )naiz

i of differential operator given by Cho and Srivastava, and

Cho and Kim [5, 6].

By using the operator Dn
λ(α, β, µ)f(z) given by (1.6), we now introduce a new

subclass of analytic functions defined as follows:

A function f ∈ A is said to belong to the class F (n, α, b) if it satisfies

<

{
1 +

1

b

(
Dn+1
λ (α, β, µ)f(z)

Dn
λ(α, β, µ)f(z)

− 1

)}
> α, 0 ≤ α < 1, b ∈ C∗·

A function f ∈ A is said to belong to the subclass of analytic functions of order γ
in U, denoted by Ψ(n, α, β, µ, λ, ζ, γ, ξ), and is defined by

Ψ(n, α, β, µ, λ, ζ, γ, ξ) ={
f ∈ A : <

{
1 +

1

ξ

[
z[ζDn+1

λ (α, β, µ)f(z) + (1− ζ)Dn
λ(α, β, µ)f(z)]′

ζDn+1
λ (α, β, µ)f(z) + (1− ζ)Dn

λ(α, β, µ)f(z)
− 1

]}
> γ

}
,(1.7)

0 ≤ γ, ζ ≤ 1, z ∈ U; ξ ∈ C \ {0}·

Using the class Ψ(n, α, β, µ, λ, ζ, γ, ξ), we obtain the following subclasses studied
by various authors.

Ψ(n, 1, 0, 0, 1, λ, α, b) = B(n, λ, α, b),

Ψ(0, 1, 0, 0, 1, 0, 0, b) = S∗(b),

Ψ(0, 1, 0, 0, 1, 1, 0, b) = C(b),

Ψ(0, 1, 0, 0, 1, 0, 0, 1− β) = S∗(1− β),

Ψ(0, 1, 0, 0, 1, 1, 0, 1− β) = C(1− β),

Ψ(0, 1, 0, 0, 1, λ, α, ξ2) = K(λ, α, ξ2),

Ψ(n, 1, 0, 0, 1, 0, α, b) = F (n, α, b)·
The main object of the present investigation is to derive some coefficient bounds
for functions in the subclass Φ(n, α, β, µ, λ, ζ, γ, ξ, τ) of A satisfying the following
nonhomogenous Cauchy-Euler differential equation

z2 d
2w

dz2
+ 2(1 + τ)z

dw

dz
+ τ(1 + τ)w = (1 + τ)(2 + τ)g(z)(1.8)

(w = f(z) ∈ A; g(z) ∈ Ψ(n, α, β, µ, λ, ζ, γ, ξ); τ ∈ R\]−∞,−1])·
Also note that

Φ(n, 1, 0, 0, 1, λ, α, b, µ) = T (n, λ, α, b, µ),

Φ(0, 1, 0, 0, 1, λ, α, b, µ) = SK(λ, α, b, µ),

Φ(n, 1, 0, 0, 1, 0, α, b, µ) = SD(n, α, b, µ)·
To get more detailed information about the above said classes, we will refer the
reader to [16] and [17].



2. Coefficient estimates for the function class Ψ(n, α, β, µ, λ, ζ, γ, ξ)

Now we give our first result as follows:

2.1. Theorem. Let the function f ∈ A be defined by (1.1). If the function f is
in the class Ψ(n, α, β, µ, λ, ζ, γ, ξ), then∣∣ai∣∣ ≤ ∏j−2

j=o[j + 2
∣∣ξ∣∣(1− γ)][α+ β]n+1

i![α+ ζ(µ+ λ)(i− 1) + β][α+ (µ+ λ)(i− 1) + β]n
, j ∈ N∗, i ∈ N \ {1}·

Proof. Let the function f ∈ A be given by (1.1). Define a function

H(z) = (ζ)Dn+1
λ (α, β, µ)f(z) + (1− ζ)Dn

λ(α, β, µ)f(z),(2.1)

where Dn
λ(α, β, µ)f(z) is differential operator be given in (1.6). We note that the

function H is of the form

H(z) = z +

∞∑
i=2

Tiz
i,Ti(2.2)

=
( [α+ ζ(µ+ λ)(i− 1) + β][α+ (µ+ λ)(i− 1) + β]n

[α+ β]n+1

)
ai·

Using (1.7) and (2.1), we get

<

{
1 +

1

ξ

(
zH ′(z)

H(z)
− 1

)}
> γ, (z ∈ U)·(2.3)

Now we define a function h(z) by

h(z) =

1 + 1
ξ

(
zH′(z)
H(z) − 1

)
− γ

1− γ
·(2.4)

We also suppose

h(z) = 1 + c1z + c2z
2 + · · · .(2.5)

So we obtain

1 +
1

ξ

(
zH ′(z)

H(z)
− 1

)
− γ = (1− γ)(1 + c1z + c2z

2 + · · · ),(2.6)

or, equivalently,

zH ′(z)−H(z) = H(z)ξ(1− γ)(c1z + c2z
2 + · · · )·(2.7)

