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Abstract: In this paper, we establish some inequalities boundingdtie F, k(X) /I, k(y), wherel, (.) is the (p,k)-analogue of the
Gamma function. Consequently, some previous results aoveeed from the obtained results.
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1 Introduction

Inequalities that provide bounds for the rafigx)/I" (y), wherex andy are numbers of some special form, have been
studied intensively by several researchers across the gifolietailed account on inequalities of this nature can bedo

in the survey article by QiJQ. In this study, the focus shall be on the type originatirgircertain problems of traffic
flow.

In 1978, Lew, Frauenthal and Keyfit][by studying certain problems of traffic flow established doeible-inequality
1 1 n 1
2r n+§ <r > rn+1)<2'r n+E , heN Q)

which can be rearranged as

r
ﬁgmg\/—ﬁ, neN. 2)

Then in 2006, Sandoifl] by using the inequality

IN

1-s
( X> <TXFS) g se(0.1),x>0 3)

X+s — XM(x)

due Wendel12], extended and refined the inequalit§) by proving the result

rx+1) /1
\/)_(Smﬁ X+§ (4)

forx> 0.
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Also, in the paper], the authors established theanalogue of 4) as

< LD [x%}
Mo (x+3) q
forge (0,1) andx > 0.

Furthermore, in the paper]| the authors established tlg k)-analogue of 4) as

Mg * <

< X+ >
Fak (X+3)

1k (Xt K) <[
=772

1} 1-%
q

forge (0,1), k> 0 andx > 0.

The main objective of this paper is to establish similar indijies for the(p, k)-analogue of the Gamma function.

2 Preliminaries

The classical Euler's Gamma functidn(x) is usually defined fox > 0 by

a1 n!n*
F(X)_/ot & A= X T DX+ 2) .. (1)

Closely related to the Gamma function is the Digamma fumctigy(x) which is defined forx > 0 as
W) =$Inr =15

Euler gave another definition of the Gamma function calledanalogue, which is defined fare N andx > 0 as (see
[1, p. 270])

PP
Fo(9 = X(X+1)...(x+p)

with the p-analogue of the Digamma function definedjagx) = é’—x INp(x).

Also, Diaz and Pariguar?] defined thek-analogues of the Gamma and Digamma functions as

00 k
M(X) :/ lekdt and i(x) = 9 M(x)
0 dx

fork >0 andx e C\kZ".

Then in a recent pape8], the authors introduced (@, k)-analogue of the Gamma function defined foe N, k > 0 and

xeRT as
_ x—1 -
rp,k(x)_/0 t (1 pk) dt

__ (p+ 1)k (pkyit
T X+ R)(XF 2K)... (x+ PK)
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satisfying the properties

kx
%*“+k*:§1%iii%*“) 5)
Mox(ak) = %W’lrp(a), acR"
Fok(K) = 1.

The (p,k)-analogue of the Digamma function is definedXar 0 as

d 1 P
Yo k(X) = &In Fok(X) = " In(pk) — nZO KX
1 0 ] _ efk(prl)t -
_Emmm_A e

Also, the(p, k)-analogue of the Polygamma functions are defined as

m dgm p -1 m+lm!
l.Ué,k) (x) = d—xml.Up,k(X) = n%w

o (1 ki
_ o aymil - T yma—xt
—(-1) /O< T et
whereme N, andwé,‘ﬂ(x) = Pp k().

The functiondp «(x) andy, k(x) satisfy the following commutative diagrams.

p—o p—oo0
Fox(¥) = Ti(x) Wpk(X) = i(X)
kﬁll lkal kall lkﬂl

Ip(X) oe I (x) Wp(X) e P(x)
We now present the main findings of the paper in the followexisn.
3 Main results
Lemmal. Let pe N, k> 0and se (0,1). Then the inequality

(%) o [pk(x48K)
ity < To <1 (6)

1-s — S
k(x+sK pkx
(xfs(kf;sklk) (x+pk+k) rp,k(x)
holds for x> 0.

Proof. We employ the Holder’s inequality for integrals, which fated for any integrable functiorfsg: (0,a) — R as

romoias [iora]  foveal
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(1-9)
wherea > 1 such that; + 5 = 1. We proceed as follows. Let = 115, B =13, f(t)=t196D (1 E)—kk)p °
S
g(t) = tsxrk-1) (1_ :)_kk) P . Then,
P X+sk—1 tk P
I K = 11— —
p.k(X+sK) /o t ( pk) dt
p tk p(1-s) tk\ PS
:/ £(1-9(-1) <1 _) S0erk=1) <1 _> dt
0 pk pk
1 1-s
p tk p(1-s)\ I-s
< / (a-90eD (g 2 dt|
=y ok
s\ ¢ ]°
k s
/p {SOetk-1) <1 t_) dt
0 pk
p LS p
= /pt"*l (1— ﬁ) dt ekl (1 tk) dt
0 pk 0 k
= [k (] [Fox(x+K)]°
That is,
Fok(X+5K) < [Fox ()] S [Mok(x+K)]°. @
Substituting §) into inequality {) yields;
Foutx sk < (P ) ®
Pk = \x+pkrk/ P
Replacings by 1— sin inequality @) gives
1-s
pkx
—sk < | ————— .
Mok(X+k—sk) < <X+ Py k) Mok(X) 9)
Further, upon substituting forby x+ sk we obtain
pk(x+sk \*°
< - ~ =
Mox(x+K) < <x+sk+ ok K Mo k(x4 8K). (10)
Now combining 8) and (L0) gives
Mpxk(X+K) pkx \°
BV 7 <L < [ =
pk(xtsk \ 17 = Fpx(x+sK < X+ pk+k Fpk(X)
(m)
which by ) can be written as
(c25x) s
x+pktk pkx
l,s,_p,k(x) < I_';,J((XﬁL sk) < <m> I_pyk(X). (12)

