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The Kummer beta Birnbaum-Saunders:
An alternative fatigue life distribution
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Abstract

Birnbaum and Saunders [11] introduced a positive continuous distribu-
tion commonly used in reliability studies. Based on this distribution,
we propose and study the called Kummer beta Birnbaum-Saunders dis-
tribution for modeling fatigue life data. Various properties of the new
distribution including explicit expressions for the moments, generating
function, mean deviations, density function of the order statistics and
their moments are derived. We investigate maximum likelihood esti-
mation of the parameters. The superiority of the new distribution is
illustrated by means of two failure real data sets.
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1. Introduction

Fatigue is a structural damage which occurs when a material is exposed to stress
and tension fluctuations. When the effect of vibrations on material specimens and
structures is studied, the first point to be considered is the mechanism that could
cause fatigue of these materials. To understand the fatigue process and the genesis
of the fatigue life and cumulative damage distributions, we recall concepts related
to crack, cycle, fatigue, and load.
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In summary, the fatigue process (fatigue life) begins with an imperceptible
fissure, the initiation, growth, and propagation of which produces a dominant
crack in the specimen due to cyclic patterns of stress, whose ultimate extension
causes the rupture or failure of this specimen. The failure occurs when the total
extension of the crack exceeds a critical threshold for the first time. The partial
extension of a crack produced by fatigue in each cycle is modeled by a random
variable which depends on the type of material, the magnitude of the stress, and
the number of previous cycles, among other factors. More details about the fatigue
process can be found, for example, in Valluri [71], Birnbaum and Saunders [11],
Murthy [53], Saunders [68], and Volodin [75].

The most popular model used to describe the lifetime process under fatigue is
the Birnbaum-Saunders (BS) distribution. However, it allows for unimodal hazard
rates only, hence cannot provide reasonable fits for modeling phenomenon with
bathtub hazard rates, which are common in reliability studies. The distributions
allowing for unimodal and bathtub hazard rates are sufficiently complex (Nelson,
[55]) and usually require five or more parameters.

Motivated by problems of vibration in commercial aircraft that caused fatigue
in the materials, Birnbaum and Saunders [11], [12] proposed the two-parameter
BS distribution, also known as the fatigue life distribution, with shape parameter
α > 0 and scale parameter β > 0, say BS(α, β). This distribution can be used to
model lifetime data and it is widely applicable to represent failure times of fatiguing
materials. If Z is a standard normal random variable, the random variable X
defined by

X = β

αZ
2

+

{(
αZ

2

)2

+ 1

}1/2
2

has a BS(α, β) distribution whose cumulative distribution function (cdf) is given
by

G(x) = Φ(ν)(1.1)

for x > 0, where ν = (1/α)ρ(x/β), ρ(z) = z1/2 − z−1/2, and Φ(·) is the standard
cdf. The parameter β is the median of the distribution, i.e., G(β) = Φ(0) = 1/2.
For any k > 0, kX ∼ BS(α, kβ). Kundu et al. [36] investigated the shape of
the BS hazard rate function. Results on improved statistical inference for this
distribution are discussed by Wu and Wong [78] and Lemonte et al. [46], [48].
Dı́az-Garcia and Leiva [21] proposed a new family of generalized BS distributions
based on contoured elliptical distributions, whereas Guiraud et al. [29] introduced
a non-central version of the BS distribution. The probability density function
(pdf) corresponding to (1.1) is

g(x) = r(α, β)x−3/2(x+ β) exp

[
−τ(x/β)

2α2

]
(1.2)

for x > 0, where r(α, β) = exp
(
α−2

) (
2α
√

2πβ
)−1

and τ(z) = z − z−1. The
fractional moments of (1.2) (Rieck, [65]) are

E (Xp) = βpI(p, α),



where

I(p, α) =
Kp+1/2

(
α−2

)
+Kp−1/2

(
α−2

)
2K1/2

(
α−2

)(1.3)

and Kp(z) denotes the modified Bessel function of the third kind with p repre-
senting its order and z the argument. Its integral representation is Kp(z) =
0.5
∫∞
−∞ exp {−z cosh(t)− pt} dt. A discussion of this function can be found in

Watson [77].
The Kummer beta (KB) distribution may be characterized by the pdf (Ng and

Kotz, [57])

FKB(x) = Kxa−1(1− x)b−1e−cx(1.4)

for 0 < x < 1, a > 0, b > 0 and −∞ < c <∞, where

K−1 =
Γ(a)Γ(b)

Γ(a+ b)
1F1(a; a+ b;−c),

where

1F1(a; a+ b;−c) =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

ta−1(1− t)b−1e−ctdt =

∞∑
k=0

(a)k(−c)k

(a+ b)kk!

is the confluent hypergeometric function (Abramowitz and Stegun, [1]), Γ(·) is the
gamma function and (d)k = d(d+1) · · · (d+k−1) denotes the ascending factorial.
An important special case of (1.4) for c = 0 is the beta pdf.

There has been much theoretical developments with respect to the BS distribu-
tion. The developments have covered many aspects of the distribution. Some of
these are: acceptance sampling (Balakrishnan et al., [6]; Aslam et al., [3]), Bayes
estimation (Xu and Tang, [80]), bivariate generalizations (Kundu et al., [35]),
bootstrap estimation (Lemonte et al., [48]), censored estimation (Barreto et al.,
[8]), confidence intervals (Leiva et al., [40]), discrimination (Butler-Mccullough,
[13]), EM estimation (Balakrishnan et al., [7]), graphical estimation (Chang and
Tang, [15]), hazard rate (Kundu et al., [36]), influence diagnostics (Li et al., [49]),
interval estimation (Wang, [76]), log linear models (Rieck and Nedelman, [66]),
matrix-variate generalizations (Caro-Lopera et al., [14]), maximum likelihood es-
timation (Engelhardt et al., [23]), mixture models (Patriota, [61]), moment es-
timation (Ng et al., [56]), moment generating function (Rieck, [65]), percentiles
estimation (Vilca et al., [74]), random number generation (Leiva et al., [39]), re-
ference analysis (Xu and Tang, [79]), regression models (Lemonte and Cordeiro,
[44]), reliability models (Upadhyay et al., [70]), robust estimation (Paula et al.,
[62]), shape and change point analyses (Azevedo et al., [5]), statistical software
(Barros et al., [9]), testing hypotheses (Lemonte and Ferrari, [47]), time series
models (Bhatti, [10]), truncated versions (Ahmed et al., [2]), and univariate gene-
ralizations (Owen, [60]; Vilca and Leiva, [72]; Gómes et al., [26]; Leiva et al., [38];
Leiva et al., [41]; Athayde et al., [4]; Ferreira et al., [25]; Santos-Neto et al., [67];
Lemonte, [42]).

The BS distribution has also received wide ranging applications. Some recent
applications include: modeling of hourly SO2 concentrations at ten monitoring
stations located in different zones in Santiago (Leiva et al., [37]); modeling of



diameter at breast height distributions of near-natural complex structure silver
fir-European beech forests (Podlaski, [64]); modeling of hourly dissolved oxygen
(DO) concentrations observed at four monitoring stations located at different areas
of Santiago (Leiva et al., [38]; Vilca et al., [73]); statistical analysis of redundant
systems with one warm stand-by unit (Nikulin and Tahir, [59]).

Because of the widespread study and applications of the BS distribution, there
is a need for new generalizations. This aim of this paper is to introduce a new
generalization of the BS distribution.

