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Abstract: In this article, it is shown that the combined use of expoiaéoperators and special functions provides a powerfulttmo
solve certain type of fractional PDEs. A system of spacetifvaal partial differential equations is solved. The exgotial operators
are powerful and effective method for solving certain siagintegral equations and fractional partial differehéiquations with non-
constant coefficients. Constructive examples are alsdgedy
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1 Introduction and Preliminaries

We present a general method of operational nature to obhitians for several types of partial differential equaso

Definition 1. Laplace transform of function(f) is as follows

L{f(t)} = /Owe*Stf(t)dt —F(9). )
If L{f(t)} = F(s), then L"{F(s)} is given by
F(t) = % ::, SF (s)ds @)

where Fs) is analytic in the regiorRe(s) > c.

Definition 2. If the function®(t) belongs to ¢a,b] and a< t < b,The left Riemann-Liouville fractional integral of order
a > Ois defined as

1t @)
RLa _
5100} = gy | e e ®)
The left Riemann-Liouville fractional derivative of order> 0 is defined as
DELG (p(X) = r(]_];a) % f; (tai(;))a d¢, (4)

It follows that CR-% p(x) exists for all®(t) belongs to ¢a,b] ,and a<t < b .
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Note: A very useful fact about the R-L operators is that tlaigfy semi group properties of fractional integrals.
The special case of fractional derivative wheen= 0.5 is called semi derivative.

Definition 3. The left Caputo fractional derivative of order (0 < a < 1) of ¢(t) is as follows

D& 0(X) = riigy Ja e @' (§)dé (5)
Lemma 1.Let L{f(t)} = F(s), then, the following identities hold true.
(1) LR (P) = ano f(1) (j°° —tr—rP( (reoBMsin(rA sinBm))dr)dr;
(2) LIF(v8) = Zﬁ Jg e« (€)aE;

(3) Lfl< ) = e g,
(4) e = 1 (2o rP(wcoBmin orPsing ) (fg e ST TdT)dr;

Proof. See [1].

Lemma 2. The following exponential identities hold true.

(1) exp+A dt)CD(t) D(t£A);
(2) exgEAtE)D(t) = D(te*?);

3) eXlﬂ(/\\/d )O(t) = D((Vi+%)?);
(4) exp(Aqa(t) ) @(t) = P(QF (1) +A));

where Rt) is primitive ofwlt) and Qt) is inverse of Rt).
Proof. See [4].

The Laplace transform is useful tool in applied mathemaftmsinstance for solving singular integral equations tipar
differential equations,and in automatic control,whegtines a transfer function.

Example 1.Let us consider the following non linear impulsive diffeti@hequation

(VD —a)y(t) = 6(x—A), (6)

Solution can be found using of part 3 of lemnia, the above differential equation can be written as below

Y(t) = 7= O(x— 2),

from which we deduce

ag

y(t) = fodf\;—

finally,using elementary properties of Dirac delta funetieads to the following solution

e $P5(t—A),

eat-A)

YO = J§ dE-S==8(t—§ - A) = s,

Example 2.Show that the following exponential identities hold true.

1) exlﬂ(*zm) (1) = @(y>—K2);

(2) exp—k*§) @(t) = @ ()

(© 2016 BISKA Bilisim Technology



=
NTMSCI 4, No. 4, 90-100 (2016) Www.ntmsci.com BISKA 92

Let us take- £ — A andq(t) = 1 then we getjyy =tandF(t) = £ whereF (t) is primitive of 57- Q(t) inverse ofF (t)
is Q(t) = v/2t. Now, direct application of part 4 of lemma 2 leads to thedwing

exp(— & Dyo(t) = o(/12+ 22) = (17— K2,

Let us take—t% = q(t) the% = —% from which we gef (t) = § whereF () is primitive of Tlt)' Q(t) inverse ofF (t) ,

therefore, we geQ(t) = %.In view of part 4 of lemma 1.2, one has

exp(—ki2$) D(t) = o (Ly).

Example 3.Let us solve the following fractional Volterra equation @fwolution type. The Laplace transform provides
a useful technique for the solution of such fractional slagintegro- differential equations.

