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On A Graph of Submodules 

Ali Öztürk*1 ,Tahire Özen Öztürk1 and Erol Yılmaz1 

Abstract 

Let S be an associative ring with identity and N be a right S-module. We define the non-maximal graph (N) of N 
with all non-trivial submodules of N as vertices and two distinct vertices A, B are adjacent if and only if A + B is not 
a maximal submodule of N. In this paper, we investigate the connectivity, completeness, girth, domination number, 
cut edges, perfectness and r-partite of (N). Moreover, we give connections between the graph-theoretic properties 
of (N) and algebraic properties of N.  

Keywords: Non-maximal submodule, connected and complete graph, clique and chromatic number. 

 

1. INTRODUCTION 

Throughout this paper, S will be an associative ring 
with identity. Let N be a right S-module. If X is a 
proper submodule of N and there exists no Y such that 
X < Y < N, then X is called a maximal submodule of 
N. If X is not a maximal submodule of N, then X = N 
or there exists Y < N such that X < Y < N. (See [2] for 
unknown concepts in module theory.) 

An undirected graph G is defined as the pair (V(G), 
E(G)), where V(G) is the set of vertices of G and E(G) 
is the set of edges of G which have no orientation. For 
two distinct vertices A and B, A   B means that A and 
B are adjacent. By the null-graphs we mean that with 
no edges. If |V(G)|≥ 2, a path from A to B is a series of 
adjacent vertices A  V1    V2  Vn  B. The dis-
tance between two vertices A and B in a graph is the 
number of edges in a shortest path connecting them and 
denoted by d(A,B). If there is no path between A and 
B, d(A,B) = . diam (G) = sup d(A,B)  :  A,B V(G) 
is a diameter of a graph G. A graph is connected if for 
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any vertices A and B there is a path between A and B. 
If there is no path, then G is disconnected. The girth of 
G is the length of the shortest cycle of G and denoted 
by g(G). A complete graph G is a graph with an edge 
between every two vertices. A clique of a graph is its 
maximal complete subgraph and the number of vertices 
in the largest clique is called the clique number, de-
noted by w(G). D  G is a dominating set if for all A  
V(G), there exists at least one B  D such that A and B 
are adjacent. The domination number, (G), of G is the 
minimum cardinality of a dominating set of G. The 
chromatic number, (G), is the minimum number of 
colours which can be assigned to the vertices of G such 
that every two adjacent vertices have different colours. 
If (G) = w(G), then G is called a perfect graph. (See 
[3] for unknown concepts in graph theory.) 

We define the non-maximal graph (N) of N with all 
non-trivial submodules of N as vertices and two distinct 
vertices A, B are adjacent if and only if A+B is not a 
maximal submodule of N. Firstly, we investigate the 
connectivity, completeness and girth of (N). 
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Secondly, we study the domination number, cut edges, 
pendent vertex of (N). Moreover, we give a counter-
example such that (N) may not be perfect and (N) 
cannot be a complete r-partite graph if N ≠ N1  N2 
where N1 and N2 are simple. This graph satisfies us to 
use module algebraic properties in graph theory. Zero 
divisor graphs, intersection graphs and their generali-
zations were investigated in [1, 4, 5, 7]. 

2. NON-MAXİMAL GRAPH (N) 

Definition 2.1. Let N be a module. (N) is called a non-
maximal graph where the set of vertices of (N) is all 
non-trivial submodules of N denoted by V((N)) and A 
and B are adjacent if A + B is not a maximal submodule 
of N. E((N)) is the set of edges of (N). 

Example 2.2 

i)  Let N have no maximal submodules (for example 
ℤp

). Then (N) is complete. 

ii) (ℤ4) and (ℤ8) are null-graphs. For n ≥ 4, (ℤp
n) is 

not complete and not connected, w((ℤp
n)) = n-2. 

iii) (ℤp   ℤq) (p  q primes) is a complete and con-
nected graph. 

iv) (ℤp
n ℤq) is connected, not complete and clique 

number is 2n-3 for n ≥ 3. (ℤp
2   ℤq) is not connected, 

not complete and clique number is 2. 

v) (ℤ4  ℤ2) is not complete, not connected and w 
((ℤ4   ℤ2)) = the number of maximal submodules of 
ℤ4   ℤ2 = 3. 

