
NTMSCI 4, No. 4, 329-336 (2016) 329

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2017.119

Some Inequalities bounding certain ratios of the
(p,k)-Gamma function

Kwara Nantomah

Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P. O. Box
24, Navrongo, UE/R, Ghana.

Received: 10 June 2016, Accepted: 9 October 2016
Published online: 31 December 2016.

Abstract: In this paper, we establish some inequalities bounding the ratio Γp,k(x)/Γp,k(y), whereΓp,k(.) is the(p,k)-analogue of the
Gamma function. Consequently, some previous results are recovered from the obtained results.
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1 Introduction

Inequalities that provide bounds for the ratioΓ (x)/Γ (y), wherex andy are numbers of some special form, have been

studied intensively by several researchers across the globe. A detailed account on inequalities of this nature can be found

in the survey article by Qi [10]. In this study, the focus shall be on the type originating from certain problems of traffic

flow.

In 1978, Lew, Frauenthal and Keyfitz [5] by studying certain problems of traffic flow established thedouble-inequality
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which can be rearranged as
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Then in 2006, Sándor [11] by using the inequality
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≤ 1, s∈ (0,1), x> 0 (3)

due Wendel [12], extended and refined the inequality (2) by proving the result
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for x> 0.
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Also, in the paper [6], the authors established theq-analogue of (4) as
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q

for q∈ (0,1) andx> 0.

Furthermore, in the paper [7], the authors established the(q,k)-analogue of (4) as

[x]
1− 1

2k
q ≤ Γq,k(x+ k)

Γq,k
(

x+ 1
2

) ≤
[

x+
1
2

]1− 1
2k

q

for q∈ (0,1), k> 0 andx> 0.

The main objective of this paper is to establish similar inequalities for the(p,k)-analogue of the Gamma function.

2 Preliminaries

The classical Euler’s Gamma function,Γ (x) is usually defined forx> 0 by

Γ (x) =
∫ ∞

0
tx−1e−t dt = lim

n→∞

n!nx

x(x+1)(x+2) . . .(x+n)

Closely related to the Gamma function is the Digamma function, ψ(x) which is defined for x > 0 as

ψ(x) = d
dx lnΓ (x) = Γ ′(x)

Γ (x) .

Euler gave another definition of the Gamma function called the p-analogue, which is defined forp∈ N andx> 0 as (see

[1, p. 270])

Γp(x) =
p!px

x(x+1) . . .(x+ p)

with the p-analogue of the Digamma function defined asψp(x) = d
dx lnΓp(x).

Also, Dı́az and Pariguan [2] defined thek-analogues of the Gamma and Digamma functions as

Γk(x) =
∫ ∞

0
tx−1e−

tk
k dt and ψk(x) =

d
dx

lnΓk(x)

for k> 0 andx∈C\kZ−.

Then in a recent paper [8], the authors introduced a(p,k)-analogue of the Gamma function defined forp∈ N, k > 0 and

x∈ R+ as

Γp,k(x) =
∫ p

0
tx−1

(

1− tk

pk

)p

dt

=
(p+1)!kp+1(pk)

x
k−1

x(x+ k)(x+2k) . . .(x+ pk)
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satisfying the properties

Γp,k(x+ k) =
pkx

x+ pk+ k
Γp,k(x) (5)

Γp,k(ak) =
p+1

p
ka−1Γp(a), a∈ R

+

Γp,k(k) = 1.

The(p,k)-analogue of the Digamma function is defined forx> 0 as

ψp,k(x) =
d
dx

lnΓp,k(x) =
1
k

ln(pk)−
p

∑
n=0

1
nk+ x

=
1
k

ln(pk)−
∫ ∞

0

1−e−k(p+1)t

1−e−kt
e−xt dt

Also, the(p,k)-analogue of the Polygamma functions are defined as

ψ(m)
p,k (x) =

dm

dxmψp,k(x) =
p

∑
n=0

(−1)m+1m!
(nk+ x)m+1

= (−1)m+1
∫ ∞

0

(

1−e−k(p+1)t

1−e−kt

)

tme−xt dt

wherem∈ N, andψ(0)
p,k(x)≡ ψp,k(x).

