
Hacettepe Journal of Mathematics and Statistics
Volume 43 (3) (2014), 511 – 527

A general class of estimators for the population
mean using multi-phase sampling with the

non-respondents
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Abstract

This paper addresses the problem of non-response when estimating the
population mean of the variable of interest. A general class of esti-
mators is suggested for the unknown population mean of the study
variable. Two vectors of the auxiliary information under multi-phase
sampling scheme are used in presence of non response. The asymptotic
variance of the proposed class is determined and compared with some
other existing estimators theoretically and numerically. It is shown
that the proposed class of estimators is more efficient than [13] and [17]
classes of estimators.
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1. Introduction

While collecting information through the sample surveys there may arise several
problems, one of the common problems is non-response. This happens especially
in the surveys conducted through mails. When research participants can not be
approached directly, they may refuse to acknowledge survey questionnaires sent
to them through mails. The estimates obtained from such incomplete surveys
are often biased. The data obtained from respondents group differs from that
of non-respondents group and thus affects data reliability. [6] suggested non-
respondents sub sampling scheme to handle this problem. In this scheme, initially
the information is collected from the respondent’s group through mail survey then
non-respondents are re-contacted by using sub sampling process and complete
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information is retrieved through personal interviews. The main objective in sam-
pling theory is to estimate the unknown population parameter of interest, and
the information about population characteristic of the auxiliary variables may or
may not be available. Of course the use of the auxiliary information increases
the efficiency of the estimates of the population parameter. Many authors have
proposed different estimators to estimate the population mean using the auxiliary
information with or without considering non-response see [19], [7], [14], [12], [9],
[13], [20], [8], [4], [16, 17], [10], [3] and references cited therein.

When information about the population characteristic of the auxiliary variable
(X) is unavailable, in such situation it is estimated from a large first phase sample
drawn from the population and then a smaller second phase sample is taken from
the first phase sample to estimate the population parameter of the variable of
interest (Y ). [10] has considered regression-cum-ratio estimator using single auxil-
iary variable in two phase sampling scheme in presence of non-response. [17] have
proposed regression-cum-ratio estimators considering different situations using two
auxiliary variables in two-phase sampling scheme in presence of non-response.

Multi-phase sampling is very useful scheme in a situation when the variable of
interest is very expensive and, connected with other cheaper auxiliary variables.
Limited literature is available about this technique see for instance [18], [11], [1],
[2] and [15].

This paper is inspired by the previous studies and the main objective is to pro-
pose a general class of estimators to estimate the unknown population mean Ȳ un-
der multi-phase sampling scheme using a vector X = (x1, . . . , xk)

t
with unknown

population mean vector X̄ = (X̄1, . . . , X̄k)t and another vector Z = (z1, . . . , zk)
t

with known or unknown population mean vector Z̄ = (Z̄1, . . . , Z̄k)t in the pres-
ence of non-response. This research will also explore that the optimal estimators
proposed in the generalized class are regression type estimators.

2. Notations and Background

Let us assume that P be a finite population of N distinct units. Let Y and X
be the study and the auxiliary variables having values yi and xi, i = (1, . . . , N).
Let X is correlated with Y and is used to estimate the unknown population mean
Ȳ . When the mean of the auxiliary variable X is available, the ratio, product
and regression estimators are used to increase the efficiency of the estimates of Ȳ .
When X̄ is unknown, two-phase sampling scheme is used, at first phase only X̄ is
estimated and the second phase is devoted for the estimation of Ȳ .

Let a large sample s′ of size m1 (m1 < N) is drawn by simple random sampling
without replacement (SRSWOR) to collect information on the auxiliary variable
X. It is assumed that all m1 units provide complete information on X. In the
second phase, a smaller sample s of size m2 from m1 units (m2 < m1) is drawn
by SRSWOR for obtaining information of the study variable Y . Suppose that
non-response is present in second phase, in this situation, a subset s1 of size
m′2 supplies information on Y and the remaining m∗2 = m2 −m′2 units are non-
respondents. Therefore, following the familiar technique of [6], a sub-sample s2r

of size r = m∗2/b, b > 1 is selected from the m∗2 non-response units where r would
be an integer otherwise must be rounded. Assuming that all r selected units show



full response on second call. Consequently, the whole population is said to be
stratified into two strata P1 and P2, where P1 is the stratum of respondents of
size N1 that would give response on first call at second phase whereas P2 is the
stratum of non-respondents of size N2 which would not respond on first call at
second phase but will cooperate on the second call. Obviously N1 and N2 are not
known in advance.

Now we can define a dummy variable u = (y, x, z) in the following presentation

ū∗ = d1ū1 + d2ū2r,

where

ū′ =

∑m1

i=1 ui
m1

, ū =

∑m2

i=1 ui
m2

, ū1 =

∑m′2
i=1 ui
m′2

, ū2r =

∑r
i=1 ui
r

and ui = (yi, xi, zi) having ith value. Also

d1 =
m′2
m2

and d2 =
m∗2
m2

.

Similarly we have

Ū = D1Ū1 +D2Ū2,

where

Ū1 =

∑N1

i=1 ui
N1

, Ū2 =

∑N2

i=1 ui
N2

, D1 =
N1

N
and D2 =

N2

N
.