Using (2.7), we conclude that

(2− 1)T2 = ξ(1− γ)c1,

(3− 1)T3 = ξ(1− γ)[c1T2 + c2],

(4− 1)T4 = ξ(1− γ)[c1T3 + c2T2 + c3],

...
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(i− 1)Ti = ξ(1− γ)[c1Ti−1 + c2Ti−2 + · · ·+ ci−1]·(2.8)

As |ci| ≤ 2, i = {1, 2, 3, · · · }, so from (2.8) we have∣∣T2

∣∣ =
∣∣ξ(1− γ)c1

∣∣ ≤ 2
∣∣ξ∣∣(1− γ),(2.9)

2
∣∣T3

∣∣ =
∣∣ξ(1− γ)[c1T2 + c2]

∣∣ ≤ ∣∣ξ∣∣(1− γ)[2T2 + 2]

≤ 2
∣∣ξ∣∣(1− γ)[1 + 2

∣∣ξ∣∣(1− γ)].(2.10)

3
∣∣T4

∣∣ =
∣∣ξ(1− γ)[c1T3 + c2T2 + c3]

∣∣,(2.11)

or

6
∣∣T4

∣∣ ≤ 2
∣∣ξ∣∣(1− γ)[T3 + T2 + 1]

∣∣
≤ 2
∣∣ξ∣∣(1− γ)[1 + 2

∣∣ξ∣∣(1− γ)][2 + 2
∣∣ξ∣∣(1− γ)].(2.12)

Using (2.9), (2.10) and (2.12), we get∣∣T2

∣∣ ≤ ∏j [j + 2
∣∣ξ∣∣(1− γ)]

(2− 1)!
, j = o,

∣∣T3

∣∣ ≤ ∏j [j + 2
∣∣ξ∣∣(1− γ)]

(3− 1)!
, j = 0, 1,

similarly ∣∣T4

∣∣ ≤ ∏j [j + 2
∣∣ξ∣∣(1− γ)]

(3− 1)!
, j = 0, 1, 2

therefore

∣∣Ti∣∣ ≤ ∏j−2
j=o[j + 2

∣∣ξ∣∣(1− γ)]

(i− 1)!
, j ∈ N∗·

By using the relationship between the functions f(z) and H(z), we have

Ti =
( [α+ ζ(µ+ λ)(i− 1) + β][α+ (µ+ λ)(i− 1) + β]n

[α+ β]n+1

)
ai,

implies∣∣ai∣∣ ≤ ∏j−2
j=o[j + 2

∣∣ξ∣∣(1− γ)][α+ β]n+1

i![α+ ζ(µ+ λ)(i− 1) + β][α+ (µ+ λ)(i− 1) + β]n
, j ∈ N∗, i ∈ N \ {1}·

Now, by choosing different values of Ψ(n, α, β, µ, λ, ζ, γ, ξ), we have the following
corollaries:

2.2. Corollary. If a function f ∈ A is in the class Ψ(n, α, µ, λ, ζ, γ, ξ), then∣∣ai∣∣ ≤ ∏j−2
j=o[j + 2

∣∣ξ∣∣(1− γ)][α]n+1

i![α+ ζ(µ+ λ)(i− 1)][α+ (µ+ λ)(i− 1)]n
, j ∈ N∗, i ∈ N \ {1}·



2.3. Corollary. If a function f ∈ A is in the class B(n, λ, α, b), then∣∣ai∣∣ ≤ ∏j−2
j=o[j + 2

∣∣b∣∣(1− α)]

(i− 1)![1 + λ(i− 1)][i]n
, j ∈ N∗, i ∈ N \ {1}·

2.4. Corollary. If a function f ∈ A is in the class S∗(b), then∣∣ai∣∣ ≤ ∏j−2
j=o[j + 2

∣∣b∣∣]
(i− 1)!

, j ∈ N∗, i ∈ N \ {1}·

2.5. Corollary. If a function f ∈ A is in the class C(b), then∣∣ai∣∣ ≤ ∏j−2
j=o[j + 2

∣∣b∣∣]
i!

, j ∈ N∗, i ∈ N \ {1}·

2.6. Corollary. If a function f ∈ A is in the class S∗(1− β), then∣∣ai∣∣ ≤ ∏j−2
j=o[j + 2(1− β)]

(i− 1)!
, j ∈ N∗, i ∈ N \ {1}·

2.7. Corollary. If a function f ∈ A is in the class C(1− β), then∣∣ai∣∣ ≤ ∏j−2
j=o[j + 2(1− β)]

i!
, j ∈ N∗, i ∈ N \ {1}·

2.8. Corollary. If a function f ∈ A is in the class K(λ, α, ξ2), then∣∣ai∣∣ ≤ ∏j−2
j=o[j + 2(1− ξ2)(1− α)]

(i− 1)![1 + λ(i− 1)]
, j ∈ N∗, i ∈ N \ {1}·

2.9. Corollary. If a function f ∈ A is in the class F (n, α, b), then∣∣ai∣∣ ≤ ∏j−2
j=o[j + 2

∣∣b∣∣(1− α)]

