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Abstract: In this work, we consider a number of boundary-value proklgor time-fractional heat equation with the recently
introduced Caputo-Fabrizio derivative. Using the methédseparation of variables, we prove a unique solvability feé stated
problems. Moreover, we have found an explicit solution tetaia initial value problem for Caputo-Fabrizio fractidnarder
differential equation by reducing the problem to a Volténtegral equation. Different forms of solution were preseindepending on
the values of the parameter appeared in the problem.
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1 Introduction and Preliminary

1.1 Definitions and related works

Recently, Caputo and Fabrizio introduced a new fractioréaivdtive [1]

crD& () = = [ F'(g)e 1% Jds ®

where the order of the derivativeQa < 1. In their next work [2], they defined a domain, on which opergl) is well
defined by the set

WaL(a,00) = {f(t) e L(a,); (f(t) — fa(s) e T 9 ¢ LY(at) Ll(a,oo)} :

whose norm is given foar # 1 by

0 o t
||f(t)||wa,1:/If(t)|dt+%//|fa(s)|efﬁ(t—s)dsdt
a (o]

a —
wheref, denotes the extension of the functibi) and given by
fa(t)=f(t), t>a, fa(t)=0, —ov<t<a

According to the Theorem 1 of [1], derivative of order+ a) (n > 1) is defined as follows

crDY (1) =cr D (ceDY (1))
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The interest of this new fractional derivative is justifieg ®Gaputo and Fabrizio [1] due to the necessity of using of a
model describing the behavior of classical viscoelastitenis, thermal media, electromagnetic systems, etc.

In [3], Nieto and Losado studied the equation
CFDgt f(t) =u(t)

and based on its solution, they have introduced an integedator corresponding to the differential operator (1) as
t
celgf(t) = (1—o)u(t) + a/u(s)ds t>0.
0

In their work, they have also considered the following aditialue problem

CFDgtf(t) =Af(t)+u(t),t >0,
f(O) =foeR.

This problem has been reduced to a first order ODE and theygraved that the problem has a unique solution for any
AeR.

In this work, we present explicit forms of the solution to #ame problem, imposing the required conditions to the given
data, by reducing it to the second kind Volterra integralagigun.

Another application of this new derivative was considergddtangana [4], where he studied using nonlinear Fisher’s
reaction-diffusion equation by using Sumudu transform.

We would like also to note that there is another new fractionder operator without singular kernel, which is an analog
of the Riemann-Liouville fractional derivative with sinigu kernel, was proposed by Yang et al [5] along with its
application to the steady heat flow process. More generabtgrevas introduced by Atangana and Baleanu in [6] and its
application in Chaos was presented in [7].

In the next section, we will present our results regardingigue solvability of certain initial value problem. The mai
result of this work is presented in section 2, where fouredéht boundary value problems were considered.

1.2 Solution of initial value problem
Here we will consider the initial value problem,
ceDGU(t) —Au(t)=f(t), 0<t <T, )
satisfying the initial condition
u(0) =0, 3)

wheref (t) is a given function and , a € R such that O< a < 1.A unique solvability of this problem is formulated in the
following theorem.

Theorem 1.
(i) IfA £ ﬁ f(t) € C(0,) and f(0) = 0, then problem (2)-(3) has a unigue continuous solutionctviig given by

t
__1-a a AL ) o
“m1-A(1—a)f(t)+[1/\(1a)]zo/f(s)e T @
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(i) IfA= ﬁ f(t) € C1(0,) and f(0) = 0, f(0) = 0, then a unique continuous solution to problem (2)-(3) exist
and given by
(1-a)?

Ut = —(1-a)f(t) - =

f(t). (5)

ProofUsing the definition of Caputo-Fabrizio operator and in&igig by parts, we deduce

t
(ﬁ )‘> u(t) — (1_aa)2 O/U(S)elaf’“s)ds f(t). (6)

First, we consider the case df# £ and hence, (6) yields

t
u(t)—/u(s)K(t,s)ds:T(t), )
0

where o 1 a
K9 =gy - O= T xg

The second kind Volterra integral equation (7) can be sobyethe method of successive iterations as follows:

f(s

+

t
O =T+ [ToK(t.9ds
Ot‘ t t‘

(t) T(t)+/ul(s)K(t,s)ds:T(t)+/T(S)K(t,s)ds+/T(E)df/K(t,s)K(s,E)ds
0 0 0

Setting

Up(t) can be rewritten as

t
o®) = T(0)+ [ T K8 +Kolt.£)] e
0

One can then prove by mathematical induction that

n

;Ki (t,£)d¢,

t
w(® =T+ [T(8)
0

where

t
Ka(t, &) = K(t, &), K;(t,&) = /K(t,s)K,-,l(s,z)ds j=23 .
13

(© 2016 BISKA Bilisim Technology


www.ntmsci.com

(_/
82 BISK A N A-saliE. Karimovand S. Kerbal: Boundary-value pretis for fractional heat equation involving...