) Jscosha(t — &))DYg(E)dE = (L)%1,(2v/at)  (0) =0,

Solution. Upon taking the Laplace transform of the giveegnal equation, we obtain

a

FO(s) Py = 2

(P—a?) — s+
solving the above equation, leads to

2-a?)ed
(D(S) = (;A)ngaiya

or equivalently

el a2
P(s) = ((aj)szfaiy)v

at this point, taking inverse Laplace transform term wiseraimplifing we obtain

atv (a+p+2)

Q) = a/\i(é)TlaJr“(Z\/ﬁ) - %(%) 7 lgpv42(2V/at),
Note:l,(.), stands for modified Bessel’s function of first kind of order

Corollary 1. Let us consider the following singular integral equation

exp—nx") = [ £ve EgixgHds. ™)
the above integral equation has the following formal salnti
g(x) = 3, ( YAX: mu),
Where J(. : .) stands for the Bessel-Wright function of order

Note:The special function of the form defined by the serigesentation

: . (=" n
Jv(x:p) = n;m(x)

is known as Bessel- Maitland function or the Bessel- Wrighttion.It has a wide application in the problem of physics,
chemistry, applied sciences.
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Proof. Let us rewrite the right hand side of the above equatipa¢ below

exp(—nx™) = (./: dEEVe€"Dxg(x).
in relation @), we used the following exponential identity

D(AKx) = D(NN)x) = ("N)¥x) = &N Degp(x) = ADrap(x),

thus, it follows that

exp—nx") = ([ &'e OdE)g0.
At this point, we may rewrite relatior®) in terms of Gamma function as follows

exr—nx") = (| "&%e O dE)gx) = I (L+v-+ D9

From the above operational relationship and Taylor expensi the exponential function results in

_ (=1)"
Lo T (1+ v+ uxDy)

= ;0%(WXW”= 3o (/X ).

((m)mx)™™,

Corollary 2. Let us consider the following singular integral equation
Kexpx) = ([ &%e €g0x)de),
0
the above integral equation has the following formal salnti

9(%) = l2v(2v/X),

where by (2,/x), stands for the modified Bessel function of first kind of osder

Proof. Let us rewrite the left hand side of the above equation asbelo
X exp(x) = / dEed P )g(x),

and treating the derivative operator as a constant, theatah of the integral yields
9(x) = I ~H(1+ v +xDy) (xX"exp(x)),

after writing Taylor expansion of exponential function gagets

[ [

n+v n+v __

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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Note: From operational relatigixDx)x" = nX" we get the following identity
g(cxD)X" = g(cn)x". (16)
andg(x) has Taylor series expansion.

Lemma 3. The following exponential operator identity holds true

Ot+A—-8&)

(S exr()\ _ % / Tt i3 17)
Proof. Let us introduce the following integral
/ exp—pg) (18)
N

By making the change of variabke+ & =  in the above integral we get

exp(pA — pd)
n% / VO d¢, (19)

after simplifying,one gets

expAp exp(—pl
0= [ SR (20)
or, i
I _ expAp
D=
Let us choose = % ,we obtain
d _vy Pt+A-¢)
() exp()\ / VT ) de. 21)
Special case. Fon= 3,v = 2, we obtain
_2 oo P(t+A-¢&
(§) T A §) () = iy J7 H7dE.
Lemma 4.The following second order exponential operator relatibndd true.
U2 A A
(1) expr(Z)A)P() = G Jo & & (D(x-+iu) + B(x—iu)du, (22)
(2) expkx(Z)?)®(x) = kaﬁ fge*M(cD(x—Hu)—k(D(x—iu))du. (23)
Proof. Let us consider the following elementary integral
0o w2
r\/ﬁexp(f(bzfaz)r):/ e~ & cogau)coshbu)du. (24)
0

By integration by parts one can easily find the value of thegrdl and after some manipulations we obtain

exp(—(b? —a)r) = /m e’%(exp(iau) + exp(—iau))(exp(bu) 4+ exp —bu))du, (25)

_1
(4ry/m) Jo
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(1) Inthe above integral relation, we set (ﬁ%), b = 0 to obtain

exir (571000 = sz [ dule ¥ (explu) (35 +exp(—u)(5)) 0.

by using lemma 1, we get finally
U2 A A
exp(r(Z)?) ®(x) = (2r—\l/ﬁ) Jo e @ (d(x+iu) + ®(x—iu))du.

(2) Inthe above integral relation, we get kx a= %, b = 0to obtain

exp(kx(%()z)qa(x) _ (ZTlﬁ)/owdu(eXfx(exp(iu)(%)+exp(—iu)(§—x))¢(x),
by using lemma 1, we arrive at
exp(kx(%()z)cv(x) _ (ZTlﬁ) /Ome*%fx(cv(w iu) + ®(x— iu))du.