Proposition 2.3. Let N be a right S-module. 

i) If w((N)) <  , then lS (N) <  . 

ii) İf N is a non-maximal vertex and deg(N) < , then 
lS (N) <  . 

Proof. It follows from the proof of Lemma 3.1. and 
Lemma 3.4. in [6].  

Remark 2.4. Let soc(N) be a proper essential submod-
ule of N or soc(N) be a maximal submodule of N. Then 
(N) may not be connected. For example, in ℤp

2  ℤq 

which is cyclic, there exists no path between ℤp and ℤq. 
Moreover, ℤ4   ℤ2 is not connected and it is two gen-
erated. 

Now, we investigate the connectivity of some special 
modules in the following three theorems by consider-
ing Remark 2.4. 

Theorem 2.5.  

i)  If Rad (N) = 0, then (N) is connected and diam 
((N)) ≤ 3. 

ii) If N is semisimple, then (N) is connected. 

iii) Let N be not cyclic, but Artinian module. If soc(N) 
and cyclic submodules are not maximal in N, then (N) 
is connected. 

Proof. 

İ) Let (N) be not connected. Then there exists no path 
between vertices X and Y. 

a) Let X+Y <max N. Since Rad (N) = 0, there exists a 
maximal submodule Y1 such that X+Y1 = N. If Y is not 
a submodule of Y1, then we have a path X  Y1  Y. 
Otherwise, there exists a maximal submodule Y2   such 
that Y + Y2 = N. Then we have a path X    Y1    Y2    
Y. 

b) Let X < Y <max N. If X is in every maximal submod-
ule of N, then Rad(N)   0 which is a contradiction. So 
there exists a maximal submodule X≮ Y1 ≠ Y. By X  
Y1  Y, there is a contradiction. 

ii) It follows from part (i). 

iii) Let (N) be not connected. Then there exists no 
path between vertices X and Y. 

a) Let X + Y <max N. Then X  Y = 0 and X  Y <max 
N. 

a1) Let X not simple. Then there exists U < X and U  
Y < X  Y <max N. By Y  U  X, there is a contradic-
tion. 

a2) Let Y not simple. Similarly, there is a contradiction. 

a3) Let X and Y be simple. Then X  Y <max N where 
X and Y are simple. Moreover, soc (N) <ess N and 
soc(N) <max N by the part (ii), which is a contradiction. 

b) Let X < Y <max N and a  N  Y. Then we have 
simple submodules E, F such that E ≤ X and F ≤ aS 
such that E + F ≤ soc(N). So, we have a path, which is 
a contradiction. 

Theorem 2.6. Let N be a module whose number of 
generators ≥ 3. Then (N) is connected and diam 
((N)) ≤ 3. 

Proof. Assume that (N) is not connected. Then there 
exists no path between vertices X and Y. 
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a) Let X + Y <max N. Then X  Y = 0 and X  Y <max 
N where X and Y are simple. Therefore, soc(N)= X  
Y <max N and soc(N)= X  Y <ess

 N. Let a  N  soc(N). 
Then soc(N) + aS = N and aS ≠ N. Since X ≮ aS and Y 
≮ aS, we have a path X  Y  aS  X  aS  Y, which 
is a contradiction. 

b) Let X < Y <max N. 

b1) Let X ≪ N. If x  N  Y, then xS ≠ N and Y+ xS 
= N. Moreover, xS cannot be maximal. If X+xS is max-
imal, then there exists y  N  (X+xS) and then X + xS 
+ yS = N. Since X ≪ N, xS + yS = N, which can not 
be. So, we have a path, which is a contradiction. 

b2) Let X be not small in N. Then there exists T < N 
such that X + T = N. Then Y +T = N. This gives a con-
tradiction.  

Theorem 2.7. Let N be not cyclic, and it has only one 
maximal. Then (N) is connected. 