Similarly, we can find general expression for kerri€jé, & ).

t
/KtsKlsE
3

t
/ e 1% (9 a e 1% (5-)ds
3

| 2
_ g _(t_g a .
E/ )[1— )\ 1- a)]e g9 <(1—O{)[1 A1 O{)]) (s—¢&)e (s-&)g
a 3(t75)2 710_ -
N <(1 a)[1-A(1 a)]> 5 e S =8

a i(t,E)i—l . o
<(1—a)[1—/\(1—a)]) i—r © St =12,

Hence, resolvent-kernel will have the form

Ki (tvf)

o a a4 © — — —
t E)Zi;Ki(t,f)Z (17a)[17)\(17a>]e Tt E)xi; =] ;

which can be reduced to

R(taE) =

l1-a)1-A(1—a)]
Thus, solution of (7) will be given by

t
_F a T\ T t=8)
““)f“)*(l_a)[l_m_a)]()/f<f>e (g,

which on using the representationfit) and the conditiorf (0) = 0 leads to the solution representation (4) as desired.

Now, if A = equation (6) reduces to

la'
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which can be rewritten as the following second kind Volténtagral equation

t
U(t)f/u(s)K(t,s)ds: f(t), ®)
0
where 2
K(t,S) = 1 aeflft_a(tfs)7 ]?(t) — (1;(1) f,(t).

Following the same previous approach, we obtain an exmnessi the resolvent-kernel in the forR(t,s) = %5 and
hence, a solution of integral equation (8) will be given by

t

u(t) = Ft) /

0

which on using the representationénd conditions (0) = 0, f/(0) = 0, leads to the explicit form of the solution as in
(5). This ends the proof of Theorem 1.

RemarkThe solution for the special cade= 0 follows from the casd # = and is given by

t

u(t) = (1—a)f(t)+a/f(s)ds

0

Remarklf equation (2) is subjected to a non-homogeneous initiabé@mon u(0) = ug, then the conditiorf (0) = 0 will
be replaced by (0) = —Aup and hence the solution will be given by

f'(t) = (1—a)[f(t) - f(0)]+up for A= e

_q)2
u(t):—(l aa) 1

and

t
Ao 1
1- /\(1 a) _ C el-A1-a R
O/f e dE+1 A(l— )e , for )\7&1 pt

1-a
u(t>:1—)\(1—a)f(t)+[1 A1_a)f

2 Main result

In this section we will consider Caputo-Fabrizio fractibhaat equation subjected to four different boundary cooaiét
associated with self-adjoint and non self-adjoint spépimablems.

2.1 Boundary value problems associated with self-adjget#al problems

Consider a rectangular domafd = {(x,t): 0<x<1,0<t < T}. In this domain we investigate the following three
problems:

Problem 1. Find a regular solution of the equation

ceDGu(x,t) — Uxx(X,1) = g(x,t), 9)
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in a domainQ, which satisfies initial condition
u(x,0)=0, 0<x<1 (20)

and boundary conditions
u(0,t)=0, u(1,t)=0,0<t<T, (11)

whereg(xt) is a given function.
Problem 2. Find a regular solution of problem (9)-(10) in the dom&nwhich satisfies boundary conditions

u(0,t)=0, U(L,t)=0,0<t<T. (12)

Problem 3. Find a regular solution of problem (9)-(10) {1, which satisfies non-local boundary conditions
u(0,t) =u(L,t),0<t<T; U(0,t) =u'(L,t),0<t <T. (13)

We will first consider Problem 1. Using the method of separatiariables leads to the following self-adjoint spectral
problem
X"(X) + puX(x) =0, X(0)=X(1)=0

in the variablex. This problem has eigenvalugg = —(km)? k = 1,2,... and the corresponding eigenfunctions are
Xk(X) = sinkrix.

Since the system of functiosinkmx} is complete and forms a basislip, we look for a solution to Problem 1 of the
form

00

u(xt) = 3 ue(t)sinkm, (14)
where lkl
U(t) = / u(x,t) sinkmxdx (15)
Substituting (14) into (9) and (10), we get O
crDGUK(t) + (kD) ?uk(t) = g(t), uk(0) =0 (16)
where )
ge(t) = / g(x,t) sinkrxdx (17)

0
According to Theorem 1, solution of problem (16) is given by

t 2
_ (-0 a __atnlit-g)
WO = T P1—a) T [1+(kn)2(1_a)]20/g"(5>e e g (18)

with gk(t) € C[0,T], gk(0) = 0, which can be achieved by assumigg,t) € C[0,T] and g(x,0) = 0. This imposed
conditions will in turn, lead to the convergence of the sesgelution given by (14).
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Series representation ofx(x,t) is given by

t
) 1—a © a __akme(t-§)