The functionsΓp,k(x) andψp,k(x) satisfy the following commutative diagrams.

Γp,k(x)

k→1
��

p→∞
// Γk(x)

k→1
��

Γp(x) p→∞
// Γ (x)

ψp,k(x)

k→1
��

p→∞
// ψk(x)

k→1
��

ψp(x) p→∞
// ψ(x)

We now present the main findings of the paper in the following section.

3 Main results

Lemma 1. Let p∈ N, k> 0 and s∈ (0,1). Then the inequality

(

pkx
x+pk+k

)1−s

(

pk(x+sk)
x+sk+pk+k

)1−s ≤
Γp,k(x+ sk)

(

pkx
x+pk+k

)s
Γp,k(x)

≤ 1 (6)

holds for x> 0.

Proof.We employ the Hölder’s inequality for integrals, which is stated for any integrable functionsf ,g : (0,a)→R as

∫ a

0
| f (t)g(t)|dt ≤

[

∫ a

0
| f (t)|α dt

] 1
α
[

∫ a

0
|g(t)|β dt

] 1
β
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whereα > 1 such that1α + 1
β = 1. We proceed as follows. Letα = 1

1−s, β = 1
s , f (t) = t(1−s)(x−1)

(

1− tk
pk

)p(1−s)
,

g(t) = ts(x+k−1)
(

1− tk
pk

)ps
. Then,
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=
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≤




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
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
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) 1
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=

[
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0
tx−1

(

1− tk
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)p
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]1−s[
∫ p

0
tx+k−1

(

1− tk

pk

)p

dt

]s

=
[

Γp,k(x)
]1−s[Γp,k(x+ k)

]s
.

That is,

Γp,k(x+ sk)≤
[

Γp,k(x)
]1−s[Γp,k(x+ k)

]s
. (7)

Substituting (5) into inequality (7) yields;

Γp,k(x+ sk)≤
(

pkx
x+ pk+ k

)s

Γp,k(x). (8)

Replacingsby 1− s in inequality (8) gives

Γp,k(x+ k− sk)≤
(

pkx
x+ pk+ k

)1−s

Γp,k(x). (9)

Further, upon substituting forx by x+ sk, we obtain

Γp,k(x+ k)≤
(

pk(x+ sk)
x+ sk+ pk+ k

)1−s

Γp,k(x+ sk). (10)

Now combining (8) and (10) gives

Γp,k(x+ k)
(

pk(x+sk)
x+sk+pk+k

)1−s ≤ Γp,k(x+ sk)≤
(

pkx
x+ pk+ k

)s

Γp,k(x)

which by (5) can be written as

(

pkx
x+pk+k

)

(

pk(x+sk)
x+sk+pk+k

)1−sΓp,k(x)≤ Γp,k(x+ sk)≤
(

pkx
x+ pk+ k

)s

Γp,k(x). (11)
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Finally, (11) can be rearranged as
(

pkx
x+pk+k

)1−s

(

pk(x+sk)
x+sk+pk+k

)1−s ≤
Γp,k(x+ sk)

(

pkx
x+pk+k

)s
Γp,k(x)

≤ 1

concluding the proof.

Theorem 1. Let p∈ N, k> 0 and s∈ (0,1). Then the inequality

(

pkx
x+ pk+ k

)1−s

≤ Γp,k(x+ k)

Γp,k (x+ sk)
≤
(

pk(x+ sk)
x+ sk+ pk+ k

)1−s

(12)

holds for x> 0.

Proof.The inequality (6) implies

(

pkx
x+pk+k

)

(

pk(x+sk)
x+sk+pk+k

)1−s ≤
Γp,k (x+ sk)

Γp,k(x)
≤
(

pkx
x+ pk+ k

)s

which by inversion yields
(

pkx
x+ pk+ k

)−s

≤ Γp,k(x)

Γp,k(x+ sk)
≤

(

pk(x+sk)
x+sk+pk+k

)1−s

(

pkx
x+pk+k

) . (13)

Then, substituting the identity (5) into (13) completes the proof.

Remark.Let k= 1 andp→ ∞ in (12). Then, we obtain

x1−s ≤ Γ (x+1)
Γ (x+ s)

≤ (x+ s)1−s (14)

which is an improvement of the Gautschi’s inequality [3, eqn. (7)].