Proof. Assume (N) is not connected. Then there ex-
ists no path between vertices X and Y. 

a) Let X + Y <max N. Then X  Y = 0 and hence X  
Y <max N where X and Y are simple.  Therefore, soc 
(N)= X  Y <max N and soc(N)= X  Y <ess

 N. Let a  
N  soc (N). Then we have a path (X  aS  Y), which 
is a contradiction. 

b) Let X < Y <max N and a  N  Y. Then we have a 
path (X  aS  Y), which is a contradiction.  

Now, we investigate the completeness of (N). If N has 
no maximal, then (N) is complete for example ℤp

 . 

Theorem 2.8. Let (N) be a complete graph and N has 
a maximal submodule. Then either N = N1  N2 where 
N1 and N2 are simple or N has only one submodule. 

Proof. Let A <max N and A1 ≨ A. There exists no A1  
A. So, A is simple. Then A is both maximal and simple 
submodule of N. Let A≠ Y ≨ N. Then A  Y = N im-
plies that Y is simple and maximal otherwise N has 
only one submodule A.   

Now, we prove that g((N)) ≤ 4. 

Theorem 2.9. Let (N) have a cycle. 

1) If N has at least three maximal submodules, then 
g((N)) = 3. 

2) Let N1, N2 be not maximal and N = N1 + N2, then 
g((N)) = 3. 

3) If N has two submodules such that B + C ≠ N is not 
maximal, then g((N)) = 3. 

4) If N has only one maximal submodule, then g((N)) 
= 3. 

5) If N has only two maximal submodules, then g((N)) 
≤ 4. 

Proof. 

1) Let N1, N2 and N3 be maximals. Then (N1  N2  N3), 
which says g((N)) = 3. 

2) Let N = N1 +N2 where N1 and N2 are not maximal. 
If N1  N2 ≠ 0 then N1  N1   N2  N2. Assume g((N)) 
> 3. Then, N1  N2 = 0. Since N1 and N2 are not simple, 
there exists Y1 < N1 and Y2 < N2. So Y1  Y2 < N1  
Y2 < N1  N2 = N and hence Y1  Y2 is not maximal. 
Therefore g((N)) = 3. 

3) It is straightforward. 

4) Let U be the only maximal submodule of N. Assume 
that g((N)) > 3. 

a) Let every proper submodule of N is in U. Then we 
have a cycle (A1  A2  A3  A4   ) of length greater 
than three and Ai ≠ U, for all i. 

i) Let A1 < A2. Since A2 < A3 or A3 < A2 cannot be, we 
have a contradiction 

ii) Let A2 < A1 where A1 +A3 = U. 

ii1) If A2 < A3, then A2 + A4 = U gives a contradiction. 

Ii2) If A3 < A2, then A3 < A2 < A1 implies a contradic-
tion. Thus g((N)) = 3. 

b) Let A < N and A≮ U. Let (A1  A2  A3  A4   ) 
of length greater than three. 

i) A1 < A2 and A2 is not maximal. Then A2 < A3 or A3 < 
A2 cannot be. Let A2 +A3 = N. If A3 is not maximal, 
then there is a contradiction. So A3 = U and we have a 
cycle (A1  A2  U A4   ). Then A2 ≮ U and A4 ≮ 
U. U = A2 + A4 <max N which is a contradiction. 

ii) A2 < A1 and A1 is not maximal. A3 < A2 and A3 + A2 
= N cannot be. Let A2 < A3. Then A3 < A4 or A4 < A3 
cannot be. Thus A3 + A4 = N where A3 ≠ U. If A4 = U, 
A1 + A3 = U and A1 + A3 = A4. Then A3 < A4 which is 
a contradiction. 

iii) A1 + A2 = N. 

iii1) Let A2 = U. Then we have a three cycle A1  U  
A3  
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iii2) Let A1 = U, we get (U  A2  A3  A4   ). Since 
A2 + A4 = U, we have a contradiction. 