Corollary 3. Let us consider the following Fredholm singular integratatjon

exp(—nx) = /‘w e Cp(x+28VA)dE,

the above integral equation has the following formal salnti

—AX2(5-4An)
exp(w)

P(x) = AL 4Am)

Proof. Let us rewrite the right hand side of the above equation asnbel
exp(—nx?) = / dEe e 2VA D x),
and treating the derivative operator as a constant, theatah of the integral yields

1
—=ePRexp(-d),

D(x) = Ve

at this point, using relatior2@) , one has

1 1

*0= TR@avm

/Om 5 (exp(—n (x+iu)?) + exp(—n (x—iu)?))du,
or,

a2y oo
o) = 0 [ expl () - mif cosmudu

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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from which and after some easy calculations, we get

—Ax2(5— —Ax°(5-4An)
ex
(D(X) F( 1-4An )

mA(1—4Am) (34)

2 Evaluation of Certain Integrals

The main purpose of this section is to introduce the use obeeptial differential operator technique for evaluatidn o
certain types of integrals. WheEg, (. : .) stands for the Mittag-Leffler function with parameters3.

Note:The special function of the form defined by the follogvseries representation

Ean)= > g na

is known as Mittag - Leffler function with two papameters.hsha wide application in the problem of physics,
chemistry,engineering, applied mathematical sciences.

Lemma 5. Considering the integral

X

lo=1(x0a,B) :/o Ea,ﬁ(m)dta (35)
as a function with parameters ,3, show that(x, a, 8) satisfies the following relationship

o — ‘°°E X _kym & 1 r(u(n+v)—0.5)
0_/0 “’B((k2+t2)“) T2 &nr(B+na) T (u(n+v))

(k~2x)", (36)

Proof. By making a change of variabte= ky ,and lettingx = k?r , we get

® r
| :k/ Eq 5(————)dy, 37
0 0 G,B((1+y2)u) y ( )
The above integral can be written in the following operagidorm
® r @ 1
I:k/E 7d:k/ KD gy E, 38
0=k |, Eas gy V=K |} (752)" W Eas (D) (38)

after evaluation and simplifying the right hand side ingdgthis last result leads to

r ky/Tt " (urD; —0.5)
|0_k/ T e e L (39)

By using Taylor expansion of the Mittag-Leffler function tviparameters, 3 , one has

B k\/ﬁ o 1 I'(urDr—O5) n
lo=—3 &Nl (B+na) [ (urDy) v “
finally,
o k\/T_T © 1 I'(u(n—i— v)—0.5) (kuHX)n_ (41)

2 n;)nll'(BJrna) r(u(n+v))

(© 2016 BISKA Bilisim Technology


www.ntmsci.com

7 BISKA A. Aghili: Exponential operators for Fredholm singularégtal equations and space - fractional PDEs

3 Fokker-Planck equation

The classical Fokker-Planck equation is a linear parategjication which describes the time evolution of probability
distribution of a stochastic process defined on a Euclidpanes The Fokker-Planck equation provides a very usefll too
for modelling a wide variety of stochastic phenomena agisinphysics,,chemistry, biology, finance, traffic flow, etc.
Given the importance of the Fokker-Planck equation, déffiéanalytical and numerical methods have been proposed for
its solution.As it is well known the stationary solution odkker-Planck equation can be given in a closed form if the
condition of a detailed balance holds. The study of the tilapendent solution is a much more complicated problem. In
this section,the space fractional Fokker-Planck equdti@hwith a general time-dependence and a special x-dependence
of the drift and diffusion coefficients has been studied witlly.

Lemma 6. Let us consider the following space- fractional FokkeriRiaequation

ut+a(\/§ ;)u+)\x u(x) =0, (42)

u(x,0) = f(x). (43)

Proof.In order to obtain a solution for equatiofid)-(43) in view of [2],[3] first by solving the first order PDE with rpsct
to t, and applying the initial conditior@), we get the following relationship

u(x,t) = exp(—Atx") exp(— at(a 4

o) T, (44)

In order to find the result of the action of exponential oparatie make use of lemma 1 ,by choostog- at,s= (%x%),
to obtain

u(xt) = exp—Atx’) exp(— at(; ;X)°'5)f(x), (45)

or
(i) u(x,t) = exp(—Atx¥)d [ e (atcos05M in(atr05sin Q.5m)( f; dre " T5XE £ (x))dr:
(i) Let us takef(x) = exp(—0x),

1/ 5tV . . e
u(x,t) = exp(f/\tx“)T—T/ e "*°(@t" 005 g atO5 gin 0571)(/ dre T TSGR exp(—gx))dr
0 0

then after some manipulation, and using the following ofi@nal relationship [5]

0

o 0
exp(— T ax Yexp(—gx) = Z (gx, 1), (46)

we get the formal solution as below,
a0
(i) u(x,t) =exp(—Atx")L [ sin(ray/r)( [y dre™ T Tox*ox exp(—qx))dr;
(iv) in view of relation @5)we get,

ux,t) = exp(f/\tx")%/ sin(nat"*l\/F)(/ e’ > La(gx T)d7)dr. (47)
0 0 =

At this point, in order to simplify the above relationshipe wonsider the following - well known relationship for

Laguerre polynomials of two variable as below.