Ukx(X, 1) 2 kn _ tsinknx—} kr)? / &)e 1km21-a)d& | sinkrix

XX( & 1 (kn.)z(l a)gk( ) k:l( ) [1 (k )2(1 )]2 ) gk( )

© smknx _ atkm?(t-g) “ &
— k 1+(km2(1-a) .
k;gk( sinkrx + z 17 (K /gk e dé

The convergence of the second series in the expressiog(aft) is guaranteed by assumiggx,t) € L1][0, T]. Hence,
in order to prove the convergence of series expansiank,t) it remains to show the convergence of the first series in
the expression afix(x,t). To do so, we consider the following estimate of this series:

M s

1 1
. 1 1 rog(xt) .
|O/g(x,t)smknxd>q :kzl|ﬁ(g(l,t)(—l)k—g(O,t))+Gb/ X sinkixa,

k=1

which on assuming(0,t) = g(1,t) = 0 and using the inequaligh < 1/2(a + b?) becomes

/g X,t) smknxdn‘ i ( 2+|gk( IZ),

where

1
ok(t) = / dgg)((,t) sinkrxdx
0

The convergence of the latter series is obtained by assuﬁ@%& € L2[0,1] and using ¥ Tk(t) < ||Ok(t)|lL,. Hence,
k=1

series representation fogy(x,t) converges. The convergence of series expansiopDgu(x,t) follows from equation

9).

This result can be formulated in the following theorem.

Theorem 2. If the following conditions
g(x.t) €C(Q),9(x,0)=0, g(0,t) = g(1,t) = 0, Gi(x,t) € L1[0,T], gx(x.) € L2[0, 1],

hold, then Problem 1 has a unique solution represented by

t _ akm2(-§)
o [gu(€)e T e d
_ < (1—a)gk(t) 0 .
u(x,t) = k; 1+ (KM2(1—a) + T (21— sinkrx. (19)

Note that a uniqueness of the solution for Problem 1 willdellfrom the representation (15), based on (18) and
completeness of the systefminkrx}.

Since the boundary conditions in Problems 2 and 3 will resudelf-adjoint spectral problems, then Problems 2 and 3
could be studied in a similar way. The results can be forradlat the following theorems.
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Theorem 3. If the following conditions
g(X,t) € C(E)a gt(X,t) € Ll[OaT]a gX(th) € LZ[Oa 1]

hold, then a unique solution of Problems 2, represented by

t . a(nm? (&) "
a e t(nme(l-a)
g T4

_ (
MO 2 T o) T s (1)

cosnmx

exists, where .
On(t) = /g(x,t)cosnnxdx, n=0,1,2,...
Theorem 4. If the following conditions O
g(x,t) €C(Q), 9(0,t) = g(L,t), G(x,t) € L1[0,T], gu(x.t) € L2[0,1]

hold.

A unique solution of Problems 3, represented by

t e a<nn>2<t—s>)d5
a e 1+(nm4(1-a
o | a-aguw 499

) 7o
A e ) T e FFBP T
} (§) 7%71))2(:7—5))d5
a Jgn(é)e Hrimmit-a
= | (1-a)gu(t) o " SIN27

+nZl 1+ (nm%(1-a) [14 (nm)2(1— a))?

exists, where

1
on1(t) = /g(x,t)coszhnxdx n=0,12,...,
0

1
On2(t) = /g(x,t)sinmnxdx, n=12..
0

2.2 Boundary value problem associated with nonself-atigpectral problem

In this section, we consider the following problem with nloral boundary conditions:

Problem 4. Find a regular solution to problem (9)-(10) 2, which satisfies the non-local boundary conditions
u(0,t) =u(L,t), 0<t<T, u(0,t)=0,0<t<T. (20)

The associated spectral problem for this case is given by

X" (X) + puX (x) =0, X (0) =X (1), X" (0) =0, (21)

(© 2016 BISKA Bilisim Technology
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which is not self-adjoint. The eigenvalues of (21) aue = A2, Ay = 2kmr(k = 0,1,2,...) and the corresponding
eigenfunctions are,TosAgx, supplemented by the associate functi@inAgx, which form a complete system of root
functions denoted by

Xk (X) = {1, cosAgx, xsinAgx}, k=12, .... (22)

Since, problem (21) is not self-adjoint and hen¢edoes not form a basis, we need to find root functions of the
corresponding adjoint problem:
Y”(x)+uY (x) =0,Y' (0)=Y'(1),Y(1)=0.