5) Assume that g((N)) > 4. Let A and B be maximal 
submodules of N and 0 ≠ X < N. Then either X ≤A or 
X ≤ B. Assume that A  B = 0. Then A  B = N and 
A and B are simple. Since we have a cycle, there exists 
at least one submodule C ≠ A and B. Thus C  A = N 
and C is maximal, which is a contradiction. Therefore 
A  B ≠ 0. 

a) Let every nonzero proper submodule of N (except 
for A and B) is in A  B. Since we have a cycle (A1  
A2  A3  A4   ) such that Ai ≠ A and B, g((N)) = 
3. 

b) Let there exists at least one submodule C such that 
(C ≮ A and C < B) or (C ≮ B and C < A). Assume that 
C ≮ B and C < A. Then B has no submodules except 
for A  B and its submodules.  Otherwise, if D < B and 
D ≮ A, then D + C ≠ A, B which says 3 - cycle. 

b1) Let A  B be simple. Since N ∕ B = (A + B) / B ≅ 
A / (A  B) simple, A  B <max A. Then A  B ≮ C, 
so (A  B)  C = A where C is simple. Thus, B  C 
=N and B has no proper submodule except for A  B. 
If D < A where A  B ≮ D, then D is simple and C  
D = A. So, we have no cycle.    

b2) Let A  B be not simple. Then we have a submod-
ule Y < A  B where Y is simple and A  B has no 
submodule except for Y. 

b21) Let Y ≮ C. Then Y  C = A where C simple. 
Thus, Y  (A  B  C) = A  B which is a contradic-
tion. 

b22) Let Y < C. Since we have a cycle, we have D ≠ A, 
B, C, A  B and Y. Then D ≮ B and D < A. 

i) Let Y < D. Then (D  B  C  Y) is a cycle. 

ii) Let Y≮ D. Thus D  Y = A where D and Y are 
simple. So, Y  (A  B  D) = A  B, which is a 
contradiction.  

Corollary 2.10. Let (N) have a cycle. If N has only 
two maximals A and B such that simple = Y < A  B 
and there exist proper submodules C, D of A only con-
taining Y and C, D ≮ B where B has only two proper 
submodules A  B and Y, then we have a 4-cycle. Oth-
erwise, we have a 3-cycle.   

3. DOMINATION NUMBER, CUT EDGES, PEN-
DENT VERTEX AND PERFECTNESS OF 

(N) 

Lemma 3.1. Let N be a module with Rad(N) = 0. If N 
= A  B or N = A  B  C cannot be where A, B and 
C are simple, then (N) has no cut edge. 

Proof. Let A  B be cut edge. 

i) Let A + B (≠ N) be not maximal. Since Rad(N) = 0, 
there exist at least one maximal submodule T1 and T2 
such that A ≮ T1 and B ≮ T2. So, there is a path A  T1 
 T2  B, which is a contradiction. 

ii) Let A + B = N. 

İi1) Let A and B not maximal. Then A  B = 0. So, A 
 B = N where A and B are not simple. So, A  A1  
B1  B (where A1 < A and B1 <B) is a path, which is a 
contradiction. 

Ii2) Let A and B maximal. If there is another maximal 
submodule, then A  C  B is a path. Otherwise, A  
B = 0 and A  B = N where A and B are simple. If 
there is C ≠ A and B, then A  C = B  C = N, where 
C is maximal, which is a contradiction. 

Ii3) Let A be not maximal and B be maximal. Assume 
that every maximal except for B contains A. Then A  
B ≤ Rad(N) = 0. Therefore, A  B = N and A is simple. 
Assume that A  B1 <max A  B = N where B1 < B and 
B1 is simple. Since B1 is not small in B, B1  B2 = B 
where B2 is simple. Then N = A  B1  B2, which is a 
contradiction. 

Lemma 3.2. Let N be a module whose number of gen-
erators is greater than or equal to four, then (N) has 
not a cut edge. 