> La(x1) = % exp(l—), (48)

(© 2016 BISKA Bilisim Technology
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the above double integrad§) may be simplified as following
(V) u(x,t) =exp(—Atx") L [ 2 exp(1%)dT)(J5 e " sin(rmay/r)dr; thus the result will become

00 2
u(x,t):exp(f/\tx")a\/ﬁ/0 T(ll )exp(qu fE)dr. (49)

2 -7 -1 4t

4 Main results

Operational methods provide fast and universal mathealatiol for obtaining solution of PDEs or even FPDEs.
Combination of integral transforms, operational methau$ special functions give more powerful analytical instaurn
for solving a wide range of engineering and physical prolsldinis section is devoted to study exponential operatais an
their applications in solving certain boundary value peoh$, such as Laguerre heat equation of orderwdth
non-constant coefficient.

Lemma 7 Let us consider the following space- fractional LaguerreaHequation
t—(2k+1) A

TSl
u(x,0) = @(x), 15<A <2 (51)

+(a+1—-x))2u+ox’u(xt), (50)

Proof. In order to obtain a solution for equatiod() in view of [2],[3] first by solving the first order PDE with rpect to
t, and applying the initial conditiorb(l), we get the following relationship

A +(a+1—x))2p(x), (52)

u(xt) = exp(dt2*+xv) exp(y/at K+ ((a :

In order to find the result of the action of exponential oparatie can use the following well known elementary integral
| W —2nu)du, (53)
exp(n)? / exp(—u?—2nu
\/_

by choosing) = /ot &+ (L5 + (a +1—X) ,to obtain

axA

2kt 1)y 1 (ke1), O
u(x,t) = exp(ot2k+x )ﬁ/, (du)exp(—u? — 2u(y/at kD (=—

™ + (o +1—x))o(x), (54)

after simplifying, we arrive at

eXIO( 5t2(k+l) XY )

NG

At this point,in order to find the result of the action of expatial operator, we may use part 4 of lemma 1 by setting;
w = 2uy/at**D ands= £ to obtain

u(x,t) = /fw(du)exp( w2 — 2u(v/at* ) (o + 1 — x))exp(—2uy/Bt < ;X)A)qo(x), (55)

exp(— 2u\/5t (k+1) ( 0 )A)(p(X) _ _/Oooe*fﬁ(W°°$">Sin(wrﬁsin[3'r[)(/oo(e*” T(di)(p(x))dr)dr, (56)

Jx T 0
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thus, it follows that

exp(72u\/5t(k+l)(%()’\)(p(x) = 7—1T/O°o e’rB<W°°5’3">sin(wrﬁsinﬁ'n)(/om(e*”)(p(xf 7))d1)dr, (57)

substitution of the above result i6%),leads to the following formal solution to the space frawctl Laguerre heat equation
as below

2(k+1) \ 400 00 00
u(x,t) = %\/ﬁx) /,m ef“zfz“\/a(kﬂ)(‘”“*X)/0 e (weoB M ginwrP sing )(/O e "To(x—T1)dr)drdu, (58)

Let us consider the special cage= 1.5, ¢(x) = exp— (bx), 0 = d = 1, k= 0, we get the following heat equation
1 d% 2 v
U = (—5 +(a+1—x)u+x’u(xt), (59)
2 ox2
u(x,0) = exp(—bx). (60)

with the formal solution as below

U(X,t) _ exgj_;v) /+oo efu272ut(a+lfx)/
oo 0

if we carry out the integration and simplify the results oiiéws that

sin(wrl'5sin1.5rr)(/ e "Texp(—bx+ br)dr)drdu, (61)
0

o exqtzxvfbx) teo 7u272ut(a+17x) © 1 :
ux,t) = — e /4,0 € (/O r_bsm(2utr\/F)dr)du, (62)

5 Conclusion

Operational methods provide fast and universal mathesiatio! for obtaining solution of PDEs or even FPDEs.
Combination of integral transforms, operational methat$ special functions give more powerful analytical instaun

for solving a wide range of engineering and physical prolslehie paper is devoted to study exponential operators and
their applications in solving certain boundary value peni$. The main purpose of this work is to develop methods for
solving singular integral equations,certain space foaeti Lagurre heat equation. We note that within such a nemdra
work as we have described and developed in this article temsive usage of the exponential operator method opens up
new and powerful possibilities, which be more deeply exguddn the future publications.
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