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Abstract: This paper studies the minimization problem governed by\ewguation with homogeneous Neumann boundary condition
and where the control function is a initial velocity of thesssm. We give necessary conditions for the existence amieness of the
optimal solution. We get the Frechet derivation of the costfional via the solution of the corresponding adjointgbean. We construct

a minimizing sequence and show that the limit of the minimizsequence is the solution of the optimal control problem.
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1 Introduction and problem formulation

In this study, we consider an optimal control problem for avev@quation with homogeneous Neumann boundary
conditions. We determine the unknown functiofx) which is the initial velocity of the system in the closed amaeex
subsety,q of L(0,1) from the targeti(0,t;v), usingL,—norm.

Choose a control(x) and a correspondingsuch that the paifv,u) minimizes the function

T [
Jo (V) = / [U(0,t:v) — y (t)]2dt + a/ V2dx N
0 0

subject to the linear hyperbolic problem;
Ut — @Uxx = F (x,t), (xt) € Q:=(0,1) x (0,T]
U(X,O):(I)(X), ut( ﬂo) XE(O,') (2)
Ux (ovt) =0, U (I ﬂt) =0,

wherey is desired target function i, (0, T) and¢ andF are known functions satisfying the following conditions:

¢(X)€Hl(0,|), V(X)GLZ(OﬂI)ﬂ F(X,t)ELz(Q). (3)

With the choice of the functional (i), we mentioned the observation of(0,t;v) in L2(0,T) for the control
v(x) € L2(0,1).

The aim of this work is to obtain suitable functian which approaches the solution of the probl¢®) at the left
boundaryx = 0 to desired targef(t) € L»(0,T). Another word, we want to determine the optimal functionin a
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admissible sdtl;4 such that
Ja (V) < i (V), WV € Ugq.

Herea > 0 is a regularization parameter which ensures both the eniegs of the solution and a balance between the
norms||u(0,t;v) *Y(t)HEz(o‘T) and||v||f2(07|). Detailed information as regards the regularization patamcan be found
in [1]. The termHvHZL2 is called penalization term; its role is to avoid using toméacontrols in the minimization of

Ja (V).

The optimal control problems with different cost functitstor the hyperbolic systems have been studied by different
authors 2,6].

Kowalewski [7] considered the contralin the hyperbolic problem

3—2'+Ay+y(x,tfh) =u, XxeQ,te(0,T)

y(xt') =@ (xt'), xe Q,t'€[-h0)
y(x,0)=0, Y (x,0)=Vv, xe Q
y(xt)=0, xel,te(0,T)

minimizing the performance functional
I (v) :)\l/ |y(x,T;v)—zd|2dx+A2/ (Nv)vdx
Q Q
whereA; > 0, A1+ A2 > 0, 74 is a given elemerit, (Q) andN is a positive linear operator.

Subas! and Sara@][ studied the problem of the determining the initial velgaif the linear hyperbolic problem by
minimizing the cost functional

Ja (V) = [u(xT3v) =y )12, o) + AlVIE, o -

Lions [9] considered the following problem of minimizing the coshétional

39 = VT = Bllo) + IV T -3 o)

under the following condition
y' (V) +A@)Y(V) = f
y(0;v) =0, y (O;v

wheref € Lz(0,T;L2(Q)), ve Lo(Q) and the targets] € H3 (Q) andz} € L, (Q).

\Y

We organize this paper as follows. In section 2, we presenivibak solution of the hyperbolic problem considered and
gives necessary conditions for the existence and uniqaesfethe optimal solution. In section 3, we get the Frechet
differential of the cost functional via the solution of thereesponding adjoint problem. In last section, we contgitu
minimizing sequence is constituted then the limit of thigjence is the solution of the optimal control problem
considered.

2 Unicity of solutions of the optimal control problem

In this section, we give the solvability of the optimal cantproblen(1)-(2). First we state the generalized solution of
the hyperbolic probleni2) in view of [10].
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The generalized (weak) solution of the problef@) will be defined as the function u € H&(Q), with
u(x,0) = ¢ (x), x€ (0,l)which satisfies the following integral identity:

S T I
/ /(—utrh+a2uxnx)dxdt:/ /fvr)dxdt+/vr)(x,0)dx 4)
Jo Jo o Jo 0

foralln € H}(Q) with n (x,T) = 0.

We know from [L(Q], that for everyg < Hg (0,1), ve L2(0,1) andF € L,(Q), the problem2) has a unique generalized
solution and the following estimate is valid for this sodurj

lullZa o) <o (19125 01, + M0 + IFIE ) (5)

Let's give the incremendlv to v such thatv+ Av € Uyq and show the solution of2) correspondiny + Av by uy =
u(x,t; v+ Av). Then the functiodlu = uy — u will be the solution of the following difference problem:

A = a?Auxx
Au(x,0) =0, Au (x,0) =Av(x) (6)
AUX(O,I) - O, AUX(l,t) == O

Lemma 1. Let Au be the solution of the proble(8). Then the following estimate is valid:

1AU(0, )|, 01) < CallAVIIL 0 (7)

where g = /1.