For an arbitrary baseline cdf G(x) with parameter vector γ and pdf g(x), the
Kummer beta generalized (denoted by the prefix “KB-G” for short) cdf defined in
Pescim et al. [63] is

FKBG(x) = K

∫ G(x)

0

ta−1(1− t)b−1e−c tdt,(1.5)

where a > 0 and b > 0 are shape parameters which induce skewness, and thereby
promote weight variation of the tails, whereas the parameter −∞ < c < ∞
“squeezes” the pdf to the left or right, i.e., it gives weights to the extremes of
the pdfs. For more details, see Pescim et al. [63].

The pdf corresponding to (1.5) can be expressed as:

fKBG(x) = Kg(x)Ga−1(x) {1−G(x)}b−1
exp {−cG(x)} .(1.6)

Clearly, the KB pdf (1.4) is a basic exemplar of equation (1.6) for G(x) = x,
where x ∈ (0, 1). Additionally, we obtain the classical beta distribution for c =
0. Equation (1.6) will be most tractable when both G(x) and g(x) have simple
analytic expressions. Its major benefit is to offer more flexibility to extremes (right
and/or left) of the pdfs and therefore it becomes suitable for analyzing data with
high degree of asymmetry.

The shape parameters a, b and c have the following effects on f(x): increasing
values of a make the lower and upper tails of f lighter; increasing values of b make
the upper tails of f lighter but they do not change the lower tails of f ; increasing
values of c make the lower and upper tails of f lighter. So, each of the shape
parameters adds more flexibility.

The class of distributions (1.6) includes two important special cases: the beta-
generalized (BG) and exponentiated generalized (EG) distributions defined by
Eugene et al. [24] and Mudholkar et al. [52] when c = 0 and c = 0 and b = 1,
respectively. We can note that the BG distributions can be limited in one aspect.
They have only two additional shape parameters and so they can add only a limited
structure to the generated distribution. For instance, a BG distribution may
have problems to capture the behavior of random variables with symmetric but
highly leptokurtic distributions. While the beta parameters offer explicit control
over skewness when the parent is symmetric, they have less control over higher
moments such as kurtosis. Further, the EG distribution still introduces only one
extra shape parameter, whereas three may be required to control both tail weights
and the distribution of weight in the center. Hence, the generated distribution
(1.6) is a more flexible since it has one more shape parameter than the classical
beta or exponentiated generators.



In this paper, we introduce a new five-parameter distribution called the Kum-
mer beta Birnbaum-Saunders (KBBS) distribution which contains as sub-models
the BS and beta Birnbaum-Saunders (BBS) (Cordeiro and Lemonte, [18]) distri-
butions. The main motivation for this extension is that the new distribution is
a highly flexible life distribution which admits different degrees of kurtosis and
asymmetry. Moreover, the new distribution due to its flexibility in accommoda-
ting bathtub shaped and unimodal forms of the hazard rate function could be an
important distribution in a variety of problems in survival analysis and reliability
studies. The KBBS distribution is not only convenient for modeling comfortable
bathtub shaped and unimodal hazard rates but it is also suitable for testing good-
ness of fit of its sub-models.

The KBBS distribution comes from (1.6) by taking G(x) and g(x) as the cdf and
the pdf of the BS(α, β) distribution, respectively. We also provide a comprehensive
description of some of its mathematical properties with the hope that it will attract
wider applications in reliability, engineering and in other areas of research.

The article is outlined as follows. In Section 2, we define the KBBS distribution
and plot its pdfs and hazard rate functions. Section 3 provides useful expansions
for the pdf and the cdf. We obtain explicit expressions for the moments and
generating function (Section 4), incomplete moments (Section 5), mean devia-
tions, Bonferroni and Lorenz curves and reliability (Section 6) and order statistics
(Section 7). Several expressions in Sections 3 to 7 involve infinite series. The
computational issues relating to these infinite series are discussed in Section 8.
In Section 9, we discuss maximum likelihood estimation and statistical inference.
Also discussed in Section 9 is a simulation study assessing the performance of the
maximum likelihood estimators (MLEs). Two applications presented in Section
10 reveal the usefulness of the new distribution for fatigue life data. Concluding
remarks are noted in Section 11.

2. The KBBS distribution

By taking the cdf (1.1) and the pdf (1.2) of the BS distribution with shape
parameter α > 0 and scale parameter β > 0, the cdf and the pdf of the KBBS
distribution are obtained from equations (1.5) and (1.6) as

F (x) = K

∫ Φ(ν)

0

ta−1(1− t)b−1e−ctdt(2.1)

and

f(x) = Kr(α, β)x−3/2(x+ β)Φ(ν) [1− Φ(ν)]
b−1

× exp

{
−
[
τ(x/β)

2α2 + cΦ(ν)

]}
(2.2)

for x > 0. Hereafter, we denote by X the random variable following (2.2), say
X ∼ KBBS(a, b, c, α, β). This pdf has four shape parameters a, b, c and α, which
allow for a high degree of flexibility. The parameter c controls tail weights to the
extremes of the distribution. The associated hazard rate function becomes

h(x) =
Kr(α, β)x−3/2(x+ β)Φ(ν)

[1− F (x)] [1− Φ(ν)]
1−b exp

{
−
[
τ(x/β)

2α2 + cΦ(ν)

]}
.



The study of the new distribution is important since it extends some distribu-
tions previously considered in the literature. In fact, the BS distribution (with
parameters α and β) is clearly a basic exemplar for a = b = 1 and c = 0, with
a continuous crossover towards distributions with different shapes (e.g., a speci-
fied combination of skewness and kurtosis). The KBBS distribution contains as
sub-models the beta-BS (BBS) and the exponentiated Birnbaum-Saunders (EBS)
(Cordeiro et al., [19]) distributions when c = 0 and b = 1 in addition to c = 0,
respectively. Plots of the KBBS pdf and hazard rate functions for selected para-
meter values are displayed in Figures 1 and 2. It is evident that the shapes of the
new pdf are much more flexible than the BS distribution. Further, it allows four
major hazard shapes: increasing, decreasing, bathtub and unimodal hazard rates.

3. Expansions for cdf and pdf

Expansions for equations (2.1) and (2.2) can be derived using the concept of ex-
ponentiated distributions. Cordeiro et al. [19] defined a random variable Y follow-
ing the EBS distribution with parameters α, β and γ > 0, say Y ∼ EBS(α, β, γ).
The cdf and the pdf of Y are denoted by H(y;α, β, γ) = Φγ(ν) and h(y;α, β, γ) =
γgα,β(y)Φγ−1(ν), respectively, where ν is defined in (1.1). The properties of some
exponentiated distributions have been studied by several authors, see Mudholkar
and Srivastava [51] and Mudholkar et al. [52] for the exponentiated Weibull dis-
tribution, Gupta et al. [30] for the exponentiated Pareto distribution, Gupta and
Kundu [31] for the exponentiated exponential distribution, Nadarajah and Gupta
[54] for the exponentiated gamma distribution, Cordeiro et al. [20] for the ex-
ponentiated generalized gamma distribution, Lemonte and Cordeiro [45] for the
exponentiated generalized inverse Gaussian distribution, and Lemonte et al. [43]
for the exponentiated Kumaraswamy distribution.

By expanding the term exp [−cΦ(ν)] and the binomial in equation (2.2), we
obtain the linear combination (for a > 0 integer)

f(x) =

∞∑
j,k=0

wj,kh(x;α, β, a+ j + k),(3.1)

where h(x;α, β, a+ j + k) denotes the EBS(α, β, a+ j + k) pdf and the coefficient
wj,k is given by

wj,k =
K(−1)j+kcj

j!(a+ j + k)

(
b− 1

k

)
.

