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Abstract: The Symmetric Smoothed Particle Hydrodynamics (SSPH) odgthapplied to solve elastostatic deformations of isatrop
tapered beams subjected to different sets of boundary tiomsli Governing equations are presented by using eiteddter-Bernoulli
and Timoshenko beam theories. The performance of the SSHtbdhis evaluated by using different numbers of nodes in thblpm
domain and employing different beam theories for the nuraésolutions of the iostropic tapered beam problems. Tulatd the
performance of the SSPH method, comparison studies in tefrransverse deflections and axial stresses are carrieditiuthe
analytical solutions of Euler Bernoulli Beam Theory. Sitthere is no available closed form solutions of the probleamsed on the
Timoshenko Beam Theory, the analytical solutions obtaimgdhe Euler Beam Theory are used for the comparison purpésiss
observed that the SSPH method has the conventional comeergeoperties and yields smalles &rror.

Keywords: Meshless method, tapered beam, element free, error nomeshienko beam.

1 Introduction

The commonly used beam theories to represent the kinenwtideformation are the Euler Bernoulli Beam Theory
(EBT), the Timoshenko Beam Theory (TBT) and the Reddy-RictfBeam Theory (RBT). The effect of the transverse
shear deformation neglected in the EBT is allowed in thetatro beam theories.

The simplest beam theory is the Euler Bernoulli Beam Thedrichvassumes that the cross sections which are normal to
the mid-plane before deformation remain plane/straigthrmermal to the mid-plane after deformation. By using these
assumptions the transverse shear and transverse noraia$ €an be neglected. The normality assumption of the EBT is
relaxed by using the Timoshenko Beam Theory. In the TBT, thexsections do not need to normal to the mid-plane
but still remain plane. The TBT requires the shear corredaator to compensate the error due to the assumption of the
constant transverse shear strain and shear stress thireibbham thickness, in contrast to the requirement that therup
and lower surfaces of the beam be stress free. The shearctonréactor depends on the geometric and material
parameters of the beam but the loading and boundary conslitice also important to determine the shear correction
factor [1-2]. The third order shear deformation theory vbhis named as the Reddy-Bickford Beam Theory does not
require a shear correction factor due to the fact that trahghthickness of the beam the transverse shear strain is
quadratic [3].

The need for the further extension of the Euler Bernoullirbgbeory is raised for the engineering applications of the
beam problems often characterized by high ratios, up to éthéocomposite structures, between the Young modulus and
the shear modulus [4]. Various higher order beam theoriesiraroduced in which the straightness assumption is
removed and the vanishing of shear stress at the upper amd fawfaces are accomodated. For this purpose, higher
order polynomials incorporating either one, or more, etdres [5-11] or trigonometric functions [12-13] or expotiah
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functions [14] are included in the expansion of the longitadl point-wise displacement component through the
thickness of the beam. The higher order theories introdddéianal unknowns that make the governing equations more
complicated and provide the solutions much costly in terfrfGRIU time.

Meshless methods are widely used in static and dynamic seslyf the engineering beam problems [15-20]. To obtain
the approximate solution of the problem by a meshless methedselection of the basis functions is almost the most
importantissue. The accuracy of the computed solution eandreased by employing different number of terms in TSE
or increasing number of nodes in the problem domain or byegsing the degree of complete polynomials. Many
meshless methods have been proposed by researchers totbbtapproximate solution of the problem. The Smoothed
Particle Hydrodynamics (SPH) method is proposed by Lucy {@1he testing of the fission hypothesis. However, this
method has two important shortcomings, lack of accuracyherbbundaries and the tensile instability. To remove these
shortcomings, many meshless methods have been propodedstice Corrected Smoothed Particle Method [22,23],
Reproducing Kernel Particle Method [24-26], Modified Snimaat Particle Hydrodynamics (MSPH) method [27-30], the
Symmetric Smoothed Particle Hydrodynamics method [31a8@] the Strong Form Meshless Implementation of Taylor
Series Method [37-38], Moving Kringing Interpolation Meth [39-40], the meshless Shepard and Least Squares
(MSLS) Method [42], Spectral Meshless Radial Point Intéaion (SMRPI) Method [42].