The variance of ū∗ is given by

(2.1) Var(ū∗) = θ2S
2
u + ω2S

2
u(2) = S̃2

u,

where

S2
u =

∑N
i (ui − Ū)2

N − 1
, S2

u(2) =

∑N2

i (ui − Ū2)2

N2 − 1
,

θ1 =

(
1

m1
− 1

N

)
, θ2 =

(
1

m2
− 1

N

)
and ω2 =

N2(b− 1)

m2N
.

One can define the covariance as

(2.2) Cov(ū∗, v̄∗) = θ2Suv + ω2Suv(2) = S̃uv,

where

Suv =

∑N
i (ui − Ū)(vi − V̄ )

N − 1
and Suv(2) =

∑N2

i (ui − Ū2)(vi − V̄2)

N2 − 1
, (u = y, v = (x, z)) .

From now on, we shall consider that the Asymptotic Variance (AV) of the consid-
ered estimators obtained by using a first order Taylor series [21].

[6] proposed an estimator ȳ∗ for the population mean Ȳ when non response
occurs

(2.3) ȳ∗ = d1ȳ1 + d2ȳ2r.

[13] proposed the following regression estimator using double sampling scheme
when non-response occurs on Y and X both

(2.4) tOL = ȳ∗ + β̂∗yx (x̄′ − x̄∗) ,



where β̂∗yx =
s∗yx
s∗2x

is a sample estimate of the population regression coefficient βyx =

Syx
S2
x

with s∗yx =

∑m′2
i=1 yixi + b

∑r
i=1 yixi −m2ȳ

∗x̄∗

m2 − 1
and s∗2x =

∑m′2
i=1 x

2
i + b

∑r
i=1 x

2
i −m2x̄

∗2

m2 − 1
.

The asymptotic variance of tOL is obtained by using the Taylor linearization and
is given by

AV(tOL) ∼= θ1S
2
y + (θ2 − θ1)S2

y

(
1− ρ2

yx

)
+ ω2

{
S2
y(2) + β2

yxS
2
x(2) − 2βyxSyx(2)

}
,

where ρ2
yx =

S2
yx

S2
yS

2
x

.

[10] proposed the following regression-cum-ratio estimator using [13] regression
estimator

(2.5) tK = tOL

(
ax̄∗ + b

ax̄′ + b

)α(
ax̄′ + b

ax̄+ b

)β
,

where (a, b) are known constants and (α, β) are suitably chosen constants.
The minimum asymptotic variance of tK is given by

minAV(tK) ∼= θ1S
2
y + (θ2 − θ1)S2

y

(
1− ρ2

yx

)
+ ω2S

2
y(2)

(
1− ρ2

yx(2)

)
,

where ρ2
yx(2) =

S2
yx(2)

S2
y(2)S

2
x(2)

.

[17] considered two auxiliary variables x and z in four different situations. We
consider only two of those situations which are in our opinion the most interesting
and related to our proposed class.

Situation I: – X̄ unknown and Z̄ known

When the population mean of the first auxiliary variable x is unknown and the
population mean of the second auxiliary variable z is known. Also non-response
occurs on both the study and the auxiliary variables. The proposed estimator is
given by

(2.6) tSK(1) =
[
ȳ∗ + β̂∗yx(x̄′ − x̄∗)

] Z̄

Z̄ + α(z̄∗ − Z̄)
,

where α is a suitably chosen constant.
The minimum asymptotic variance of the estimator tSK(1) is given by

minAV(tSK(1)) ∼= AV(tOL)− M∗2

D∗
,

where

M∗ = {θ2S
2
zβyz + ω2S

2
z(2)βyz(2)} − βyx{(θ2 − θ1)S2

zβxz + ω2S
2
z(2)βxz(2)},

D∗ = θ2S
2
z + ω2S

2
z(2).

Situation II: – X̄ and Z̄ both unknown



When the population means X̄ and Z̄ are unknown. Also non-response occurs
on the study and the auxiliary variables. The estimator is given by

(2.7) tSK(2) =
[
ȳ∗ + β̂∗yx(x̄′ − x̄∗)

] z̄′

z̄′ + γ(z̄∗ − z̄′)
,

where γ is a suitably chosen constant.
The minimum asymptotic variance of tSK(2) is given by

minAV(tSK(2)) ∼= AV(tOL)− N∗2

D∗
,

where

N∗ =
{

(θ2 − θ1)S2
zβyz + ω2S

2
z(2)βyz(2)

}
− βyx

{
(θ2 − θ1)S2

zβxz + ω2S
2
z(2)βxz(2)

}
.

It is important to note that our proposed general class is an extension of regression
estimator. We consider specifically regression estimators because our consideration
is to show that regression estimator(s) perform better than regression-cum-ratio
estimator(s). Therefore, we expect that our proposed class of estimators perform
better than [17] class.

3. Multi-Phase Scheme

By generalizing the multi-phase sampling scheme proposed by [2], we construct

a sampling design with two vectors X = (x1, . . . , xk)
t

and Z = (z1, . . . , zk)
t

of
auxiliary variables in such a way that at each ith and (i+ 1)th phase, the samples
si and si+1 of sizes mi (mi < N) and mi+1 (mi+1 < mi) are drawn by SRSWOR.
At the ith phase, the variables xi and zi are observed while at last phase, the
auxiliary variables as well as y are measured, according to Table 1.