By integrating (3.1), we obtain

F (x) =

∞∑
j,k=0

wj,kΦa+j+k(ν).(3.2)

If a is a positive non-integer, we can expand Φa+j+k(ν) as

Φa+j+k(ν) =

∞∑
r=0

sr(a+ j + k)Φr(ν),(3.3)
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Figure 1. Plots of the pdf (2.2) for some parameter values.

where

sr(m) =

∞∑
k=r

(−1)k+r

(
m

k

)(
k

r

)
.

Thus, from equations (1.2), (3.2) and (3.3), the KBBS cdf can be expressed as

F (x) =

∞∑
r=0

brΦ
r(ν),(3.4)
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Figure 2. The KBBS hazard rate function. (a) Increasing and de-
creasing hazard rate function. (b) Unimodal hazard rate function. (c)
Bathtub hazard rate function.

where

br =

∞∑
j,k=0

wj,ksr(a+ j + k).



For a > 0 real non-integer, the KBBS pdf expansion corresponding to (3.4) is
obtained by simple differentiation

f(x) =

∞∑
r=0

brh(x;α, β, r).(3.5)

Equation (3.5) reveals that the KBBS pdf is a linear combination of EBS pdfs.
This result is important to derive some properties of the KBBS distribution from
those of the EBS distribution.

4. Moments and generating function

4.1. Moments. The ordinary moments of X can be determined from the proba-
bility weighted moments (Greenwood et al., [28]) of the BS distribution formally
defined for p and r non-negative integers by

τp,r−1 =

∫ ∞
0

xpg(x)Φr−1(ν)dx.(4.1)

The integral (4.1) can be easily computed numerically in software such as MAPLE,
MATLAB, MATHEMATICA, Ox and R. Cordeiro and Lemonte [18] proposed an
alternative representation to compute τp,r−1 given by

τp,r−1 =
βp

2r−1

r−1∑
j=0

(
r − 1

j

) ∞∑
k1,...,kj=0

A (k1, . . . , kj)

×
2sj+j∑
m=0

(−1)m
(

2sj + j

m

)
I

(
p+ sj −m+

j

2
, α

)
,(4.2)

where sj = k1 + · · ·+ kj , A (k1, . . . , kj) = α−2sj−jak1 · · · akj ,

ak = (−1)k2(1−2k)/2 [
√
π(2k + 1)]

−1
and I(p+ (2sj + j − 2m) /2, α) is determined

from (1.3).
The sth moment of X can be expressed from equation (3.5) as

µ
′

s =

∞∑
r=0

brτs,r−1,(4.3)

where τs,r−1 is obtained from (4.1) and br is defined in (3.4).
he four first moments of the KBBS distribution were calculated by numerical

integration and through infinite weighted sums in equation (4.3) using the statisti-
cal software package R. The values from both techniques are usually close when∞
is replaced by a large number as 500 in (4.3). For selected values a = 2, b = 1.5,
c = 4, α = 0.5 and β = 1, Table (1) gives some numerical analysis for those
moments and for variance, skewness and kurtosis.

The skewness and kurtosis measures can be calculated from the ordinary mo-
ments using well-known relationships. Plots of the skewness and kurtosis of the
KBBS distribution as a function of c for selected values of a and b for α = 0.5 and
β = 1.0 are displayed in Figures 3 and 4. Figures 3a and 3b immediately indicate
that the additional parameter c promotes high levels of asymmetry.



Table 1. Values of the four first moments, variance, skewness and
kurtosis of the KBBS distribution for a = 2, b = 1.5, c = 4, α = 0.5 and
β = 1 obtained by numerical integration and through infinite weighted
sums, where j, k, r = 0, . . . , p.

Moments
Infinite weighted sums

Numerical integration
p=50 p=100 p=250 p=500

µ′1 0.85967 0.85920 0.85898 0.85893 0.85890
µ′2 0.83508 0.83355 0.83278 0.83258 0.83242
µ′3 0.93435 0.92920 0.92633 0.92550 0.92479
µ′4 1.23327 1.21506 1.20395 1.20042 1.19703

Variance 0.09604 0.0953 0.09492 0.09481 0.09471
Skewness 1.72439 1.6716 1.63790 1.62691 1.61629
Kurtosis 9.18582 8.6644 8.28549 8.14676 7.99257
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Figure 3. Skewness of the KBBS distribution as a function of c for
some values of a and b for α = 0.5 and β = 1.0. (a) b = 1.5 and (b)
a = 1.2.

4.2. Generating function. Here, we provide a representation for the moment
generating function (mgf) of X, say M(t) = E [exp(tX)], which is obtained as a
linear combination of the mgf’s of the EBS distributions. From expansion (3.5),
we obtain

M(t) =

∞∑
r=0

brMr(t),(4.4)

where Mr(t) is the mgf of the EBS(α, β, r) distribution and br is defined by (3.4).
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Figure 4. Kurtosis of the KBBS distribution as a function of c for
some values of a and b for α = 0.5 and β = 1.0. (a) b = 1.5 and (b)
a = 1.2.

Thus, Mr(t) can be expressed as

Mr(t) = r

∫ ∞
0

exp(tx)gα,β(x)Φr−1(ν)dx,(4.5)

where gα,β(x) is the BS(α, β) pdf. Setting u = Φ(ν) in (4.5), we have

Mr(t) = r

∫ 1

0

ur−1 exp [tQ(u)] du,(4.6)

where x = Q(u) is the quantile function of the BS distribution and u = Φ(ν) is
given by (1.1).

Now, we derive a power series expansion for the quantile function of the EBS
distribution that can be useful to calculate the mgf of the KBBS distribution. We
use throughout an equation in Section 0.314 of Gradshteyn and Ryzhik [27] for a
power series raised to a positive integer j given by( ∞∑

i=0

aix
i

)j
=

∞∑
i=0

cj,ix
i,(4.7)

where the coefficients cj,i (for i = 1, 2, . . .) are easily computed from the recurrence
equation

cj,i = (ia0)
−1

i∑
m=1

[m(j + 1)− i] amcj,i−m(4.8)



and cj,0 = aj0. The coefficient cj,i can be determined from cj,0, . . . , cj,i−1 and
hence from the quantities a0, . . . , ai. In fact, cj,i can be given explicitly in terms
of the coefficients ai, although it is not necessary for programming numerically
our expansions in any algebraic or numerical software.

Following Cordeiro and Lemonte [18], we can invert u = Φ(ν) if the condition
−2 < (x/β)1/2− (β/x)1/2 < 2 holds, to express x as a power series expansion of u

x = Q(u) =

∞∑
i=0

ρi(u− 1/2)i,(4.9)

where the coefficients are ρ0 = β, ρ2q+1 = βα2q+1
(

1/2
q

)
4−q for q ≥ 0, ρ2 = βα2/2

and ρ2q = 0 for q ≥ 2 and the quantities eq,i follow recursively from equations
(4.7) and (4.8) by eq,0 = dq0 and

eq,i = (id0)
−1

q∑
m=1

[m(q + 1)− i] dmeq,i−m.

Here, the quantities dm are defined by dm = 0 (for m = 0, 2, 4, . . .) and dm =
j(m−1)/2 (for m = 1, 3, 5, . . .), where the jm’s are calculated recursively from

jm+1 =
1

2(2m+ 3)

m∑
v=0

(2v + 1)(2m− 2v + 1)jvjm−v
(v + 1)(2v + 1)

.

We have j0 = 1, j1 = 1/6, j2 = 7/120, j3 = 127/7560, and so on.
Substituting equation (4.9) into (4.6) and using the exponential expansion, we

obtain

Mr(t) = r

∞∑
p=0

tp

p!