It is seen form the above literature survey regarding to BBt method, there is no reported work on the elastostatic
analysis of the isotropic tapered beams subjected to therelift boundary conditions by employing the TBT.

The SSPH method has been successfully applied to 2D homoggreastic problems including quasi-static crack
propagation [31-33], crack propagation in an adhesivelydea joint [34], 2D Heat Transfer problems [35] and 1D
fourth order non-homogeneous variable coefficient lineamuolary value problems [36].

The SSPH method has an advantage over the MLS, RKPM, MSPHharn8MITSM methods because basis functions
used to approximate the function and its derivatives arevel@rsimultaneously, and do not involve derivatives of the
weight function that allows to employ a constant weight fimt[31-36].

In view of the above, the objectives of this paper mainly arpresent the SSPH method formulation for the isotropic
tapered beams subjected to different boundary conditiagttsnathe framework of Euler—Bernoulli Beam Theory and
Timoshenko Beam Theory to perform numerical calculationsittain the transverse deflections and axial stresses of the
studied beam problems and finally to compare the resultsnaatdy using the SSPH method with analytical solutions.
It is believed that researchers will probably find the SSPkhea helpful to solve their engineering problems.

In section 2, the formulation of the EBT and TBT is given. lotien 3, the formulation of the SSPH method is presented
for 1D problem. In Section 4, numerical results are giveredam the two types of engineering beam problem which are
a simply supported tapered beam subjected to the uniforistsiltlited load and a cantilever tapered beam subjected to
the uniformly distributed load.

2 Formulation of beam theories

To describe the EBT and TBT the following coordinate systermiroduced. The x-coordinate is taken along the axis
of the beam and the z-coordinate is taken through the hdigickfiess) of the beam. In the general beam theory, all the
loads and the displacements (u,w) along the coordinatesdre only the functions of the x and z coordinates. [4] The
formulation of the EBT and TBT are given below.
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2.1 Euler Bernoulli beam theory

The following displacement field is given for the Euler BeniiobBeam Theory,

u(x,z) = —zz—vxv
W(x,2) = Wo(X) (1)

where v is the transverse deflection of the point (x,0) which is on itid-plane (z=0) of the beam. By using the
assumption of the smallness of strains and rotations, thetloa axial strain which is nonzero is given by,

du d2W0
ST E e @)
The virtual strain energy of the beam in terms of the axi&ssttand the axial strain can be expressed by
L
SU = / / TS dAdX 3)
0 JA

wheredis the variational symbol, A is the cross sectional area efrithn-uniform beam, L is the length of the beamy
is the axial stress. The bending moment of the EBT is given by,

A

By using EquationZ) and Equation4), Equation 8) can be rewritten as,

L d25W0
oU = [ Muz= 0. (5)
The virtual potential energy of the load q(x) which acts &t ¢lkntroidal axis of the beam is given by
L
oV = — / q(x) Swodx. 6)
0
If a body is in equilibriumdW = dU + &V, the total virtual work §W) done is zero. Then one can obtain,
L d25W0
SW — 7./0 <Mxxzw+q(x)6wo) dx=0. 7)

After performing integration by parts of the first term in Edjon (2.7) twice and sincéwg is arbitrary in (0< x < L),
one can obtain following equilibrium equaiton
2

—%:q(x), for 0<x<L. (8)

By introducing the shear ford@x and rewrite the Equation (2.8) in the following form

dMXX o
T =0
dQ; _
— g~ A ©9)
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By using Hooke’s law, one can obtain

d2w,
O = By = Ezd—2° (10)

where E is the modulus of elasticity. If the Equatidf)(is put into the Equatiord), it is obtained,