Table 1. Suggested multi-phase sampling design

1 2 3 . . . i . . . k (k + 1)

m1 m2 m3 . . . mi . . . mk mk+1

(X1, Z1) (X1, Z1)

(X2, Z2) (X2, Z2)

(X3, Z3)
. . .

(Xi−1, Zi−1)

(Xi, Zi)
. . .

(Xk−1, Zk−1)

(Xk, Zk) (Xk, Zk)

Y



4. General Class of Estimators

Using this multi phase sampling design, we propose a general class of estimators
for the population mean Ȳ when non response can occur on the study variable as
well as on the auxiliary vectors.

(4.1) tkk = g
(
ȳ∗,wt

)
,

where

w =
(
x̄

(1)
1 , z̄

(1)
1 , x̃

(2)
1 , z̃

(2)
1 , . . . , x̄

(k)
k , z̄

(k)
k , x̃

(k+1)
k , z̃

(k+1
k

)t
and g is a function satisfying the following regularity conditions

C1: g : S→ R where S ⊆ R4k+1 is a convex and bounded set containing the

point
(
Ȳ ,Wt

)
, with W = E (w) =

(
X̄1, X̄1, Z̄1, Z̄1, . . . , X̄k, X̄kZ̄k, Z̄k

)t
;

C2: it is continuous and bounded in S;
C3: its first and second partial derivatives exist and are continuous and

bounded in S;
C4: g

(
ȳ∗,Wt

)
= ȳ∗.

In order to determine the minimum asymptotic variance (AV) of the class tkk, let
us indicate

g0 =
∂g (ȳ∗,wt)

∂ȳ∗

∣∣∣∣
(ȳ∗,wt)=(Ȳ ,Wt)

and

gi =
∂g (ȳ∗,wt)

∂wi

∣∣∣∣
(ȳ∗,wt)=(Ȳ ,Wt)

,

the first partial derivatives of g with respect to the component ȳ∗ and wi, i =
1, 2, . . . , k, of the vector w.

Expanding tkk at the point
(
Ȳ ,Wt

)
in a first order Taylor’s series, we get

(4.2)

tkk ∼= ȳ∗ +

k∑
i=1

ηi

(
X̄i − x̄(i)

i

)
+

k∑
i=1

ξi

(
X̄i − x̃(i+1)

i

)
+

k∑
i=1

φi

(
Z̄i − z̄(i)

i

)
+

k∑
i=1

ϕi

(
Z̄i − z̃(i+1)

i

)
,

where first k indicates the general class and second k for having k auxiliary vari-
ables in the estimator tkk.
Further, consider ũi = δuū

∗
i + δ̄uūi with δ̄u = 1 − δu where δu is an indicator

function taking value δu = 1 when non-response occurs and 0 otherwise, and
ui = (xi, zi) , i = 1, . . . , k.



4.1. Situation 1: X̄ unknown and Z̄ known. In this situation it is assumed
that the population mean vector X̄ is unknown but the mean vector Z̄ is known.
Since X̄ is unknown so it is necessary to impose a constraint ηi = −ξi and for
computational reasons it may be useful to set (φi + ϕi) = ψi. We can write
Eq.(4.2) as

(4.3) t1k ∼= ȳ∗+

k∑
i=1

ξi

(
x̄

(i)
i − x̃

(i+1)
i

)
+

k∑
i=1

ϕi

(
z̄

(i)
i − z̃

(i+1)
i

)
+

k∑
i=1

ψi

(
Z̄i − z̄(i)

i

)
.

We can write (4.3) in a generalized vector form as

(4.4) t1k ∼= ȳ∗ + (ν̄′ − ν̃)
t
ξ +

(
Z̄ − z̄′

)
ψ,

where

ν̄′ =
(
x̄

(1)
1 , z̄

(1)
1 , . . . , x̄

(k)
k , z̄

(k)
k

)t
,

ν̃ =
(
x̃

(2)
1 , z̃

(2)
1 , . . . , x̃

(k+1)
k , z̃

(k+1)
k

)t
,

ξ = (ξ1, ϕ1, . . . , ξk, ϕk)
t
,

z̄′ =
(
z̄

(1)
1 , . . . , z̄

(k)
k

)t
and

ψ = (ψ1, . . . , ψk)
t
.

The asymptotic variance of the proposed class t1k

(4.5) AV(t1k) ∼= Var(ȳ∗) + ξtS̃xzξ + ψtS̄ z̄z̄ψ − 2
(
ξtS̃yxz + ψtS̄yz̄ − ξ

tS̄xzz̄ψ
)
,

where

Var(ȳ∗) = S̃2
y = θk+1S

2
y + ωk+1S

2
y(2),

S̃xz = E
[
(ν̄′ − ν̃)(ν̄′ − ν̃t

]
=

[
S̃xx S̃xz
S̃xz S̃zz

]
,

S̃yxz = E
[
(ȳ∗ − Ȳ )(ν̄′ − ν̃)

]
=
[
S̃yx S̃yz

]t
,

S̄ z̄z̄ = E
[
(z̄′ − Z̄)(z̄′ − Z̄)t

]
,

S̄yz̄ = E
[
(ȳ∗ − Ȳ )(z̄′ − Z̄)

]
=
[
θ1Syz1 θ2Syz2 . . . θkSyzk

]t
,

and

S̄xzz̄ =
[
Sxz̄ Szz̄

]t
.