∫ 1

0

ur−1

( ∞∑
i=0

ρiw
i

)p
du,(4.10)

where w = u− 1/2. From equations (4.7) and (4.8), we have( ∞∑
i=0

ρiw
i

)p
=

∞∑
i=0

δp,iw
i =

∞∑
i=0

δp,i(u− 1/2)i,

where δp,0 = ρp0 and

δp,i = (iρ0)
−1

i∑
m=1

[m(p+ 1)− i] ρmδp,i−m.

Then, equation (4.10) becomes

Mr(t) = r

∞∑
p,i=0

tp

p!
δp,i

∫ 1

0

ur−1 (u− 1/2)
i
du.(4.11)

Using the binomial expansion in (4.11), the mgf of the EBS distribution can be
expressed as

Mr(t) =

∞∑
p=0

δ∗p,it
p,(4.12)



where

δ∗p,i = r

∞∑
i=0

i∑
q=0

(
i

q

)
(−1)i−qδp−i

p!(q + r)2i−q
.

Finally, substituting (4.12) into (4.4), the mgf of the KBBS distribution reduces
to

M(t) =

∞∑
p=0

ηpt
p,(4.13)

where

ηp =

∞∑
r=0

brδ
∗
p,r.

5. Incomplete moments

Many important questions in econometrics require more than just knowing the
mean of a distribution, but its shape as well. This is also obvious not only in
the study of econometrics and income distributions but in many other areas of
research. For empirical purposes, the shape of many distributions can be usefully
described by what we call the incomplete moments. These types of moments play
an important role for measuring inequality, for example, income quantiles and
Lorenz and Bonferroni curves, which depend upon the incomplete moments of a
distribution. The nth incomplete moment of X is given by Tn(y) =

∫ y
0
xnf(x)dx.

By inserting (3.5) in Tn(y), we obtain

Tn(y) = r(α, β)

∞∑
r=0

br

∫ y

0

xn−3/2(x+ β)Φr−1(ν) exp

{
−τ(x/β)

2α2

}
dx.

From Cordeiro and Lemonte [18], we have

Φr−1(ν) = 21−r
r−1∑
j=0

(
r − 1

j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A (k1, . . . , kj)

×
2sj+j∑
m=0

(−β)m
(

2sj + j

m

)
x(2sj+j−2m)/2,

where sj and A (k1, . . . , kj) are defined in (4.2). Thus,

Tn(y) = r(α, β)

∞∑
r=0

br2
1−r

r−1∑
j=0

(
r − 1

j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A (k1, . . . , kj)

×
2sj+j∑
m=0

(−β)m
(

2sj + j

m

)∫ y

0

xn+(2sj+j−2m−3)/2(x+ β) exp

{
−τ(x/β)

2α2

}
dx.

Let

D(p, q) =

∫ q

0

xq exp

{
−x/β + β/x

2α2

}
dx =

∫ q/β

0

uq exp

{
−u+ u−1

2α2

}
du.



From Terras [69], we can write

D(p, q) = βp+1Kp+1

(
α−2

)
− qp+1Kp+1

(
q

2α2β
,
β

2α2q

)
,

where Kp (x1, x2) denotes the incomplete Bessel function with arguments x1 and
x2 and order p. For further details, see Jones [33], [34] and Harris [32].

Hence, the nth incomplete moment of X can be expressed as

Tn(y) = r(α, β)

∞∑
r=0

br2
1−r

r−1∑
j=0

(
r − 1

j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A (k1, . . . , kj)

×
2sj+j∑
m=0

(−β)m
(

2sj + j

m

)
×
{
D

(
n+

2sj + j − 2m− 1

2
, y

)
+ βD

(
n+

2sj + j − 2m− 3

2
, y

)}
.(5.1)

Equation (5.1) is the main result of this section.

6. Other measures

Here, we derive the means deviations, Lorenz and Bonferroni curves and the
reliability of the KBBS distribution.

6.1. Mean deviations. We can derive the mean deviations about the mean
µ
′

1 (δ1) and about the median M (δ2) in terms of the first incomplete moment.

The median is obtained by inverting F (M) = K
∫ Φ(ν)

0
ta−1(1− t)b−1e−ctdt = 1/2

numerically. They can be expressed as

δ1 = 2
[
µ
′

1F
(
µ
′

1

)
− T1

(
µ
′

1

)]
, δ2 = µ

′

1 − 2T1 (M) ,

where T1(·) is the first incomplete moment of X given by (5.1) with n = 1. We
have

T1(y) = r(α, β)

∞∑
r=0

br2
1−r

r−1∑
j=0

(
r − 1

j

) ∞∑
k1,...,kj=0

β−(2sj+j)/2A (k1, . . . , kj)

×
2sj+j∑
m=0

(−β)m
(

2sj + j

m

)
×
{
D

(
2sj + j − 2m+ 1

2
, y

)
+ βD

(
2sj + j − 2m− 1

2
, y

)}
.(6.1)

The measures δ1 and δ2 are immediately calculated from (6.1) by setting y = µ
′

1

and y = M , respectively.
An application of the mean deviations refer to the Lorenz and Bonferroni curves

defined by L(π) = T1(q)/µ
′

1 and B(π) = T1(q)/πµ
′

1, respectively, where q =
F−1(π) can be computed for a given probability π by inverting (2.1) numerically.
These curves have applications in several fields. They measures are immediately
calculated from equation (6.1).



6.2. Reliability. In the context of reliability, the stress-strength model describes
the life of a component which has a random strength X1 that is subjected to a
random stress X2. The component fails at the instant that the stress applied
to it exceeds the strength, and the component will function satisfactorily when-
ever X1 > X2. Hence, R = Pr (X1 < X2) is a measure of component reliability
which has many applications in engineering. We derive the reliability R when X1

and X2 have independent KBBS(α, β, a1, b1, c1) and KBBS(α, β, a2, b2, c2) distri-
butions with the same shape parameters α and β.

The pdf of X1 and the cdf of X2 can be written from equations (3.1) and (3.2)
as

f1(x) = g(x)

∞∑
i,j=0

w1,i,j (a1 + i+ j) Φa1+i+j(ν), F2(x) =

∞∑
k,p=0

w2,k,pΦ
a2+k+p(ν),

respectively, where

w1,i,j =
K1(−1)i+jci1
i! (a1 + i+ j)

(
b1 − 1

j

)
, w2,k,p =

K2(−1)k+pck2
k! (a2 + k + p)

(
b2 − 1

p

)
.

The reliability, R, is given by

R =

∫ ∞
0

f1(x)F2(x)dx(6.2)

and then

R =

∞∑
i,j,k,p=0

w1,i,jw2,k,p

∫ ∞
0

g(x)Φa1+a2+i+j+k+p−1(ν)dx.

From equation (3.3), we can write

Φa1+a2+i+j+k+p−1(ν) =

∞∑
r=0

sr (a1 + a2 + i+ j + k + p− 1) Φr(ν),

and then R reduces to

R =

∞∑
i,j,k,p=0

w1,i,jw2,k,p

∞∑
r=0

sr (a1 + a2 + i+ j + k + p− 1) τ0,r−1,(6.3)

where τ0,r−1 can be computed from (4.2).

7. Order statistics

Order statistics have been used in a wide range of problems, including robust
statistical estimation and detection of outliers, characterization of probability dis-
tributions and goodness-of-fit tests, entropy estimation, analysis of censored sam-
ples, reliability analysis, quality control and strength of materials.