2
/ EZZMdA— d d)‘g" (11)

whereDy = Ely is the flexural rigidity of the beam arig = [, Z2dA the second moment of area about the y-axis. The
substitution of Equation (2.11) into Equation (2.9) yietds Euler Bernoulli Beam Theory governing equation

d2 d 2Wo

@( XXW):Q(X), for 0<x<L. (12)

2.2 Timoshenko beam theory

The following displacement field is given for the Timosheeam Theory,

u(x,2) = 29(x),

W(X,2) = Wo(X) (13)

where@(x) denotes the rotation of the cross section. By using the Ejuét3), the strain-displacement relations are
given by

o000
*=ax = Cax
du dw dwg

sz:dz dx (HW' (14)

The virtual strain energy of the beam including the virtuz¢g)y associated with the shearing strain can be written as,

L
SU = / / (0,5 BExc + OBy, dAdX (15)
0 JA

whereoy; is the transverse shear stress gds the shear strain. The bending moment and the shear fondeecaritten
respectively

JA A

By using Equation14) and Equation16), one can rewrite the Equatioh9) as,

SU = /{Mxxd‘s‘erQx( dowo )]dx. (17)

The virtual potential energy of the load q(x) which acts &t ¢kntroidal axis of the Timoshenko beam is given by

L
&V = — /O q(X)Swydx. (18)
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Since the total virtual work done is zero and the coeffici@itd@ and dwpin 0 < X < L are zero, oen can obtain the
following equilibrium equations

dMy

— W + QX = 07
dQx
— g =~ ). (19)

The bending moment and shear force can be expressed in térgeneralized displacemenivg, ) by using the
constituve equationSx = E&xx andox; = Gy,

" d
M = /A 20, dA = Dxd—‘)’(’ (20)
dw,
Qx:Ks/ Oz 0A = KsAx ((0+—0) (21)
A dx

whereKs is the shear correction factor, G is the shear modulyg,= Ely is the flexural rigidity of the beam and
Az = GA'is the shear rigidity. The shear correction factor is usezbtopensate the error caused by assuming a constant
transverse shear stress distribution through the bearh.dept

The governing equations of the Timoshenko Beam Theory isindd in terms of generalized displacements by
substituting the Equationg() and Equation??) into Equation (9),

d /_ do dwo)

_&(Dxxdx)—i_KSsz ((0+ dx ) =0 (22)
d dWo

-5 |:KSAXZ (qo+ i )} =q(x). (23)

3 Formulation of symmetric smoothed particle hydrodynamics

The governing Taylor Series Expansion (TSE) of a scalartfancan be given by

L [(zl—m dixj f (x0) (24)

m

f(&1) = Z

m=0

wheref (£,) is the value of the function & = (&) located in near ok = (x;). If the zeroth to fourth order terms are
employed and the higher order terms are neglected, the iBgyat) can be written as follows

f (&) =P(&,0R(X) (25)
where
df (x) 1d2f(x)  1d*(x)]"
R(X) = [f(x), e } (26)
P(E.%) = [L(E1—x) (€1 —x)% -, (&1 =) 27)
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To determine the unknown variables given in fig), both sides of Equatior?@) are multiplied withw (&, x) P(&,x)"
and evaluated for every node in the CSD. The following equdt obtained

f (Ewn)w(grm’x) p(Er(j),X)T

N(X)

N(x) i T i o
> {P(E D) w(EDx)p(e “),x)] R(X) (28)

whereN (x) is the number nodes in the compact support domain (CSD) oMlé&,x) as shown in Figure 1. Then,