This problem has the following system of root functions:
Y (X) = {2(1—x),4(1—X) cosAgx, 4sinAgx} k=1,2,.... (23)

Now systems (22) and (23) form bi-orthogonal system, whatisBes the necessary and sufficient condition for the basis
property in the spack;|0, 1] (see [8]). Thus, we seek a solution of Problem 4 in the form

u(x,t) = up(t) + kiUlk(t) cos Xrx+ kiUZk(t) xsinkmnx, 0<t < T. (24)
The given functiorg(x,t) can be also represented in the following series expansion

g(x,t) =go(t) + kiglk(t) COS XX+ kglggk(t) xsinkmx, 0<t<T, (25)
where the coefficients of the two series above are definedla®/f

o(t) = 2 u(x,t) (1~ X) dx

ug(t) = 4f1u(x,t)(1f X) cos Xrxdx

1° (26)
Go(t) = 2.0fg(X,t)(1*X)dX7
guk(t) = 4flg(x t)(1— x) cos Xmxdx

0
gok(t) = 4.]1"g(x,t)sin Armxdx

The unknown coefficientsy(t), uk(t), ux(t) can be determined by substituting (23)-(24) into (9) and,(@9 solution of
the following fractional order initial value problems:

crDGUo (t) = go(t), up(0) =0, (27)
ceDG U (t) + (2K71)2ugy (1) = Gr(t) + 4KTTu (), Ugk(0) = O, (28)
crD§ Uz (t) + (2K7D) Upi (t) = gax(t), Uzc(0) = O. (29)
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Based on Theorem 1, solutions of (27) and (29) are givenergsely, by

t

o(®) = (1- a)got) +a [ go(2)dz (30)

0

o a(2kn (t £

1-a 1+ (2km2(1-a
)= 5 e O e / Gald)e Al 5D

Similarly, on using the expression (31), solution of (28) t& written as

___ l-a A1 a) a g
uk(t) = 1+ (2kn2(1—a) gu(t) + 1+(2kn_)2(1_a)92k(t)} + [1+(2kn)2(1a)]2-0/e (@km2(1-a) (32)
8krT(1— 4k
8 [g”‘(z) 1T (27|<T§T)2(1a . TR (2kn)7;[?1— ap z)] o

This completes the existence of formal solution to Probleas diven by (24).

It is now left to check the convergence of the series appeareix,t), uxx(x,t) andcDgu(x,t). Here we present the
convergence of series representatiom@fx,t) and the rest can be treated similarly. Using the representatu(x,t) as
given in (24) together with (30)-(32), we obtain the follmgiexpression fouxx(x,t):

® (2km)?(1— a)cos KX ® 2(2km)?(1— a)cos Kmx
Uxx(X,t) = — guk(t) — Gax(t
o)== 2 o) U2 1+ (km2(1—a) ®
© __a(2kmZ(-2) 0 _ a(2kn2 2)
(2km)?(1—a coslm/glk e mu—adpr Z 4(2km2a(l—a COSZ(TTX/gZ 26 - GnPEal dz
K=1 [1+ (ZkT[ K=1 [1+ (ZkT[
® 2(2km)3a?cos Xrx ﬂ (2kn) (1— a)xsin XX
V(1— 1+(2km2(1-a
Zl 1+ (2km2(1— /92k A i dzy Z ka9
® a(2km2(t-2)
z (2km) axsm2knx ng e ian2ial gy (33)
&1+ (2km)2(1—

On integration by parts, using inequalitas< 1/2(a?+b?), § f(t) < | fk(t)||L,, and imposing the following conditions
k=1

g(X,t) € C(E)v g(X, O) =0, g(oat) = g(lat)v gt(X,t) € L]_[O,T], gX(Xat) € LZ[Oa 1]7

we get the estimate faiy(x,t) as

[U(x, )] < (k;’z+(HgIk(t)||Lz+I\gzk(t)||L2+HQEK(t)HLz%
1
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whereCs is a positive constant and

k() = [ [gx(%,1) (1= X) — g(x )] sin Kmxdx

dok(t) = [ gx(x,t) cos Krxdx,

O%HO\H

This estimate will ensure the convergence of series reptaien ofuxy(X,t). Uniqueness follows from the representation
of solution and the completeness of the used bi-orthogyséts. Now, we can formulate our result as the following

Theorem 5. If g(x,t) € C(Q), g(x,0) = 0,9(0,t) = g(L,t), gt (x,t) € L1[0,T], gx(x,t) € L2[0,1], then Problem 4 has a
unique solution, represented by

t

t 2
a e 8km(1—a)
' 1+ (2km2(1—a)? ) ¢ [glk( D+ T3 ko) @

Ak ® 1_ g
+ T k2 a)]zgzk(Z)(t — Z)] dz) cos XX+ kzl(l+ k(1 a)ggk(t)

o@m-8)
+[1 (2k /QZK e r@mn(1-a) dE Xsin K7ix.
+ )2
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