Proof. Let A  B be cut edge. 

i) Let A + B (≠ N) be not maximal. 

i1) Let A < B where A is simple. If B is cyclic and y  
N  B, then A  yS  B is a path. If B is not cyclic and 
x  B  A, then A  xS  B is a path, which gives a 
contradiction. 

i2) Let A ≮ B and B ≮ A. If A  B ≠ 0, then we have 
a path A  A  B  B except for A  B. So, A  B = 0 
such that A and B are simple. Let x  N  A  B (where 
xS ≠ N). Thus, A + xS is not maximal and B + xS is not 
maximal and A  xS  B is a path. Therefore, we have 
a contradiction. 
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ii) Let A + B = N. 

ii1) Let A and B be not maximal. Then A  B = 0, A 
 B = N where A and B are not simple. So, A  A1  
B1  B (where A1 < A and B1 <B) is a path, which is a 
contradiction. 

ii2) Let A and B be maximal. Let x  N  A and y  N 
 B. Thus xS, yS ≠ A and B. Then A  xS  yS  B is 
a path, which is a contradiction. 

iii3) Let A be not maximal and B be maximal. If A is 
not cyclic and x A and y  N  B, then we have a path 
A  xS  yS  B. If A is cyclic and x  B  A, then A 
 A + xS  B is a path, which gives a contradiction.  

A vertex of a graph is said to be pendent if its neigh-
bourhood contains exactly one vertex. Le N = ℤ2   ℤ3. 
Then ℤ2 is a pendent vertex. Let N = ℤ4   ℤ3. Then ℤ3 
is a pendent vertex. 

Lemma 3.3. If N has no maximal submodules, then N 
has no pendent vertex. Moreover, N has only one max-
imal submodule U, then U cannot be pendent. 

Proof. Since N has no maximal, N has at least three 
non-trivial submodules, say C, D, E. Then C + D and C 
+ E can not be maximal. So, C cannot be pendent. Sim-
ilarly, all non-trivial submodules can not be pendent. 
Let every submodule be in U, then U cannot be pen-
dent. Let there exist a submodule V such that V ≮ U. 
Since V is not maximal, there exist a nontrivial sub-
module T such that V < T. So, we have a path U  V 
and U  T, hence U cannot be pendent.   

Proposition 3.4 Let N have only one maximal submod-
ule U and V ≮ U. Then (N) has no pendent vertex. 

Proof. Let A be a pendent vertex. 

i) If A = U, then by Lemma 3.3, we have a contradic-
tion. 

ii) Let A ≠ U. 

a) If A ≮ U, then we have a nontrivial submodule T 
such that A < T, so we have paths A  U and A  T, 
which gives a contradiction. 

b) Let A < U. Then we have V < T and we have paths 
A  V and A  T, which gives a contradiction.  

Example 3.5. Let N = ℤ16 which has only one maximal 
submodule ℤ8 and ℤ8 contains all nontrivial submod-
ules. ℤ4 is a pendent vertex in (N). Moreover, ℤ2  ℤ3 
 ℤ5 is semisimple and every simple is pendent. If N = 

N1  N2      Nn (n ≥ 4) is semisimple, then N has 
no pendent vertex. 

Lemma3.6. Let Rad(N) = 0. If N has generators whose 
number greater than two, then N has no pendent except 
for simple submodules. If N has generators whose 
number greater than three, then (N) has no pendent. 

Proof. Let (N) have pendent, say P. By Lemma 3.3, 
N has maximals. 

a) Let P be not simple and not maximal. Since Rad(N) 
= 0, there exist a maximal N1 such that P ≮ N1. More-
over, there exist P1 < P. So, we get a contradiction. 

b) Let P be maximal. Since Rad(N) = 0, there exist a 
maximal N1 ≠ P. If there exist no maximal N1 and P, 
then this contradicts that Rad(N) = 0 and N has gener-
ators whose number greater than two. So, we have an-
other maximal N2. So, we have a path N1  P  N2, 
which gives a contradiction. 

c) Let P be simple where N has generators whose num-
ber greater than three. Since Rad(N) = 0, there exist a 
maximal N1 such that P ≮ N1. Let x  N  P. Then, we 
have a path xS  P  N1.  

Now, we investigate the dominating set and ((N)) in 
(N). 

Lemma 3.7. Let X be a dominating set for N and U < 
N. Let B = {T  U: T  X} is a dominating set for U. 

Proof. Let 0 ≠ Y < U. Then there exist T1  X such that 
Y + T1 is not maximal. Let Y + (T1  U) < Y + T1 
implies that Y + (T1  U) is not maximal. So, B is a 
dominating set for U.  

Lemma 3.8 Let Rad(N) = 0. Then ((N)) < the num-
ber of maximals if N has maximals. If N has no maxi-
mals, then ((N)) = 1. 