Compact

/ Support

Domain

Fig. 1: Compact support of the weight functiv(&, x) for the node located at= (x;, Vi)

equation 28) can be given by
C(EX)RMX) =H(EX)FY (&%) (29)

whereC (&,x) = P(&,x)"W (&,X)P(&,x) andH (&,x) = P(&,x)T W (&,x). The solution of Equatior2@) is given by
R(X) =K (&.)F™ (&) (30)

whereK ¥ (&,x) = C(&,%)"™H (&£,x) andF 0T (£) = [f (5’<1>) f (sf@) o f (z“N(X))ﬂ . Equation 80) can be also
written as follows "
R| (X):zK|JFJaI :1525"'757 (31)
=1

where M is the number of nodes aRgl= f (EJ). Five components of EquatioB1) for 1D case are can be written as

M
f(X)=Ri(x) = Zl KuiFs

df (x M
I U
d&2f (x) v
=2R = KasF
ax 3(X) gl 3P
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Bt (%)

3 ) _ 31R,(x JZKMFJ

a0 _ Ry x K F (32)
dx4 vZ 5JFJ-

The formulation for 2D and 3D problems can be found [31-34].

4 Numerical results

The SSPH method is applied to solve the pure bending of twoneagng tapered beam problems by using the
formulation of the EBT and TBT. Different loading and boundeonditions are applied with different node distribuson
in the problem domain. The numerical results obtained bystBBH method are compared with the analytical solution of
problem obtained by the EBT. For both problems, the analysolutions based on the TBT are not available in closed
form. So that, the comparisons for the numerical solutidstsioed by the TBT are carried out by using the analytical
solutions based on the EBT. We assume that there is no lateckling.

4.1 Smply supported beam

To determine the static transverse deflections, axials#seand transverse shear stress of a simply supporteddapere
beam under uniformly distributed load of intensigyis considered as shown in Fig.2. is studied.

b(x)

%
/% h(x)

(=)

hy ——> x zh

A
v

Fig. 2: Simply Supported Beam with Uniformly Distributed Load.

The widthb and deptth of the tapered beam are varying linearly along the x-dioecti
X X
b=bo (147 ), h=ho(1+7)

whereby is the width of the beam cross sectiorxat 0, hg is the depth of the beam cross sectiorx at O andL is the
length of the beam.
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The physical parameters of the beam are given as L+3#a@.1m,bp=0.01m. Modulus of elasticity E is 210 GPa, shear
modulus G is 80.8 GPa and the distributed lggds set to 50008 ,/m.

Based on the EBT, the governing equation of the problem cayjMea by,

d2 dZWo
W( XX(X)W):qO, for O<x<L (33)
whereDyy () = Ely(x) is the flexural rigidity of the beam arig(x) = (bgho®/12)(1+ x/L)* is the second moment of area
about the y-axis. The boundary conditions regarding to BB€ &re given as follows;

d2

x=0, dTVZO:OandWO:Om
d2

x=L, WV\ZIO:OandWozom.

The analytical solution of this problem obtained by usingAB is given by

WoF (X) = [A +162 (0.5In(2) — 0.3129 (0.25¢ + x+ 1) ﬂ

(1) (x%+4x+4) 2 3

4 [8;\ [(0.5In(x+ 2)-05In(2)+ (223 ) - 0.75) + 164

| S

] (0.25%% + x+ 1)

(x+2)? 2(x+2)°-0.125
; X+2 (34)
where the superscrifit denotes the quantities in the EBT = Etif]‘;y
The governing equations of the problem can be written bygi$BT as follows,
_%(sz—‘)’:)+KSAXZ ((/H— %) =0 (35)
—%( |:K5sz ((p+ %)] = 0o (36)

where A (X) = GA(X) = Ghohg(1+x/L)? is the shear rigidity and the shear correction factor ismssiito be constant
Ks = 5/6 for the rectangular cross section.

The boundary conditions regarding to the TBT are given devd,

do

x=0, &_Oandwo_Om
d

x=L, d—()f:OandWO:Om.

The analytical solution of this boundary value problem is aa@ilable in the literature with the explicit form and cdul
not be obtained by using MATLAB.