Suppose X1, . . . , Xn is a random sample from the KBBS distribution and let
X1:n < · · · < Xn:n denote the corresponding order statistics. Using (3.4) and
(3.5), the pdf of Xi:n can be expressed as

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)[
g(x)

∞∑
r=0

brΦ
r(ν)

][ ∞∑
r=0

brΦ
r(ν)

]i+j−1

.



From equations (4.7) and (4.8), we obtain[ ∞∑
r=0

brΦ
r(ν)

]i+j−1

=

∞∑
r=0

ci+j−1,rΦ
r(ν),

where ci+j−1,0 = bi+j−1
0 and

ci+j−1,r = (rb0)
−1

r∑
m=1

[m(i+ j)− r] bmci+j−1,r−m.

Hence, the pdf of the ith order statistic for the KBBS distribution can be expressed
as

fi:n(x) =

∞∑
r=0

mr h(x;α, β, 2r),(7.1)

where

mr =
n!br

(2r + 1)(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
ci+j−1,r.

Equation (7.1) is the main result of this section. It gives the pdf of the KBBS order
statistics as a linear combination of EBS pdfs with parameters α, β and 2r. So,
several mathematical quantities of the KBBS order statistics such as ordinary and
incomplete moments, generating function, mean deviations (and several others)
can come immediately from those quantities of the EBS distribution.

8. Computational issues

Here, we show the practical values of (3.4), (3.5), (4.3), (4.13), (5.1), (6.3) and
(7.1). These formulas with the infinite series truncated provide a simple way to
compute the cdf, pdf, moments, mgf, incomplete moments, reliability and the pdf
of order statistics. The question is: how large should the truncation limit be?

We now show evidence that each infinite summation can be truncated at twenty
to yield sufficient accuracy. Let D1 denote the absolute difference between the
integrated version, (2.1), and the truncated version of (3.4) averaged over x =
0.01, 0.02, . . . , 5, a = 0.01, 0.02, . . . , 10, b = 0.01, 0.02, . . . , 10, c = −10,−9.99, . . . , 10,
α = 0.01, 0.02, . . . , 10 and β = 0.01, 0.02, . . . , 10. Let D2 denote the absolute
difference between (1.6) and the truncated version of (3.5) averaged over x =
0.01, 0.02, . . . , 5, a = 0.01, 0.02, . . . , 10, b = 0.01, 0.02, . . . , 10, c = −10,−9.99, . . . , 10,
α = 0.01, 0.02, . . . , 10 and β = 0.01, 0.02, . . . , 10. Let D3 denote the absolute dif-
ference between the truncated version of (4.3) and the integrated version,

µ
′

s = Kr(α, β)

∫ ∞
0

xs−3/2(x+ β)Φ(ν) [1− Φ(ν)]
b−1

exp

{
−
[
τ(x/β)

2α2 + cΦ(ν)

]}
dx,



averaged over s = 1, 2, . . . , 50, a = 0.01, 0.02, . . . , 10, b = 0.01, 0.02, . . . , 10, c =
−10,−9.99, . . . , 10, α = 0.01, 0.02, . . . , 10 and β = 0.01, 0.02, . . . , 10. Let D4 de-
note the absolute difference between the truncated version of (4.13) and the inte-
grated version,

M(t) = Kr(α, β)

∫ ∞
0

exp(tx)x−3/2(x+ β)Φ(ν) [1− Φ(ν)]
b−1

× exp

{
−
[
τ(x/β)

2α2 + cΦ(ν)

]}
dx,

averaged over t = 0.01, 0.02, . . . , 0.99, a = 0.01, 0.02, . . . , 10, b = 0.01, 0.02, . . . , 10,
c = −10,−9.99, . . . , 10, α = 0.01, 0.02, . . . , 10 and β = 0.01, 0.02, . . . , 10. Let
D5 denote the absolute difference between the truncated version of (5.1) and the
integrated version,

Tn(y) = Kr(α, β)

∫ y

0

xn−3/2(x+ β)Φ(ν) [1− Φ(ν)]
b−1

exp

{
−
[
τ(x/β)

2α2 + cΦ(ν)

]}
dx,

averaged over n = 1, 2, . . . , 50, y = 0.01, 0.02, . . . , 5, a = 0.01, 0.02, . . . , 10, b =
0.01, 0.02, . . . , 10, c = −10,−9.99, . . . , 10, α = 0.01, 0.02, . . . , 10 and
β = 0.01, 0.02, . . . , 10. Let D6 denote the absolute difference between the in-
tegrated version, (6.2), and the truncated version of (6.3) averaged over a1 =
0.01, 0.02, . . . , 10, b1 = 0.01, 0.02, . . . , 10, c1 = −10,−9.99, . . . , 10,
a2 = 0.01, 0.02, . . . , 10, b2 = 0.01, 0.02, . . . , 10, c2 = −10,−9.99, . . . , 10, α =
0.01, 0.02, . . . , 10 and β = 0.01, 0.02, . . . , 10. Let D7 denote the absolute difference
between (7.1) and the truncated version of (7.1) averaged over i = 1, 2, . . . , n, n =
1, 2, . . . , 50, a = 0.01, 0.02, . . . , 10, b = 0.01, 0.02, . . . , 10, c = −10,−9.99, . . . , 10,
α = 0.01, 0.02, . . . , 10 and β = 0.01, 0.02, . . . , 10.

We obtained the following estimates after extensive computations: D1 = 1.21×
10−21, D2 = 9.43×10−20, D3 = 2.39×10−33, D4 = 3.54×10−21, D5 = 7.6×10−25,
D6 = 1.68 × 10−20 and D7 = 2.78 × 10−22. These estimates are small enough to
suggest that the truncated versions of (3.4), (3.5), (4.3), (4.13), (5.1), (6.3) and
(7.1) are reasonable for practical use.

It would ideal to show that each (untruncated) infinite series (like (3.4), (3.5),
(4.3), (4.13), (5.1), (6.3) and (7.1)) is convergent and gives valid values for all
values of its arguments. This will be a difficult mathematical problem and a
possible future work.

9. Inference

Section 9.1 gives procedures for maximum likelihood estimation of the KBBS
distribution. Section 9.2 assesses the performance of the MLEs in terms of biases,
mean squared errors, coverage probabilities and coverage lengths by means of a
simulation study.

9.1. Estimation. The estimation of the parameters of the KBBS distribution
will be investigated by maximum likelihood. Let X = (X1, . . . , Xn) be a random
sample of this distribution with unknown parameter vector θ = (α, β, a, b, c)T .



The total log-likelihood function for θ is

`(θ) = n logK + n log r(α, β)− 3

2

n∑
i=1

log xi +

n∑
i=1

log (xi + β)− 1

2α2

n∑
i=1

τ (xi/β)

−c
n∑
i=1

Φ (νi) + (a− 1)

n∑
i=1

log Φ (νi) + (b− 1)

n∑
i=1

log [1− Φ (νi)] .(9.1)

The elements of score vector are given by

Uα(θ) = −n
α

(
1 +

2

α2

)
+

1

α3

n∑
i=1

(
xi
β

+
β

xi

)

− 1

α

n∑
i=1

νiφ (νi)

{
a− 1

Φ (νi)
− b− 1

1− Φ (νi)
− 2c

}
,

Uβ(θ) = − n

2β
+

n∑
i=1

1

xi + β
+

1

2α2β

n∑
i=1

(
xi
β
− β

xi

)

− 1

2αβ

n∑
i=1

τ
(√

xi/β
)
φ (νi)