The details of above mentioned matrices are given in Appendix A.
Minimizing AV(t1k) w.r.t ξ and ψ leads to optimum vector

ψ =
{
S̄ z̄z̄ − S̄

t
xzz̄S̃

−1

xz S̄xzz̄

}−1 {
S̄yz̄ − S̄xzz̄S̃

−1

xz S̃yxz

}
= ψ(o)(say),

and

ξ = S̃
−1

xz

(
S̃yxz − S̄xzz̄

{
S̄ z̄z̄ − S̄

t
xzz̄S̃

−1

xz S̄xzz̄

}−1 {
S̄yz̄ − S̄xzz̄S̃

−1

xz S̃yxz

})
= ξ(o)(say).



Since it is not easy to express minimum AV (t1k) in close form, in the following
sub sections, we can express the class t1k in two sub classes t1k(1) and t1k(2) with
two and three phases.

4.1.1. Two Phase. Using Eq.(4.3), let consider (X1, Z1) auxiliary variables under
two-phase sampling scheme assuming X̄1 unknown and Z̄1 known

(4.6) t1k(1)
∼= ȳ∗ + ξ1

(
x̄

(1)
1 − x̃

(2)
1

)
+ ϕ1

(
z̄

(1)
1 − z̃(2)

1

)
+ ψ1

(
Z̄1 − z̄(1)

1

)
.

The asymptotic variance of t1k(1) can be written as

(4.7)

AV (t1k(1)) ∼= S̃2
y+ξ2

1 S̃
2
x1

+ϕ2
1S̃

2
z1+ψ2

1S̄
2
z1−2ξ1S̃yx1−2ϕ1S̃yz1−2ψ1S̄yz1+2ξ1ϕ1S̃x1z1 .

Minimizing Eq.(4.7) w.r.t (ξ1, ϕ1, ψ), one can get

ξ1 =
(
S̃2
x1
S̃2
z1 − S̃

2
x1z1

)−1 (
S̃2
z1 S̃yx1 − S̃x1z1 S̃yz1

)
= ξo1(say),

ϕ1 =
(
S̃2
x1
S̃2
z1 − S̃

2
x1z1

)−1 (
S̃2
x1
S̃yz1 − S̃x1z1 S̃yx1

)
= ϕo1(say)

and

ψ1 =
(
S̄2
z1

)−1
S̄yz1 = ψo1(say).

The minimum asymptotic variance of t1k(1) is given by

(4.8) minAV(t1k(1)) ∼= S̃2
y −

[
S̃2
z1 S̃

2
yx1

+ S̃2
x1
S̃2
yz1 − 2S̃yx1

S̃yz1 S̃x1z1

S̃2
x1
S̃2
z1 − S̃2

x1z1

]
−
S̄2
yz1

S̄2
z1

,

(4.9) minAV(t1k(1)) ∼= S̃2
y

[
1−

(
ρ̃2
yx1

+ ρ̃2
yz1 − 2ρ̃yx1 ρ̃yz1 ρ̃x1z1

1− ρ̃2
x1z1

)
− ρ̄2

yz1

]
,

where ρ̃2
yu1

=
S̃2
yu1

S̃2
y S̃

2
u1

, u1 = (x1, z1) and ρ̃2
x1z1 =

S̃2
x1z1

S̃2
x1
S̃2
z1

.

(4.10) minAV(t1k(1)) ∼= S̃2
y

[
1− R̃2

y.x1z1 − ρ̄
2
yz1

]
where R̃y.x1z1 is a multiple correlation coefficient.

4.1.2. Three Phase. In this case, we take (X1, X2, Z1, Z2) auxiliary variables us-
ing three-phase sampling, assuming population means (X̄1, X̄2) unknown and
(Z̄1, Z̄2) known

t1k(2)
∼= ȳ∗ + ξ1

(
x̄

(1)
1 − x̃

(2)
1

)
+ ξ2

(
x̄

(2)
2 − x̃

(3)
2

)
+ ϕ1

(
z̄

(1)
1 − z̃(2)

1

)
+ϕ2

(
z̄

(2)
2 − z̃(3)

2

)
+ ψ1

(
Z̄1 − z̄(1)

1

)
+ ψ2

(
Z̄2 − z̄(2)

2

)
.(4.11)



The asymptotic variance of t1k(2)

AV(t1k(2)) ∼= S̃2
y +

2∑
j=1

ξ2
i S̃

2
xj +

2∑
j=1

ϕ2
j S̃

2
zj − 2

 2∑
j=1

ξjS̃yxj +

2∑
j=1

ϕjS̃yzj +

2∑
j=1

ψjS̄yzj


+

2∑
j=1

ψ2
j S̄

2
zj + 2

2∑
j=1

ξjϕjS̃xjzj + 2
(
ψ1ψ2S̄z1z2 + ξ1ψ2

¯̄Sx1z2 + ϕ1ψ2
¯̄Sz1z2

)
.(4.12)

The AV of t1k(2) is minimum when

ξ2 =
(
S̃2
x2
S̃2
z2 − S̃

2
x2z2

)−1 (
S̃2
z2 S̃yx2

− S̃x2z2 S̃yz2

)
= ξo2(say),

ϕ2 =
(
S̃2
x2
S̃2
z2 − S̃

2
x2z2

)−1 (
S̃2
x2
S̃yz2 − S̃x2z2 S̃yx2

)
= ϕo2(say),

ξ1 = E−1A = ξo1(say),

ϕ1 = E−1B = ϕo1(say),

ψ1 = E−1C = ψo1(say)

and

ψ2 = E−1D = ψo2(say).