The above boundary value problems are solved by using thél 8&®hod for the node distributions of 21, 41 and 161
equally spaced nodes in the domaia [0, 2. The following Revised Super Gauss Function in [31] is usethasveight

(© 2016 BISKA Bilisim Technology



=
NTMSCI 4, No. 4, 145-162 (2016)www.ntmsci.com BISKA 153

function since it resulted in the ledst error norms in numerical solutions presented in [31].

G {(25d2) e Ogng} 37

WROSGA L o dss

whered = |[x— &|/pis the radius of the support domams the smoothing length.

The numerical solutions are performed according to thefalg meshless parameters; the radius of the support domain
(d) is chosen as 5 and the smoothing lengih €quals toA whereA is the minimum distance between two adjacent
nodes. The parameter valuesdadindh are selected that yield the best accuracy.

Numerical results obtained by using the SSPH method are amdpvith the analytical solutions, and their convergence
and accuracy features are evaluated by using the followitgadjL, error norm,

Ly— [ern:l (Vg.\um - é(aa)z} e (38)
12
[Z'jnzl (Vexaat) }

wherevlum is the value of numerical solutiorat thejt" node and/(jf,(,51Ct is the value of analytical solution at thH& node.

The global L, error norms of the numerical solutions in terms of transvelsflections based on the EBT are given in
Table 1. For the numerical analysis different numbers ofescale considered in the problem domain with 5 terms in
TSEs expansion. The numerical results in Table 1 are oltdimethe parameter values df and p giving the best
accuracy for each method. It is observed in Table 1 that theracy of the SSPH method increases when the number of
nodes in the problem domain increases. The convergencefrdte SSPH method increases with an increase in the
number of nodes.

It is observed in Figure 3 that the SSPH method agrees velywitbl the analytical solution. The transverse deflection

of the beam computed by the SSPH method is virtually indistishable from that for the analytical solution for the 161
uniform of location of nodes in the problem domain.

Table 1: Global L, error norm in terms of transverse displacements for diffenember of nodes based on the EBT.

Meshless Metho Number of Nodes
21 Nodes 41 Nodes 161 Nodes
SSPH 1.4151 0.2378 0.0049

The global L, error norms of the numerical solutions in terms of axialsgreased on the EBT are given in Table 2. Itis
observed in Table 2 that the 161 uniform of location of nodeblé problem domain gives the least error in the numerical
solution. For each of the numerical solutions, the maximuffergnce in the computed and analytical values of axial
stress decreases with an increase in the number of nodese Higxhibits the computed axial stress at x=0 for uniform
node placements of 21, 41 and 161. The results are much tiotfer analytical solution compared to those given by 161
nodes.

The numerical solutions obtained by using TBT are compaiidt tive analytical solution of the problem computed by
using EBT. It is observed in Figure 5 that the computed trarsevdeflections along the beam by using TBT are higher
than the analytical solution of the EBT. As it is very well kmothat the inclusion of the shear deformation in Timoshenko
beam theory makes the beam more flexible which results irehigansverse deflections.
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O SSPH - 21 Node - RSGF - EBT ]
2 —=— SSPH - 41 Node - RSGF - EBT i
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Fig. 3: Transverse deflections of the beam based on the EBT along-aéixés>computed by the SSPH method using
different number of nodes and the analytical solution.

Table 2: Global L, error norm in terms of axial stress for different number ofl@®based on the EBT.

Number of Nodes
41 Nodes
0.1754

Meshless Method

161 Nodes
0.0050

21 Nodes
0.9779

SSPH

In Figure 6, the axial stresses computed by the TBT are giMea difference between the axial stresses of EBT and TBT
is negligible at least for the problem studies here.

In Table 3, the transverse shear stresses computed by th¢ 188WRod based on the TBT are given. With an increase in
the number of nodes, the computed transverse shear stiesgieareases.

Table 3: Transverse shear stress (MPa) for different number of nbassd on TBT.