{
a− 1

Φ (νi)
− b− 1

1− Φ (νi)
− c
}
,

Ua(θ) =
n

K

∂K

∂a
+

n∑
i=1

log Φ (νi) ,

Ub(θ) =
n

K

∂K

∂b
+

n∑
i=1

log [1− Φ (νi)] ,

Uc(θ) =
n

K

∂K

∂c
+

n∑
i=1

Φ (νi) ,

where φ(·) is the standard normal pdf, νi = α−1
{√

xi/β −
√
β/xi

}
and τ

(√
xi/β

)
=√

xi/β +
√
β/xi for i = 1, 2, . . . , n. The partial derivatives of K with respect to

a, b and c are

∂K

∂a
= −

[ψ(a)− ψ(a+ b)] 1F1(a, a+ b,−c) +
∂1F1(a, a+ b,−c)

∂a
B(a, b) [1F1(a, a+ b,−c)]2

,

∂K

∂b
= −

[ψ(b)− ψ(a+ b)] 1F1(a, a+ b,−c) +
∂1F1(a, a+ b,−c)

∂b
B(a, b) [1F1(a, a+ b,−c)]2

,

∂K

∂c
=

a1F1(a+ 1, a+ b+ 1,−c)
(a+ b)B(a, b)1F1(a, a+ b,−c)

,

where

∂1F1(a, a+ b,−c)
∂a

= − [ψ(a)− ψ(a+ b)] 1F1(a, a+ b,−c)

−
∞∑
k=0

(a)k(−c)k

k!(a+ b)k
[ψ(a+ b+ k)− ψ(a+ k)]



and

∂1F1(a, a+ b,−c)
∂c

= ψ(a+ b)1F1(a, a+ b,−c) +

∞∑
k=0

(a)k(−c)k

k!(a+ b)k
ψ(a+ b+ k).

Maximization of (9.1) can be performed by using well established routines such
as the nlm routine or optimize in the R statistical package. Setting these equations

to zero, U(θ) = 0, and solving them simultaneously yields the MLE θ̂ of θ. These
equations cannot be solved analytically and statistical software can be used to solve
them numerically by means of iterative techniques such as the Newton-Raphson
algorithm.

For interval estimation and hypothesis tests on the parameters in θ, we require
the 5× 5 total observed information matrix J(θ) = −{Ur,s}, where the elements
Ur,s for r, s = α, β, a, b, c are given in the Appendix. The estimated asymptotic

multivariate normal N5

(
0,J

(
θ̂
)−1

)
distribution of θ̂ can be used to construct

approximate confidence regions for the parameters and for the hazard rate and
survival functions. An asymptotic confidence interval with significance level γ for
each parameter θr is given by

ACI (θr, 100(1− γ)%) =
(
θ̂r − z1−γ/2

√
κ̂θr,θr , θ̂r + z1−γ/2

√
κ̂θr,θr

)
,

where κ̂θr,θr is the rth diagonal element of J (θ)
−1

estimated at θ̂ for r = 1, . . . , 4,
and z1−γ/2 is the 100(1− γ/2) percentile of the standard normal distribution.

The likelihood ratio (LR) statistic is useful for comparing the new distribution
with some of its sub-models. For example, we may adopt the LR statistic to check
if the fit using the KBBS distribution is statistically “superior” to a fit using
the BS distribution for a given data set. In any case, considering the partition

θ =
(
θT1 ,θ

T
2

)T
, tests of hypotheses of the typeH0 : θ1 = θ

(0)
1 versusHA : θ1 6= θ

(0)
1

can be performed using the LR statistic w = 2
{
`
(
θ̂
)
− `

(
θ̃
)}

, where θ̂ and θ̃ are

the estimates of θ under HA and H0, respectively. Under the null hypothesis H0,
w approaches χ2

q as n→∞, where q is the dimension of the vector θ1 of interest.
The LR test rejects H0 if w > ξγ , where ξγ denotes the upper 100γ percentile of
the χ2

q distribution.

9.2. Simulation study. Here, we assess the performance of the MLEs with re-
spect to sample size n. The assessment is based on a simulation study:

(1) generate ten thousand samples of size n from (2.1). The inversion method
was used to generate samples, i.e., variates of the KBBS distribution were
generated by solving

K

∫ Φ(ρ(X/β)/α)

0

ta−1(1− t)b−1 exp(−ct)dt = U,

where U ∼ U(0, 1) is a uniform variate on the unit interval.

(2) compute the MLEs for the ten thousand samples, say
(
âi, b̂i, ĉi, α̂i, β̂i

)
for

i = 1, 2, . . . , 10000.



(3) compute the standard errors of the MLEs for the ten thousand samples,

say
(
sâi , sb̂i , sĉi , sα̂i

, sβ̂i

)
for i = 1, 2, . . . , 10000. The standard errors were

computed by inverting the observed information matrices.
(4) compute the biases and mean squared errors given by

biash(n) =
1

10000

10000∑
i=1

(
ĥi − h

)
,

MSEh(n) =
1

10000

10000∑
i=1

(
ĥi − h

)2

for h = a, b, c, α, β.
(5) compute the coverage probabilities and coverage lengths given by

CPh(n) =
1

10000

10000∑
i=1

I
{
ĥi − 1.959964sĥi

< h < ĥi + 1.959964sĥi

}
,

CLh(n) =
3.919928

10000

10000∑
i=1

sĥi

for h = a, b, c, α, β, where I{·} denotes the indicator function.

We repeated these steps for n = 10, 11, . . . , 100 with a = 1, b = 1, c = 1, α = 1 and
β = 1, so computing biash(n), MSEh(n), CPh(n) and CLh(n) for h = a, b, c, α, β
and n = 10, 11, . . . , 100.

Figure 5 shows how the five biases vary with respect to n. Figure 6 shows how
the five mean squared errors vary with respect to n. Figure 7 shows how the five
coverage probabilities vary with respect to n. Figure 8 shows how the five coverage
lengths vary with respect to n. The broken line in Figure 5 corresponds to the
biases being zero. The broken line in Figure 6 corresponds to the mean squared
errors being zero. The broken line in Figure 7 corresponds to the nominal coverage
probability of 0.95.

The following observations can be drawn from the figures: the biases for a, c and
α are generally positive; the biases for b and β are generally negative; the biases
appear smallest for the parameter, b; the biases appear largest for the parameter,
c; the biases for each parameter either decrease or increase to zero as n → ∞;
the mean squared errors appear smallest for the parameters, b and β; the mean
squared errors appear largest for the parameter, c; the mean squared errors for
each parameter decrease to zero as n → ∞; the coverage probabilities for each
parameter are reasonably close enough to the nominal level for n greater than
or equal to sixty; the coverage lengths appear smallest for the parameter, b; the
coverage lengths appear largest for the parameters, a and c; the coverage lengths
for each parameter decrease to zero as n→∞. These observations are for only one
choice for (a, b, c, α, β), namely that (a, b, c, α, β) = (1, 1, 1, 1, 1). But the results
were similar for other choices.

Section 10 presents two real data applications. The sample size for the first
data set is sixty six. The sample size for the second data set is one hundred and
one.
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Figure 5. Biases of the MLEs of (a, b, c, α, β) versus n = 10, 11, . . . , 100.

Hence, the biases for â, b̂, ĉ, α̂ and β̂ can be expected to be less than 0.01, 0.001,
0.02, 0.02 and 0.01, respectively, for both data sets. The mean squared errors for

â, b̂, ĉ, α̂ and β̂ can be expected to be less than 0.005, 0.003, 0.02, 0.002 and 0.002,
respectively, for both data sets. The coverage probabilities can be expected to be

accurate for â, b̂, ĉ, α̂ and β̂ for both data sets. The coverage lengths for â, b̂, ĉ,

α̂ and β̂ can be expected to be less than 0.3, 0.01, 0.2, 0.2 and 0.2, respectively,
for both data sets. Hence, the point as well as interval estimates given in Section
10 can be considered accurate enough.