The details of (A,B,C,D,E) are given in Appendix B.
The resulting minimum asymptotic variance of t1k(2) is given by

(4.13) minAV(t1k(2)) = S̃2
y

(
1− R̄2

y.x1z1z̄1z̄2 − R̃
2
y.x2z2

)
,

where R̄y.x1z1z̄1z̄2 and R̃y.x2z2 are the multiple correlation coefficients.

4.2. Situation 2: X̄ and Z̄ both unknown. In this situation it is assumed
that the population mean vectors X̄ and Z̄ are unknown. From the expression
(4.3), we have

(4.14) t2k ∼= ȳ∗ +

k∑
i=1

ξi

(
x̄

(i)
i − x̃

(i+1)
i

)
+

k∑
i+1

ϕi

(
z̄

(i)
i − z̃

(i+1)
i

)
.

We can write Eq.(4.14) in a generalized vector form as

(4.15) t2k ∼= ȳ∗ + (ν̄′ − ν̃) ξ.

The asymptotic variance of t2k is

(4.16) AV(t2k) ∼= Var(ȳ∗) + ξtS̃xzξ − 2ξtS̃yxz,

where (ξ, S̃xz, S̃yxz) are defined earlier in Situation 1.
Minimization of AV(t2k) w.r.t gxz leads to optimum vector

ξo =

[
ξo

ϕo

]
=

[
(S̃xxS̃zz − S̃

t

xzS̃xz)
−1(S̃zzS̃yx − S̃xzS̃yz)

(S̃xxS̃zz − S̃
t

xzS̃xz)
−1(S̃xxS̃yz − S̃xzS̃yx)

]
.



Replacing ξo in Eq.(4.16), one can get the optimal estimator in the class which
attains the minimum asymptotic variance bound given by

(4.17) minAV(t2k) ∼= S̃2
y

[
1− R̃

2

y.xz

]
,

where R̃
2

y.xz is a vector of the squared multiple correlation coefficients of Y on X
and Z and is explained in detail in Appendix C.

4.2.1. Two Phase. Now suppose that both X1 and Z1 have unknown means, in
this case expression (4.14) can be expressed as

(4.18) t2k(1)
∼= ȳ∗ + ξ1

(
x̄

(1)
1 − x̃

(2)
1

)
+ ϕ1

(
z̄

(1)
1 − z̃(2)

1

)
.

The asymptotic variance of t2k(1) can be written as

(4.19) AV(t2k(1)) ∼= S̃2
y + ξ2

1 S̃
2
x1

+ ϕ2
1S̃

2
z1 − 2ξ1S̃yx1

− 2ϕ1S̃yz1 + 2ξ1ϕ1S̃x1z1 .

Now minimizing (4.19) w.r.t (ξ1, ϕ1), we have

ξ1 =
(
S̃2
x1
S̃2
z1 − S̃

2
x1z1

)−1 (
S̃2
z1 S̃yx1

− S̃x1z1 S̃yz1

)
= ξo1(say)

and

ϕ1 =
(
S̃2
x1
S̃2
z1 − S̃

2
x1z1

)−1 (
S̃2
x1
S̃yz1 − S̃x1z1 S̃yx1

)
= ϕo1(say).

One can write minimum AV of t2k(1) as

(4.20) minAV(t2k(1)) ∼= Var(ȳ∗)−

[
S̃2
z1 S̃

2
yx1

+ S̃2
x1
S̃2
yz1 − 2S̃yx1

S̃yz1 S̃x1z1

S̃2
x1
S̃2
z1 − S̃2

x1z1

]
,

(4.21) minAV (t2k(1)) = S̃2
y

(
1− R̃2

y.x1z1

)
,

where R̃2
y.x1z1 is explained earlier in the Section (4.1.1).

4.2.2. Three Phase. Now consider the same auxiliary variables as taken earlier in
Section (4.1.2) with unknown means

(4.22)
t2k(2)

∼= ȳ∗ + ξ1

(
x̄

(1)
1 − x̃

(2)
1

)
+ ξ2

(
x̄

(2)
2 − x̃

(3)
2

)
+ ϕ1

(
z̄

(1)
1 − z̃(2)

1

)
+ ϕ2

(
z̄

(2)
2 − z̃(3)

2

)
.