(i− 1)![i]n
, j ∈ N∗, i ∈ N \ {1}·

2.10. Corollary. If a function f ∈ A is in the class B(n, λ, b), then∣∣ai∣∣ ≤ ∏j−2
j=o[j + 2

∣∣b∣∣]
(i− 1)![1 + λ(i− 1)][i]n

, j ∈ N∗, i ∈ N \ {1}·

3. Coefficient bound for the class Φ(n, α, β, µ, λ, ζ, γ, ξ, τ)

3.1. Theorem. Let the function f ∈ A be defined by (1.1). If the function f is
in the class Φ(n, α, β, µ, λ, ζ, γ, ξ, τ), then∣∣ai∣∣ ≤ (1 + τ)(2 + τ)

∏j−2
j=o[j + 2

∣∣ξ∣∣(1− γ)][α+ β]n+1

i![α+ ζ(µ+ λ)(i− 1) + β][α+ (µ+ λ)(i− 1) + β]n(i+ τ)(i+ 1 + τ)
,

j ∈ N∗, i ∈ N \ {1}·

Proof. Let the function f ∈ A be given by (1.1). Also let

f(z) = z +

∞∑
i=2

viz
i ∈ Ψ(n, α, β, µ, λ, ζ, γ, ξ), implies(3.1)

∣∣vi∣∣ ≤(3.2)
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j=o[j + 2

∣∣ξ∣∣(1− γ)][α+ β]n+1

i![α+ ζ(µ+ λ)(i− 1) + β][α+ (µ+ λ)(i− 1) + β]n
, j ∈ N∗, i ∈ N \ {1}·

Since

ai =
(1 + τ)(2 + τ)

(i+ τ)(i+ 1 + τ)
vi·

Using (3.2) we get

∣∣ai∣∣ ≤ (1 + τ)(2 + τ)
∏j−2
j=o[j + 2

∣∣ξ∣∣(1− γ)][α+ β]n+1

i![α+ ζ(µ+ λ)(i− 1) + β][α+ (µ+ λ)(i− 1) + β]n(i+ τ)(i+ 1 + τ)
,

j ∈ N∗, i ∈ N \ {1}·

Next we have the following corollaries:

3.2. Corollary. If a function f ∈ A is in the class Φ(n, α, µ, λ, ζ, γ, ξ, τ), then

∣∣ai∣∣ ≤ (1 + τ)(2 + τ)
∏j−2
j=o[j + 2

∣∣ξ∣∣(1− γ)][α]n+1

i![α+ ζ(µ+ λ)(i− 1)][α+ (µ+ λ)(i− 1)]n(i+ τ)(i+ 1 + τ)
, j ∈ N∗, i ∈ N \ {1}·

3.3. Corollary. If a function f ∈ A is in the class Φ(n, α, λ, ζ, γ, ξ, τ), then

∣∣ai∣∣ ≤ (1 + τ)(2 + τ)
∏j−2
j=o[j + 2

∣∣ξ∣∣(1− γ)][α]n+1

i![α+ ζλ(i− 1)][α+ λ(i− 1)]n(i+ τ)(i+ 1 + τ)
, j ∈ N∗, i ∈ N \ {1}·

3.4. Corollary. If a function f ∈ A is in the class Φ(n, α, ζ, γ, ξ, τ), then

∣∣ai∣∣ ≤ (1 + τ)(2 + τ)
∏j−2
j=o[j + 2

∣∣ξ∣∣(1− γ)][α]n+1

i![α+ ζ(i− 1)][α+ (i− 1)]n(i+ τ)(i+ 1 + τ)
, j ∈ N∗, i ∈ N \ {1}·

3.5. Corollary. If a function f ∈ A is in the class SK(λ, γ, ξ, τ), then

∣∣ai∣∣ ≤ (1 + τ)(2 + τ)
∏j−2
j=o[j + 2

∣∣ξ∣∣(1− γ)]

(i− 1)!(1− λ+ λi)(i+ τ)(i+ 1 + τ)
, j ∈ N∗, i ∈ N \ {1}·

3.6. Corollary. If a function f ∈ A is in the class SD(n, γ, ξ, τ), then

∣∣ai∣∣ ≤ (1 + τ)(2 + τ)
∏j−2
j=o[j + 2

∣∣ξ∣∣(1− γ)]

(i− 1)!(i+ τ)(i+ 1 + τ)
, j ∈ N∗, i ∈ N \ {1}·

4. Conclusions

There are many different types of operators can be reached in the literature, see
for example: [18]- [23], and many more. Some similar results can also be found for
different type of classes associated with the many different differential operators.
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