Meshless Method

Number of Nodes

21 Nodes

41 Nodes

161 Nodes

SSPH

-67.4598

-60.7852

-60.0044

4.2 Cantilever beam

For a cantilever tapered beam the static transverse deflsatinder uniformly distributed load of intensiy as shown
in Figure 7 is studied.
The width b and depth h of the tapered beam are varying lip@dohg thex—direction,

b=bo(1+7), h=ho(1+7)

(© 2016 BISKA Bilisim Technology
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a0l O SSPH-21Node - RSGF-EBT | _
' SSPH - 41 Node - RSGF - EBT
o 307 . SSPH-161Node - RSGF - EBT |
% 20 Analytical Solution - EBT .
S 1ot i
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[7/]
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<
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40| i
_50 L | | | | | L
Do 6 4 2 0 2 4 6 8
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Fig. 4: Axial stresses of the beam at x=L/2 along the thickness db#faen computed by the SSPH method using different
number of nodes and the analytical solution.

0y 7

1s |

4 O SSPH-21 Node - RSGF - TBT -
—=—SSPH - 41 Node - RSGF - TBT

-6 —— SSPH - 161 Node - RSGF - TBT N

------ Analytical Solution - EBT

Deflection (mm)
&
|

_16 1 L L
0 0.5 1 15 2

Length Along Beam (m)

Fig. 5: Transverse deflections of the beam based on the TBT and theiealssolution.

wherebyg is the width of the beam cross section at xhg,is the depth of the beam cross section at x=0 and L is the
length of the beam.

The physical and material parameters and of the beam arews#imibe previous example, as well as the load.

Based on the EBT, the governing equation of the problem ishasgn Equation 83). The boundary conditions are
given by;
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O SSPH - 21 Node - RSGF - TBT | -

O SSPH - 41 Node - RSGF - TBT

A SSPH-161 Node - RSGF - TBT
— Analytical Solution - EBT

Axial Stress (MPa) at L/2
o

-50 ! ! ! ! !
-8 -6 -4 -2 0 2 4 6 8

Thickness (mm)

Fig. 6: Axial stresses of the beam &t= L/2 along the thickness of the beam computed by the SSPH me#ing u
different number of nodes and the analytical solution.

A
Z qJo

4 v v v \ 4 v v v v

b(x)

7
— X / h(x)
%
L 4

Fig. 7: Cantilever beam with uniformly distributed load.

Wo
=L, — =0andwy=0
X . and wop m,
d2W0 d3W0
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The analytical solution of this boundary value problem blas@the EBT is given by

2 3 2 1 5
72 (0.25¢ + x+1)? 16[(0-25X +X+1)2 + (¥ +4x+4)2 (302 + 6AX+4A)

E _ _
wo~ (%) == 3 3(x+2)*

32\ {(x2+x+ 1)? (05I(x+2)~In(2)+ (243 - 116)}
- (x+2) (39)

Based on the TBT, the governing equations of the problemigesmgn Equation 85) and Equation36). The boundary
conditions regarding to the TBT are given as follows;

x=L, ¢@=0andwy=0m,

_ d(p . dWo .
x=0, &_OandqojL ax =0.
The analytical solution of this boundary value problem it a@ilable in the literature with the explicit form and cdul

not be obtained by using MATLAB.

The above boundary value problems are solved by using thél 8&Rhod for the node distributions of 21, 41 and 161
equally spaced nodes in the domaia [0,2]. The Revised Super Gauss Function given in Equa@hi§é used as the
weight function. For the numerical solutions, the radiugtaf support domain (d) is chosen as 5 and the smoothing
length () is chosen ad. The parameter values dfandp are selected that yield the best accuracy.

Numerical results obtained by using the SSPH method are amdpvith the analytical solutions, and their convergence
and accuracy features are evaluated by using the globatror norm given in Equatior8g). In Table 4 the global,
error norms of the solutions based on the EBT are given fderdiht numbers of nodes in the problem domain with 5
terms in TSEs expansion.