The asymptotic variance of t2k(2) can be expressed as

(4.23)

AV(t2k(2)) ∼= S̃2
y+

2∑
j=1

ξ2
i S̃

2
xj+

2∑
j=1

ϕ2
j S̃

2
zj−2

 2∑
j=1

ξjS̃yxj +

2∑
j=1

ϕjS̃yzj

+2
2∑
j=1

ξjϕjS̃xjzj .



Now minimizing (4.23) w.r.t (ξ1, ξ2, ϕ1, ϕ2), we have

ξo =


ξo1
ξo2
ϕo1
ϕo2

 =



(
S̃2
x1
S̃2
z1 − S̃

2
x1z1

)−1 (
S̃2
z1 S̃yx1

− S̃x1z1 S̃yz1

)
(
S̃2
x2
S̃2
z2 − S̃

2
x2z2

)−1

S̃2
z2 S̃yx2

− S̃x2z2 S̃yz2(
S̃2
x1
S̃2
z1 − S̃

2
x1z1

)−1 (
S̃2
x1
S̃yz1 − S̃x1z1 S̃yx1

)
(
S̃2
x2
S̃2
z2 − S̃

2
x2z2

)−1 (
S̃2
x2
S̃yz2 − S̃x2z2 S̃yx2

)


.

By replacing (ξo1 , ξ
o
2 , ϕ

o
1, ϕ

o
2) in (4.23), one can get the optimal estimator in the

class which attains the minimum asymptotic variance bound given by:

(4.24)

minAV(t2k(2)) ∼= S̃2
y −

(
S̃2
z1 S̃

2
yx1

+ S̃2
x1
S̃2
yz1 − 2S̃yx1 S̃yz1 S̃x1z1

S̃2
x1
S̃2
z1 − S̃2

x1z1

)

−

(
S̃2
z2 S̃

2
yx2

+ S̃2
x2
S̃2
yz2 − 2S̃yx2

S̃yz2 S̃x2z2

S̃2
x2
S̃2
z2 − S̃2

x2z2

)
,

(4.25) minAV(t2k(2)) ∼= S̃2
y

(
1− R̃2

y.x1z1 − R̃
2
y.x2z2

)
,

where R̃2
y.x1z1 and R̃2

y.x2z2 are the squared multiple correlation coefficients.
From Eq.(4.10), Eq.(4.13), Eq.(4.21) and Eq.(4.25), we can accomplish that(
t1k(1), t1k(2), t2k(1) and t2k(2)

)
are regression type estimators in their optimal

cases.

5. Numerical Comparison

In order to illustrate the gain in efficiency for the best estimator in the two
situations discussed in previous section, we carried out a numerical study using
the Population Census Report of Sialkot District (1998), Pakistan and this data
is earlier used by [5]. Each variable is taken from rural locality. The description
of variables is given below

Variable Description
Y Literacy Ratio
X1 Population of primary but below matric
X2 Population of matric and above
Z1 Population of 18 years old and above
Z2 Population of women 15-49 years old

We compute the Percent Relative Efficiency (PRE) of the considered estimators
with respect to the [6] estimator ȳ∗, for different values of b, as

PRE(t•) =
Var(ȳ∗)

AV(t•)
×100,

where t• =
(
tOL, tK, tSK(1), tSK(2), t1k(1), t1k(2), t2k(1), t2k(2)

)
.



Table 2. PREs of the considered classes with respect to ȳ∗

for different values of b

b

m1 m2 Situation
2 3 4 5

tOL 119.26 121.72 123.22 124.24
tK 120.52 123.69 125.65 126.98

tSK(1) 119.56 123.05 125.48 127.24
100 tSK(2) 121.34 124.98 127.31 128.91

t1k(1) 128 .95 131 .98 133 .91 135 .22
t2k(1) 124.78 128.71 131.20 132.92

160
tOL 116.96 120.11 122.00 123.26
tK 118.27 122.15 124.49 126.06

tSK(1) 117.02 121.04 123.85 125.88
120 tSK(2) 118.86 123.26 126.01 127.87

t1k(1) 127 .18 130 .87 133 .11 134 .62
t2k(1) 121.95 126.79 129.77 131.79
tOL 121.50 123.45 124.64 125.44
tK 122.81 125.48 127.11 128.22

tSK(1) 122.29 125.43 127.55 129.05
100 tSK(2) 123.90 127.02 129.00 130.36

t1k(1) 130 .82 133 .42 135 .07 136 .20
t2k(1) 127.69 130.98 133.06 134.50

180
tOL 119.78 122.27 123.74 124.72
tK 121.16 124.38 126.31 127.59

tSK(1) 120.24 123.90 126.35 128.08
120 tSK(2) 122.07 125.80 128.10 129.66

t1k(1) 129 .54 132 .65 134 .55 135 .82
t2k(1) 125.57 129.59 132.06 133.72
tOL 123.36 124.87 125.79 126.40
tK 124.71 126.95 128.31 129.24