Proof.We can proof this lemma in view 05]. We multiply both sides of the hyperbolic equati@) by Au;, then integrate
it on [0,1]. After some transformations, we obtain

%% {/OI [(aw)+a2(au)?] dX} = & (Audw) .

Using here the homogeneous Neumann boundary conditiohs &fysten{6), we write

%% {/OI {(Aut)2+a2(AuX)2] dx} =0.

We integrate both sides d@,t], t € [0, T]

/'I [(Bw)?+a(8u,)?] dx= /' [Av(x)]2dx, vt € [0,T].
JO 0

Integrating now both the sides ¢@ T|, we have

T /l |
8uly 0= [ [ auoPaxdi 2 [ avioidx ®)

To obtain estimaté?7) needs to use the inequaliMu(O,.)Hfz(oyT) < I||Aux|\fz(9) on the left hand side of8). This
complete the proof.
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We can write the cost functionél) in the following way;
T ) |
Jo (V) :/ [u(0,t;v) —u(0,t;0) +u(0,t;0) —y(t)]°dt+ / v2dx
0 Jo

So we rewrite)y (V) as

Jo (V) =11(V,v) —2Lv+D 9
for T |
n(v,v):/o [u(O,t;v)—u(O,t;O)]zdt—i—a/o VZdx (10)
T

Lv:/o [U(0,£;v) — u(0,t;0)] [y (t) — u(0,t;0)] dt (11)

and T
b:/ [y(t) — u(0,t;0)]%dt (12)

JO

Due to the linearity of the transform— u[v] — u[0], it can easily be seen that the functional(v,v) is bilinear and
symmetric. Further, we write the following;
| (wv)| = a|IVIE, o) (13)

and this implies the coercivity af(v,v). Since
T |
mv,n) = ./0 [u(0,t;v) —u(0,t;0)] [u(0,t;n) —u(0,t;0)] dt + a./o vndx

applying Cauchy-Schwartz inequality and us{i@g, we get

| (v )| < 2|Vl o 1Ml (14)
for c; = max{cZ,a }. Thenm(v,n) is continuous.
The functionalv is linear. We can easily write that

Lv < cs[Vi, 0 (15)

using(7). Hence we see that the functioalis continuous.

Theorem 1. Let 17(v,v) be a continuous symmetric bilinear coercive form and Lv berginuous linear form. Then there
exists a unique element& U,q such that
Ja (Vi) = Inf Jg (V).

Ve Uy

Proof of this theorem can easily be obtained by showing trek@ver semi-continuity od, same as inq].

3 Frechet differentiability of the cost functional

Let us introduce the Lagrangiar(u,v,z) given by

L(u,v,z):/O

(© 2016 BISKA Bilisim Technology
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Using thedL = 0 stationarity condition, we have the following adjoint plem:
2
Zt+8%2x =0, z(x,T)=0, z(xT)=0, %(0,t) = 2OtV -y, (.0)=0 (17)

Now, we investigate the variation of the functiodgl(v). The difference functionalJy (v) = Jo (V+AV) — Iy (V) is
such as

Adg (V) = /OT 2u(0,t;v) — 2y(t) + Au(0,t)] Au(0,t)dt + a/ol (2v-+ Av)Avdx (18)

Here, the term
2/ u(0,t;v) —y (1) Au(0,t)dt

must be evaluated. Using the proble(6sand(17), we have

2/ u(0,t;v) —y(t)]Au(0,t)dt = f/olz(x,O)Avdx

So the relatior{18) can be written as

Ay (v / {~2(x,0) + 2av} Avdx+ / [Au(0,1)2dt + a /O (Av)2dx (19)

Using Lemmal in the (19), we can write the following equality:
Ada (v) = (~2(%,0)+20%, AV), o) + O AVIIF o)

We get the gradient
J, (V) = —2(x,0) +2av

with the definitionJy (V+Av) — Ja (V) = (Jg (V) ,AV) (o) + 0(||AVHEZ(0,|)) of Frechet differential a € Ugg.