Corollary 1. Let p∈ N and k> 0. Then the inequality

(

pkx
x+ pk+ k

)1− 1
2k

≤ Γp,k(x+ k)

Γp,k
(

x+ 1
2

) ≤
(

pk(x+ 1
2)

x+ pk+ k+ 1
2

)1− 1
2k

(15)

holds for x> 0.

Proof.This follows from Theorem1 by lettings= 1
2k .

Remark.As a consequence of inequality (6), we obtain

lim
x→∞

Γp,k(x+ sk)
(

pkx
x+pk+k

)s
Γp,k(x)

= 1, s∈ (0,1). (16)

Remark.Let α,β ∈ (0,1). Then by (16), we obtain

lim
x→∞

(

pkx
x+ pk+ k

)β−α Γp,k(x+αk)

Γp,k(x+βk)
= 1. (17)
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Remark.We note that the limits (16) and (17) are the(p,k)-analogues of the classical Wendel’s asymptotic relation given

by [12]

lim
x→∞

Γ (x+ s)
xsΓ (x)

= 1.

Remark.By letting p→ ∞ ask→ 1 in (6), we obtain (3).

Remark.By letting p→ ∞ in (15), we obtain

x1− 1
2k ≤ Γk(x+ k)

Γk
(

x+ 1
2

) ≤
(

x+
1
2

)1− 1
2k

(18)

which gives ak-analogue of (4).

Remark.By lettingk→ 1 in (15), we obtain

√

(

px
x+ p+1

)

≤ Γp(x+1)

Γp
(

x+ 1
2

) ≤

√

√

√

√

(

p(x+ 1
2)

x+ p+ 3
2

)

(19)

which gives ap-analogue of (4).

Remark.By letting p→ ∞ ask→ 1 in (15), we obtain (4).

Theorem 2. Let p∈ N and k> 0. Then, the inequality

e(x−y)ψp,k(y) <
Γp,k(x)

Γp,k(y)
< e(x−y)ψp,k(x) (20)

holds for x> y> 0.

Proof.Let H be defined forp∈ N, k> 0 andt > 0 by H(t) = lnΓp,k(t). Further, let(y,x) be fixed. Then, by the classical

mean value theorem, there exists aλ ∈ (y,x) such that

H ′(λ ) =
lnΓp,k(x)− lnΓp,k(y)

x− y
= ψp,k(λ ).

Thus,

ψp,k(λ ) =
1

x− y
ln

Γp,k(x)

Γp,k(y)
.

Recall thatψp,k(t) is increasing fort > 0 (see [8]). Then forλ ∈ (y,x) we have

ψp,k(y)<
1

x− y
ln

Γp,k(x)

Γp,k(y)
< ψp,k(x).

That is

(x− y)ψp,k(y)< ln
Γp,k(x)

Γp,k(y)
< (x− y)ψp,k(x).

Then, by taking exponents, we obtain the result (20).

Corollary 2. Let p∈ N and k> s> 0. Then, the inequality

e(k−s)ψp,k(x+s) <
Γp,k(x+ k)

Γp,k(x+ s)
< e(k−s)ψp,k(x+k) (21)
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holds for x> 0.

Proof.This follows from Theorem2 upon replacingx andy respectively byx+ k andx+ s.

Remark.In particular, ifs= 1
2, then inequality (21) becomes

e(k−
1
2 )ψp,k(x+

1
2 ) <

Γp,k(x+ k)

Γp,k(x+
1
2)

< e(k−
1
2 )ψp,k(x+k) (22)

Remark.The inequality (20) provides a(p,k)-analogue of the result

e(x−y)ψ(y) <
Γ (x)
Γ (y)

< e(x−y)ψ(x) (23)

for x> y> 0, which was established in [9, Corollary 2] .

Remark.Inequality (21) provides a generalization of [4, Theorem 3.1].

4 Conclusion

We have established some inequalities bounding the ratioΓp,k(x)/Γp,k(y), whereΓp,k(.) is the (p,k)-analogue of the

Gamma function. From the established results, we recover some known results in the literature.
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