tSK(1) 124.72 127.49 129.31 130.58
100 tSK(2) 126.03 128.71 130.39 131.54

t1k(1) 132 .37 134 .59 136 .01 136 .99
t2k(1) 130.12 132.85 134.59 135.80

200
tOL 122.14 124.05 125.18 125.92
tK 123.58 126.23 127.80 128.85

tSK(1) 123.19 126.41 128.50 129.94
120 tSK(2) 124.77 127.91 129.83 131.12

t1k(1) 131 .51 134 .12 135 .72 136 .80
t2k(1) 128.64 131.93 133.95 135.31



Table 3. PREs of the proposed class with respect to ȳ∗

for different values of b

b
m1 m2 m3 Situation 2 3 4 5

t1k(2) 136.32 141.78 145.44 148.04100
t2k(2) 133.54 139.50 143.46 146.26

t1k(2) 136.50 142.56 146.57 149.40200 140 110
t2k(2) 133.32 139.95 144.32 147.36

t1k(2) 136.72 143.41 147.79 150.86120
t2k(2) 133.11 140.46 145.24 148.56

t1k(2) 137.16 141.93 145.11 147.36100
t2k(2) 135.34 140.44 143.81 146.17

t1k(2) 137.45 142.72 146.19 148.62220 160 110
t2k(2) 135.36 141.02 144.70 147.27

t1k(2) 137.78 143.58 147.34 149.97120
t2k(2) 135.40 141.64 145.66 148.43

In Table 2, we assume 40% non-response rate of the total population N = 268
(assuming last 107 units as non-respondents for second phase) and the numerical
results of the estimators t1k(1) and t2k(1) with different combinations of sample
sizes m1 and m2 are given. To compute PREs of the estimators t1k(2) and t2k(2),
we consider 40% and 30% non-response rates of the total population at first and
second phase (assuming last 80 units as non-respondents for third phase). The
results are provided in Table 3 for different choices of sample sizes m1, m2 and
m3.

In Tables 2 and 3, it is seen that the PREs of all considered estimators are
higher than ȳ∗ due to inclusion of the auxiliary information. Also, the PREs of all
estimators increase with the increase of inverse sampling rate b. In Table 2, the es-
timators (tOL, tK) with single auxiliary variable and (tSK(1), tSK(2)) with two aux-
iliary variables perform almost similar but the proposed estimators (t1k(1), t2k(1))

show higher efficiency. It is also seen that the regression estimators
(
t1k(1), t2k(1)

)
perform better than the regression-cum-ratio estimators

(
tSK(1), tSK(2)

)
.

When we consider more auxiliary variables and phases for t1k and t2k in Table
3, it is observed that they have considerable increase in efficiency. Moreover, it is
observed that when we increase sample sizes, the PREs of all considered estimators
also increase which confirms the large sample theory aspect.

It is also expected that the first proposed class t1k shows always higher efficiency
than the second class t2k, because we are using more auxiliary information in
Situation 1. Hence, we can conclude that the estimator t1k is the best choice if Z̄
is known and, of course, t2k is to use when Z̄ is unknown.



6. Conclusions

In this paper we propose a general class of estimators for the estimation of
population mean Ȳ . For this we consider multi phase sampling scheme when aux-
iliary information is available. The effects of non-response on the study and on the
auxiliary variables are discussed in detail. We determine the asymptotic variance
for the proposed classes. To compare the efficiency of the suggested ones with
other existing estimators in the literature, [6] estimator is used. It is noted that
the performance of the proposed estimator t1k is better than the other considered
estimators. From the numerical analysis one can draw the conclusion that regres-
sion type estimators (t1k, t2k) always perform better if compared to regression-
cum-ratio estimators

(
tSK(1), tSK(2)

)
. However, our proposed generalized class of

estimators is more efficient, in terms of asymptotic variance, if compared to all
previous estimators available in the literature.

Acknowledgement

The authors wish to thank anonymous referees for their careful reading and
constructive suggestions which led to improvement over an earlier version of the
paper. Thanks to the Department of Statistical Sciences, University of Padova,
Italy and the Higher Education Commission (HEC), Islamabad, Pakistan for their
logistic and financial support for this research.

Appendix A

The details of matrices in Eq.(4.5) are described here

S̄ z̄z̄ = E
[
(z̄′ − Z̄)(z̄′ − Z̄)t

]
=


θ1S

2
z1 θ1Sz1z2 . . . θ1Sz1zk

θ1Sz1z2 θ2S
2
z2 . . . θ2Sz2zk

...
...

. . .
...

θ1Sz1zk θ2Sz2zk . . . θkS
2
zk

 ,
S̄xzz̄ =

[
Sxz̄ Szz̄

]t
,

where

Sxz̄ =


0 (θ2 − θ1)Sx1z2 0 . . . 0
0 0 (θ3 − θ2)Sx2z3 . . . 0
...

...
...

. . .
...

0 0 0 . . . (θk − θk−1)Sxk−1zk

0 0 0 . . . 0

 ,

Szz̄ =


0 (θ2 − θ1)Sz1z2 0 . . . 0
0 0 (θ3 − θ2)Sz2z3 . . . 0
...

...
...

. . .
...

0 0 0 . . . (θk − θk−1)Szk−1zk

0 0 0 . . . 0

 .