pk(x+sk)
x+skt pk+k

(© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 329-336 (2016)Wwww.ntmsci.com

Finally, (11) can be rearranged as

1-s
( e ) Mok(X+sk)
Kk
Y < T
PK(X+S
(x+sk+pk+k) (x+pk+k) Tox(%)
concluding the proof.

Theorem 1. Let pe N, k> 0and se (0,1). Then the inequality

pkx l’5< Mox(X+K) _ (_Pk(x+sk 1=s
X+ pk+k ~ Tk (Xx+sk) = \ x+sk+ pk+k

holds for x> 0.

Proof. The inequality 6) implies

k
(‘x+%_k)§rk') - ok (X+sK) - ( pkx )5
( pk(x+sK) )1*5— Mok(X)  — \x+ pk+k
X+sk+pk+k

which by inversion yields
( pk(x+sk) )175

( pkx ) < Mok(X) X+skt pk+k
k+k T K — k
X+ pk+ pk (X4 sK) (><+%—|<X+k)

Then, substituting the identity5) into (13) completes the proof.
RemarkLetk =1 andp — « in (12). Then, we obtain
s F(x+1) -
1-s - < 1-s
XS g S X+

which is an improvement of the Gautschi’s inequal@ygqn. (7)].

Coroallary 1. Let pe N and k> 0. Then the inequality

1
( pkx )121 Ttk (_pkx+d) )T
X+ pk+k T ok (x+3) T \ x4 pk+k+3

holds for x> 0.

Proof. This follows from Theoreni by lettings= %
RemarkAs a consequence of inequality){we obtain
Mok(X+sK)
o (%)Srp,k(x)

RemarklLeta,B € (0,1). Then by (6), we obtain

=1, se(0,1).

Iim( pkx )’3“ Mok(x+ ak)
x—0 \ X+ pk+k I_pyk(XJer)

(12)

(13)

(14)

(15)

(16)

(17)
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RemarkWe note that the limits 1(6) and (L7) are the(p, k)-analogues of the classical Wendel's asymptotic relativerg
by [12]
im [ (x+s) _
x—00  XS[™ (X)
RemarkBy lettingp — o ask — 1 in (6), we obtain 8).

RemarkBy letting p — o in (15), we obtain
-5
X~ % < Tk(x+k). < <X+ 1‘) (18)

which gives &-analogue of 4).

RemarkBy lettingk — 1 in (15), we obtain

1
e
X+p+1) 7 p(x+3) X+p+3
which gives ap-analogue of 4).
RemarkBy lettingp — o ask — 1 in (15), we obtain §).
Theorem 2. Let pe N and k> 0. Then, the inequality
Vi) - [k oy (20)

I_p,k(Y)
holds for x>y > 0.

Proof. Let H be defined fop € N, k> 0 andt > 0 by H(t) = Inl, k(t). Further, let(y,x) be fixed. Then, by the classical
mean value theorem, there exist8 & (y,x) such that

B INTpk(X) = InMpx(y)
— Ty

H'(A) = Ypk(A).

Thus,

Ypk(A) =——=In
Recall thatip, k(t) is increasing fot > 0 (see g]). Then forA € (y,x) we have

1 I_p’k(X)

—
WPyk(y) < X—y n I_p,k(y)

< Ppk(x).

Thatis
o x(X)
rp,k(y)

(X=Y)Wpk(y) <In < (X=Y)Ppk(X)-

Then, by taking exponents, we obtain the res@if)(

Coroallary 2. Let pe N and k> s> 0. Then, the inequality

(K—S) Yy k(X+9)
e p: <
Fox(X+S)

< ekl 21)
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holds for x> 0.
Proof. This follows from Theoren2 upon replacing andy respectively by + k andx+s.

Remarkln particular, ifs= % then inequality 21) becomes

k- hupuerd) o Mok K g 22)

RemarkThe inequality 20) provides & p,k)-analogue of the result

rx
r(y)

e(X*Y)Lp(Y) < < e(X7Y)’~p(X) (23)

for x>y > 0, which was established i®,[Corollary 2] .

Remarklnequality @1) provides a generalization o[ Theorem 3.1].

4 Conclusion

We have established some inequalities bounding the fatiox)/ I, k(y), wherel,k(.) is the (p,k)-analogue of the
Gamma function. From the established results, we recovee $mown results in the literature.
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