10. Applications

In this section, we use two data sets to compare the fits of the KBBS dis-
tribution with those of two sub-models (i.e., the beta-BS (BBS) and BS distri-
butions) and also to the following non-nested models: the McDonald-Birnbaum-
Saunders (McBS) (Cordeiro et al., [19]), the McDonald-gamma (McGa) (Marciano
et al., [50]), the length-biased-Birnbaum-Saunders (LBS) (Leiva et al., [38]), the
extended Birnbaum-Saunders (ExBS) (Leiva et al., [41]), the Marshall-Olkin ex-
tended Birnbaum-Saunders (MOEBS) (Lemonte, [42]) and the generalized Birnbaum-
Saunders (GBS) (Owen, [60]) distributions. All the computations were performed
using the R statistical software. Obviously, due to the genesis of the BS and
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Figure 6. Mean squared errors of the MLEs of (a, b, c, α, β) versus
n = 10, 11, . . . , 100.

gamma distributions, the fatigue processes are ideally modeled by these distribu-
tions. Thus, the use of the KBBS distribution and its sub-models and also other
lifetime distributions for fitting the data sets is justified.

10.1. Breaking stress of carbon fibres data. Here, we shall compare the
fitted KBBS, BBS, BS, McBS, McGa, LBS, ExBS, MOEBS and GBS distributions
to the data from Nichols and Padgett [58] on the breaking stress of carbon fibres (in
Gba). Nichols and Padgett [58] described the data from a process which produces
carbon fibers to be used in constructing fibrous composite materials. The carbon
fiber fifty millimeters in length were sampled (n = 66) from the process, tested
and their tensile strength were observed.

Firstly, in order to estimate the parameters, we consider the maximum likeli-
hood estimation method discussed in Section 9. We take the estimates of α and
β from the fitted BS distribution as starting values for the numerical iterative
procedure. Table 2 lists the MLEs of the parameters and the values of the follow-
ing statistics: Akaike Information Criterion (AIC), Consistent Akaike Information
Criterion (CAIC) and Bayesian Information Criterion (BIC). The results indicate
that the KBBS distribution has the smallest values of these statistics, and so, it
could be chosen as the more suitable distribution.
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Figure 7. Coverage probabilities of the MLEs of (a, b, c, α, β) versus
n = 10, 11, . . . , 100.

Table 2. MLEs (standard errors in parentheses) and information cri-
teria for breaking stress of carbon fibres data.

Model α β a b c AIC BIC CAIC
KBBS 0.6770 2.9944 0.3430 11.4176 -22.2353 179.6 190.6 181.6

(0.5479) (0.2732) (0.2079) (3.7988) (5.4008)
BBS 1.0452 57.5997 0.1990 1876.8935 0 191.6 200.4 193.0

(0.0039) (0.3413) (0.0219) (605.0512)
BS 0.43712 2.51540 1 1 0 204.3 208.7 205.0

(0.0380) (0.1321)

A comparison of the proposed distribution with some of its sub-models using
LR statistics is given in Table 3. We reject the null hypotheses of the two LR tests
in favor of the KBBS distribution. The rejection is extremely highly significant.
This gives a clear evidence of the potential of the three skewness parameters when
modeling real data.
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Figure 8. Coverage lengths of the MLEs of (a, b, c, α, β) versus n =
10, 11, . . . , 100.

Table 3. LR statistics for breaking stress of carbon fibres data.

Model Hypotheses Statistic w p-value
KBBS vs BBSH0 : c = 0 vs H1 : H0 is false 30.69 < 0.0001
KBBS vs BS H0 : a = b = 1 and c = 0 vs H1 : H0 is false 13.08 0.00029

In order to assess if the distribution is appropriate, Figures 9a and 9b display
plots of the estimated pdfs and survival functions of the KBBS distribution and
its sub-models. We can conclude that the KBBS distribution is a very suitable
distribution to fit the data.

Secondly, we shall apply formal goodness-of-fit tests in order to verify which
distribution fits the data better. We consider the Cramér-Von Mises (W ∗) and
Anderson-Darling (A∗) statistics. In general, the smaller the values of the statis-
tics, W ∗ and A∗, the better the fit to the data. Let F (x;θ) be the cdf, where the
form of F is known but θ (a k-dimensional parameter vector, say) is unknown. To
obtain the statistics, W ∗ and A∗, we proceed as follows:
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Figure 9. (a) Estimated pdfs of the KBBS distribution and its sub-
models for breaking stress of carbon fibres data. (b) Empirical and
estimated survival functions of the KBBS distribution and its sub-
models for breaking stress of carbon fibres data.

(i) compute vi = F
(
xi; θ̂

)
, where the xi’s are in ascending order, yi =

Φ−1 (vi) is the standard normal quantile function and ui = Φ {(yi − y) /sy},
where y = n−1

∑n
i=1 yi and s2

y = (n− 1)−1
∑n
i=1 (yi − y)

2
;

(ii) compute

W 2 =

n∑
i=1

{ui − (2i− 1)/(2n)}2 + 1/(12n)

and

A2 = −n− n−1
n∑
i=1

{(2i− 1) log (ui) + (2n+ 1− 2i) log (1− ui)} ;

(iii) modifyW 2 intoW ∗ = W 2(1+0.5/n) andA∗ intoA∗ = A2
(
1 + 0.75/n+ 2.25/n2

)
.

For further details, the reader is referred to Chen and Balakrishnan [16]. The
values of the statistics, W ∗ and A∗, for the distributions are given in Table 4.
Thus, according to these formal goodness-of-fit tests, the KBBS distribution fits
the data better than its sub-models.

The MLEs (standard errors in parentheses) of the parameters of the LBS,
MOEBS, GBS, ExBS, McBS and McGa distributions are listed in Table 5. On the
basis of the statistics given in this table, the ExBS distribution yields a better fit
than others. Overall, by comparing the measures in Tables 4 and 5, we conclude
that the KBBS distribution outperforms all the distributions considered in Table
5. So, the proposed distribution can yield better fits than the LBS, MOEBS, GBS,



Table 4. Formal goodness-of-fit tests for breaking stress of carbon
fibres data.

Model Statistic
W ∗ A∗

KBBS 0.0498 0.3123
BBS 0.2115 1.2216
BS 0.4603 2.5896

ExBS, McBS and McGa distributions and therefore may be an interesting alter-
native to these distributions for modeling fatigue lifetime data sets. These results
illustrate the potentiality of the new distribution and the necessity for additional
shape parameters.

Table 5. MLEs (standard errors in parentheses) and the measures,
W ∗ and A∗, for breaking stress of carbon fibres data.

Model Estimates Statistic
W ∗ A∗

ExBS α̂ = 3.3418 β̂ = 0.5840 σ̂ = 0.7586 v̂ = −2.3019 λ̂ = 0.0179 0.0599 0.3825
(1.8483) (0.3675) (0.1922) (0.1145) (0.0024)

McBS α̂ = 3.8736 β̂ = 0.1487 â = 18.8160 η̂ = 35.5380 ĉ = 29.00002 0.0935 0.5223
(0.1444) (0.0923) (0.4067) (4.5916) (1.2795)

McGa α̂ = 28.5769 β̂ = 2.3734 â = 0.1240 b̂ = 48.0712 ĉ = 0.2335 0.0812 0.5173
(4.0265) (0.9942) (0.5479) (2.7540) (0.1044)

GBS α̂ = 0.5409 β̂ = 2.6613 κ̂ = 0.0009 0.0742 0.4176
(0.0249) (0.1687) (0.0001)

MOEBS α̂ = 0.4358 β̂ = 2.4723 η̂ = 1.1187 0.4453 2.5048
(0.0379) (0.1536) (0.2439)

LBS α̂ = 0.4410 β̂ = 2.0919 0.4192 2.3516
(0.0396) (0.1314)

The QQ plots of the normalized quantile residuals was introduced by Dunn and
Smyth [22] and more recently used by Cordeiro et al. [17]. Figures 10 and 11 show
the improved fit achieved using the KBBS distribution over other distributions.
We also emphasize the gain yielded by the KBBS distribution in relation to the
BS, BBS, McBS, McGa, LBS, ExBS, MOEBS and GBS distributions.