S̃xz = E
[
(ν̄′ − ν̃)(ν̄′ − ν̃t

]
=

[
S̃xx S̃xz
S̃xz S̃zz

]
,



Now using the dummy variable u for the following representations

S̃uu = diag(S̃2
ui),

where

S̃2
ui = (θi+1 − θi)S2

ui + ωi+1S
2
ui(2),

and

S̃yu =
[
S̃yu1

S̃yu2
. . . S̃yuk

]t
,

where

S̃yui = (θi+1 − θi)Syui + ωi+1Syui(2),

with

ui = (xi, zi), i = 1, . . . , k

θi =

(
1

mi
− 1

N

)
, θi+1 =

(
1

mi+1
− 1

N

)
, ωi+1 =

Ni+1(b− 1)

mi+1N
, b > 1.

S̃uv = diag(S̃uivi), (ui = xi, vi = zi).

where

S̃uivi = (θi+1 − θi)Suivi + ωi+1Suivi(2).

Appendix B

Minimizing Eq.(4.12), the following terms are obtained

A = S̃2
z1 S̄

2
z1 S̄

2
z2 S̃yx1

− S̄2
z1 S̄

2
z2 S̃yz1 S̃x1z1 − S̃2

z1 S̄
2
z1 S̃yz2

¯̄Sx1z2 − S̃2
z1 S̃yx1

S̄2
z1z2

− S̄2
z1 S̃yx1

¯̄S2
z1z2 + S̄2

z1 S̃yz1
¯̄Sx1z2

¯̄Sz1z2 + S̃2
z1 S̄yz1

¯̄Sx1z2 S̄z1z2

+ S̄2
z1 S̄yz2 S̃x1z1

¯̄Sz1z2 + S̃yz1 S̃x1z1 S̄
2
z1z2 − S̄yz1 S̃x1z1 S̄z1z2

¯̄Sz1z2 ,

B = S̃2
x1
S̄2
z1 S̄

2
z2 S̃yz1 − S̄

2
z1 S̄

2
z2 S̃x1z1 S̃yx1 − S̃2

x1
S̄2
z1

¯̄Sz1z2 S̄yz2 − S̃2
x1
S̄2
z1z2 S̃yz1

− S̄2
z1

¯̄S2
x1z2 S̃yz1 + S̄2

z1
¯̄Sx1z2

¯̄Sz1z2 S̃yx1
+ S̃2

x1
S̄z1z2

¯̄Sz1z2 S̄yz1

+ S̄2
z1 S̃x1z1

¯̄Sx1z2 S̄yz2 + S̃x1z1 S̄
2
z1z2 S̃yx1

− S̃x1z1 S̄z1z2
¯̄Sx1z2 S̄yz1 ,

C = S̃2
x1
S̃2
z1 S̄

2
z2 S̄yz1 − S̃

2
x1
S̃2
z1 S̄z1z2 S̄yz2 − S̃

2
x1

¯̄S2
z1z2 S̄yz1 − S̃

2
z1

¯̄S2
x1z2 S̄yz1

− S̄2
z2 S̃

2
x1z1 S̄yz1 + S̃2

x1z1 S̄z1z2 S̄yz2 + S̃2
z1

¯̄Sx1z2 S̄z1z2 S̃yx1 + S̃2
x1
S̄z1z2

¯̄Sz1z2 S̃yz1

− S̃2
x1z1 S̄z1z2

¯̄Sz1z2 S̃yx1
− S̃2

x1z1 S̄z1z2
¯̄Sx1z2 S̃yz1 + 2S̃2

x1z1
¯̄Sz1z2

¯̄Sx1z2 S̄yz1 ,

D = S̃2
x1
S̃2
z1 S̄

2
z1 S̄yz2 − S̃

2
x1
S̃2
z1 S̄z1z2 S̄yz1 − S̃

2
x1
S̄2
z1

¯̄Sz1z2 S̃yz1 − S̃2
z1 S̄

2
z1

¯̄Sx1z2 S̃yx1

− S̄2
z1 S̃

2
x1z1 S̄yz2 + S̃2

x1z1 S̄z1z2 S̄yz1 + S̄2
z1 S̃x1z1

¯̄Sz1z2 S̃yx1
+ S̄2

z1 S̃x1z1
¯̄Sx1z2 S̃yz1 ,

E = S̃2
x1
S̃2
z1 S̄

2
z1 S̄

2
z2 − (S̃2

x1
S̃2
z1 S̄

2
z1z2 + S̃2

x1
S̄2
z1

¯̄S2
z1z2 + S̃2

z1 S̄
2
z1

¯̄S2
x1z2

+ S̄2
z1 S̄

2
z2 S̃

2
x1z1) + S̃2

x1z1 S̄
2
z1z2 + 2S̄2

z1 S̃x1z1
¯̄Sx1z2

¯̄Sz1z2 .



Appendix C

From (4.17), the vector of the squared multiple correlation coefficient R̃
2

y.xz is
explained as

R̃
2

y.xz = R̃2
y.x1z1 + R̃2

y.x2z2 + · · ·+ R̃2
y.xκzκ ,

where

R̃2
y.xizi =

(
ρ̃2
yxi + ρ̃2

yzi − 2ρ̃yxi ρ̃yzi ρ̃xizi
1− ρ̃2

xizi

)
, (i = 1, . . . , κ),

ρ̃2
yui =

S̃2
yui

S̃2
y S̃

2
ui

, ui = (xi, zi),

and

ρ̃2
xizi =

S̃2
xizi

S̃2
xi S̃

2
zi

.
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