4 Constituting minimizing sequence and its conver gence

In this section, we construct a minimizing sequence usirggtadient method. Ify is known (k > 0) then vy, is
computed by the following formula:
Vi1 = Vi — Bx g (Vi) (20)

wherevy € Uyq is a given initial iteration andlj, (v) is the Frechet derivation accompanying the elemgnt

We see that

o(Bx)
5| <0 1)

Ja (Vir1) — I (Vi) = Bic | —[| 3% (i) ||?

for sufficiently smalig > 0.
Computations of th@ can be carried out by one of the methods showrd ifj. |
One of the following can be taken as a stopping criterion éditiration process;

Vi1 — Vil < &1, [Ja (Vkp1) = Ja (V)| < &2, |36 (W0)]| < €.
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Now, we show that for a minimizing sequeng (x) }, the convergence d ({Vi}) — Ja (V«.) implies||vic— Vi ||, 01) =
0 for k — o while a > 0 using the strongly convexity of the cost functional.

Lemma 2. The cost functiongll) is strongly convex with the strong convexity constant
Jo (Bv1+ (1= B)V2) < BIa (va) + (1~ B)Ja (v2) — aB (1~ B) [va — valZ o) (22)

Proof. Let's prove the functionair|\v||f2 is strongly convex. For all1,v» € Uag andp € [0, 1], we write

alpvs+ (- Bwlf, =a [ (Bt 1 B)w)dx

| 2
:Cf/o [BV%jL(]'*B)V%*B(l*B)(Vl*VZ) :|dX (23)
= Ba|vi|Z, + (1 B)alvall, — aB (1 - B)llvi— Va2,

Hence the functionedr||v|\f2 is strongly convex with the strong convexity constant

Now, we show that the functionat(v,v) defined by(10) is the strongly convex. Using23) and linearity of the
transformv — u[v] — u[0], we obtain

"(BV1+(1*B)V2,BV1+(1*B)V2):/OT [B(u(0,t;v1) —u(0,t;0)) + (1— B) (u(0,t;v2) — u(0,t; 0))]%dx
+Ba|vilf, + (1= B)avallf, — aB (1= B) [vi — vall,
or
T T
TT(BVe + (1 — B)Va, Bvi + (1— B)va) :;32/0 (U(0,t:v) — u(0,;0))2dx+ (1713')2/0 (U(0,t;v2) — u(0,t;0))2dx

+28 (1—3)/0T (U(0,t;v1) — u(0,£;0)) (U(0,t;v2) — u(0,;0)) dx

+Bavilif, + (L—B)avallf, — aB (1= B) [vi = Val[f,-

Applying thee—Cauchy inequality to the third right-hand side integral saddnge = 1, we get

T T

mT(Bvi+ (1= B)Vo, Bva+ (1— B)va) < B/o (u(0,t;v1) — u(0,t;0))%dx+ (1— B)/O (u(0,t;v2) — u(0,t;0))%dx
+Balvalig, + (L= B)alvallf, — aB (1 - B) [va —valF,.
or
T(Bv1+ (1 B)Va, v+ (1= B)V2) < BTT(vy, V1) + (1— B) TT(Va, Vo) — aB (1 B) [v1 — Vo,

Thus the functionait(v,v) is strongly convex with the strong convexity constent
Takingv = Bvi + (1— ) v, in (9) and using the linearity of the functionial, we obtain

Jo (BVa + (1= B)V2) < BT(ve,va) + (1= B) TT(V2, Vo) — A (1= B) [va — Val[f, = 2(BLva + (1— B)Lva) +b
= BJa (V1) + (1 B)Ja (v2) — aB (1= B) [v1 — Vo,

(© 2016 BISKA Bilisim Technology
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This complete the proof.
So, we can give the following theorem which states the c@ermre of the minimizer to optimal solution.

Theorem 2. Let v, be optimum solution of the problerh)-(2). For the strongly convex functiona} Jv) with the convexity
constanta, the minimizing sequence satisfies the following inequalit

QN

vk = Ve 01) < = (B (V) = Ja (Ve)), k=0,1,2,... (24)

Proof. Proof of this theorem can be obtained in a similar waylt].[We can write

1 1 1 1 1 2
Ja (EVk‘f’ EV*) < EJO{ (Vi) + EJG (Vi) — azHVk _V*HLZ(O,I)

by taking = % in the definition of the strongly convex functional.

From 1 1
< = =
Ja (Vi) < g <2vk+ 2v*)
we get
1 1 1 )
Ja (Vi) < 53a (Vi) + 53 (Vi) = a7 [Mic= VI 01
and then

2
Vi = V17, 0y < 5 o (W) = Ja (v)).-
Hence the proof is done.

Remark.We can obtain the above results by takigg(v) fOT [u(l,t;v) —y(t)]%dt + afévzdx instead of the cost

functional defined a6l) in the optimal control problerfil)-(2).

5 Conclusion

In the hyperbolic problem, the initial velocity can be catied from the target (0,t; v). Using minimizing sequendg0),
which includes the solution of the adjoint problem, the oyt solution of the optimal control problem can be reached
successfully.
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