Table 4: Globall, error norm for different number of nodes based on EBT.

Meshless Method Number of Nodes
21 Nodes 41 Nodes 161 Nodes
SSPH 7.9056 2.5793 0.2022

The accuracy of the SSPH method increases by increasing oittmber of nodes in the problem domain. The computed
transverse deflection of the beam is virtually indistinbalsle from that for the analytical solution. The SSPH method
agrees very well with the analytical solution as seen froguFé 8.

The globallL, error norms of the numerical solutions in terms of axialsgreased on the EBT are given in Table 5. Itis
observed in Table 2 that for each of the numerical solutithess,maximum difference in the computed and analytical
values of axial stress decreases with an increase in theerunfilmodes. Figure 9 exhibits the computed axial stress at
x = 0 for uniform node placements of 21, 41 and 161. The resudtsrarch closer to the analytical solution compared to
those given by 161 nodes.

The numerical solutions obtained by using TBT are comparitd thie analytical solution of the problem computed
by using EBT. It is observed in Figure 10 that the computedsivarse deflections along the beam by using TBT are
higher than the analytical solution of the EBT. As statedieathat the inclusion of the shear deformation in Timodteen
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O SSPH-21Node -RSGF -EBT
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Deflection (mm)
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-45
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0 05 1 15 2
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Fig. 8: Transverse deflections of the beam based on the EBT along-dixés>computed by the SSPH method using
different number of nodes and the analytical solution.

Table 5: GlobalL, error norm in terms of axial stress for different number aci@®based on the EBT.

Meshless Method Number of Nodes
21 Nodes 41 Nodes 161 Nodes
SSPH 5.6540 1.8236 0.1419

beam theory makes the beam more flexible which results irehighnsverse deflections. In Figure 11, the axial stresses
computed by the TBT are given. The difference between tha atiesses of EBT and TBT is very small at least for the
problem studies here.

Table 6: Transverse shear stress (MPa) for different number of nbassd on TBT.

Meshless Method Number of Nodes
21 Nodes 41 Nodes 161 Nodes
SSPH 30.4648 30.0547 30.0003

The transverse shear stresses computed by the SSPH metwatidrathe TBT are given in Table 6. It is observed that
with an increase in the number of nodes, the computed tresesgear stress value decreases.

5 Conclusion

The SSPH basis functions are employed to numerically sdigeetastostatic analysis of the isotropic tapered beams
subjected to different sets of boundary conditions andaunify distributed load by using strong formulation of the
problem. The numerical calculations are performed by usiiffgrent number of nodes uniformly distributed in the
problem domain and by employing different beam theoriectviaire the EBT and TBT. The performance of the SSPH
method is investigated for the solution of the tapered beshlpms with the TBT for the first time. It is found that the
SSPH method provides satisfactory results and convergamedor the studied problems here. It is observed that the
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Fig. 9: Axial stresses of the beamat= L along the thickness of the beam computed by the SSPH metiagldifferent
number of nodes and the analytical solution.
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Fig. 10: Transverse deflections of the beam based on the TBT along-thris computed by the SSPH method using
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different number of nodes and the analytical solution.

computed results of transverse deflections and axial sgeagree very well with the analytical solutions and are

virtually indistinguishable from that for analytical stilon.

Since the analytical solutions of the problems based on BiE férmulation are not available, the computed results are
compared with the analytical solutions of EBT formulatidhe transverse deflections and the axial stresses obtajned b
the TBT formulation are found agree well with those obtaifreth the analytical solution of EBT. Based on the results
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Fig. 11: Axial stresses of the beamat= L along the thickness of the beam computed by the SSPH methayldifferent
number of nodes and the analytical solution.

of two numerical examples it is recommended that the SSPHadetan be applied for solving linear beam problems
with varying cross sections by employing the TBT formulatio
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