10.2. Aluminum alloy fatigue data. The data refer to the fatigue life of 6061 -
T6 aluminum coupons cut parallel to the direction of rolling and oscillated at eigh-
teen cycles per second. It was reported and analyzed by Birnbaum and Saunders
[12]. The KBBS distribution seems to be an appropriate distribution for fitting
these data. Table 6 lists the MLEs (standard errors in parentheses) of the para-
meters. The results indicate that the KBBS distribution has the smallest values
of the statistics (AIC and CAIC) in relation to its sub-models.
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Figure 10. QQ plot of the normalized quantile residuals for the dis-
tributions: (a) KBBS, (b) BBS and (c) BS for breaking stress of carbon
fibres data.

Table 6. MLEs (standard errors in parentheses) and information cri-
teria for aluminum alloy fatigue data.

Model α β a b c AIC BIC CAIC
KBBS 0.9654 2065.821 0.9161 38.5452 -58.0575 1501.1 1514.2 1502.3

(0.0809) (24.1268) (0.1069) (1.4887) (1.8296)
BBS 0.2817 1600.382 0.6278 1.2967 0 1508.0 1518.5 1508.9

(0.0114) (29.1456) (0.0457) (0.0926)
BS 0.3103 1336.377 1 1 0 1506.7 1512.0 1507.1

(0.0218) (40.7665)



A test for the need for the third skewness parameter in the KBBS distribution
can be based on the LR statistic described in Section 9. Applying the LR statistics
to these data, the results are listed in Table 7. The p-values show that the proposed
distribution yields the best fit to the data.

Table 7. LR statistics for aluminum alloy fatigue data.

Model Hypotheses Statistic w p-value
KBBS vs BBSH0 : c = 0 vs H1 : H0 is false 8.92 0.0028
KBBS vs BS H0 : a = b = 1 and c = 0 vs H1 : H0 is false 11.65 0.0086

In Figure 12a, we provide the histogram of the data and the fitted KBBS, BBS
and BS pdfs while in Figure 12b we display plots of the empirical and estimated
survival functions of the KBBS distribution and some of its sub-models. We note
that the KBBS distribution provides a satisfactory fit.

We can also perform formal goodness-of-fit tests in order to verify which distri-
bution fits the data better. We apply the Cramér-Von Mises (W ∗) and Anderson-
Darling (A∗) statistics. The values of the statistics, W ∗ and A∗, for the KBBS
distribution and its sub-models are given in Table 8. Thus, according to these
formal tests, the KBBS distribution fits the data better than its sub-models.

Table 8. Formal goodness-of-fit test for aluminum alloy fatigue data.

Model Statistic
W ∗ A∗

KBBS 0.0249 0.1719
BBS 0.0758 0.5169
BS 0.1022 0.6806

The MLEs (standard errors in parentheses) of the parameters of the LBS,
MOEBS, GBS, ExBS, McBS and McGa distributions are listed in Table 9. On the
basis of the statistics given in this table, the ExBS distribution yields a better fit
than others. Overall, by comparing the measures in Tables 8 and 9, we conclude
that the KBBS distribution outperforms all the distributions considered in Table
9. So, the proposed distribution can yield a better fit than the LBS, MOEBS,
GBS, ExBS, McBS and McGa distributions.

The QQ plots of the normalized quantile residuals in Figures 13 and 14 reveal
the improvement in the fit achieved by the KBBS distribution over the others.

11. Concluding remarks

The Birnbaum-Saunders (BS) distribution is widely used to model times to
failure for materials subject to fatigue. We proposed the Kummer beta generali-
zed Birnbaum-Saunders (KBBS) distribution to extend the BS distribution intro-
duced by Birnbaum and Saunders [11]. We provided a mathematical treatment
of the new distribution including expansions for the cdfs and pdfs. We derived



Table 9. MLEs (standard errors in parentheses) and the measures,
W ∗ and A∗, for aluminum alloy fatigue data.

Model Estimates Statistic
W ∗ A∗

ExBS α̂ = 2.7389 β̂ = 2.7518 σ̂ = 2.0811 v̂ = −7.2496 λ̂ = −0.0586 0.0292 0.2057
(0.4777) (0.9933) (1.3579) (0.4584) (1.7623)

McBS α̂ = 0.3624 β̂ = 1600.3540 â = 0.8001 η̂ = 18.4695 ĉ = 16.6618 0.0420 0.3119
(0.0898) (45.7822) (0.4383) (0.8048) (0.3104)

McGa α̂ = 21.2870 β̂ = 0.0134 â = 0.4765 b̂ = 0.9109 ĉ = 0.0007 0.0283 0.2038
(3.2584) (0.0021) (0.0249) (0.0397) (0.0002)

GBS α̂ = 10.2155 β̂ = 1514.9490 κ̂ = 0.00098 0.0308 0.2074
(2.4781) (32.1458) (0.00001)

MOEBS α̂ = 0.3101 β̂ = 1332.9960 η̂ = 1.0379 0.0999 0.6669
(0.0218) (48.3511) (0.1850)

LBS α̂ = 0.3109 β̂ = 1216.4778 0.4192 2.3516
(0.0220) (40.6364)

expansions for the ordinary and incomplete moments, generating function, mean
deviations and the moments of the order statistics. The estimation of parame-
ters is approached by the method of maximum likelihood and the observed in-
formation matrix was derived. We considered likelihood ratio (LR) statistics and
formal goodness-of-fit tests to compare the KBBS distribution with some of its
sub-models and non-nested models. Applications of the KBBS distribution to two
real data sets indicated that the new distribution provides consistently better fits
than its sub-models and other lifetime models. We hope that this generalization
may attract wider applications in the literature of the fatigue life distributions.



Appendix: Elements of the observed information matrix

The elements of the observed information matrix, J(θ), for the parameters α,
β, a, b and c are:
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where ∂2K
∂a2 , ∂2K

∂b2 , ∂2K
∂c2 , ∂2K

∂a∂b ,
∂2K
∂a∂c and ∂2K

∂b∂c are defined in Pescim et al. [63].
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Figure 11. QQ plot of the normalized quantile residuals for the dis-
tributions: (a) ExBS, (b) McBS, (c) McGa, (d) GBS, (e) MOEBS and
(f) LBS for breaking stress of carbon fibres data.
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Figure 12. (a) Estimated pdfs of the KBBS distribution and its sub-
models. (b) Empirical and estimated survival functions of the KBBS
distribution and its sub-models.
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Figure 13. QQ plot of the normalized quantile residuals for the dis-
tributions: (a) KBBS, (b) BBS and (c) BS for aluminum alloy fatigue
data.
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Figure 14. QQ plot of the normalized quantile residuals for the dis-
tributions: (a) ExBS, (b) McBS, (c) McGa, (d) GBS, (e) MOEBS and
(f) LBS for aluminum alloy fatigue data.