Proof. If N has no maximals, then for all 0 ≠ U < N, 
{U} is a dominating set, and so ((N)) = 1. Let N have 
maximals. Since Rad(N) = 0, for all 0 ≠ X < N, there 
exist at least one maximal submodule such that it does 
not contain X. So, the set of all maximals is a dominat-
ing set, hence ((N)) < the number of maximals.  

Lemma 3.9. Let {Mi: i  I} be the set of all maximals. 
If there exist U ≮ Mi for all i  I then ((N)) = 1. 

Proof. Since {U} is dominating set, ((N)) = 1.  

Proposition 3.10. {U} is a dominating set if and only 
if one of the following is satisfied: 
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i) N has no maximal submodules. 

ii) If N has at least one maximal submodule, then every 
maximal does not contain U. 

Example 3.11. Let N = ℤ2  ℤ3 then ((N)) = 2. Let 
N = ℤ4  ℤ3 then ((N)) = 3 where N has two maximal 
and Rad(N) = ℤ2 and minimal dominating set is {ℤ4, ℤ3, 
ℤ2}. 

Lemma 3.12. Let Rad(N) = 0 and B = {Mi: i  I} be 
set of all maximals. Then B is a dominating set. More-
over, if {Mj: j  J} = C and ⋂j J Mj = 0 and there exist 
no U, U ≮ Mj, for all j  J, then C is a dominating set. 

Lemma 3.13. Let Rad(N) ≠ 0 and N has only two max-
imals N1 and N2. {U, Ni} is a dominating set where i = 
1 or 2 if and only if U < Nj, U ≮ Ni and U + Rad(N) < 
Nj where j = 1 or 2. 

Proof. Let ((N)) = 2. Then U ≠ Nj, since N1  N2 ≠ 
0. And U ≮ Ni since {U, Ni} is a dominating set. If U 
≮ Nj and U ≮ Ni, then ((N)) = 1. So, U < Nj. If U + 
Rad(N) = Nj, then {U, Ni} cannot be a dominating set. 
For the converse, let 0 ≠ X < N. Assume that i = 1. 

a) If X ≮ N1  N2, then X ≮ N1 or X ≮ N2. 

a1) If X ≮ N1, then N1 + X = N. 

a2) If X ≮ N2, then X < N1. U + X ≠ N1 and U + X ≠ 
N2. 

b) If X ≤ N1  N2, then U + X ≤ U + N1  N2 < N2. So 
{U, Ni} is a dominating set.  

Proposition 3.14 Let N have only two maximals and 
Rad(N) ≠ 0. {U1, U2} is a minimal dominating set 
where U1 and U2 are not N1 and N2 if and only if U1 < 
N1 and U1 ≮ N2, U2 < N2 and U2 ≮ N1 and N = U1 + U2 
and U1 +Rad(N) < N1 or U2 + Rad(N) < N2. 

Proof. Let {U1, U2} be a minimal dominating set such 
that U1 and U2 are not N1 and N2. Assume that U1 ≮ N1 
and U1 ≮ N2. Then ((N)) = 1 by Lemma 3.9. So U1 < 
N1 or U1 < N2. Assume that U1 < N1. Then U2 ≮ N1, 
otherwise {U1, U2} cannot be a dominating set. Thus, 
U2 < N2 and U1 ≮ N2. Assume that U1 + U2 ≠ N. Then 
U1 + U2 ≮ N1 and U1 + U2 ≮ N2, then we have a con-
tradiction. Moreover, U1 + Rad(N) < N1 or U2 +Rad(N) 
< N2. For the converse, the proof is the same as the 
proof of Lemma 3.13. 

Theorem 3.15. Let N ≠ N1  N2 where N1 and N2 are 
simple. Then a non-maximal graph (N) cannot be a 
complete r-partite graph, where 2 ≤ r ℕ. 

Proof. Assume that (N) is a complete r-partite graph. 
If N has no maximal elements, then there exists a non-
zero submodule M < N. Since M is not maximal, there 
exists a submodule M1 such that M < M1. Similarly, if 
we can continue then we can find some submodules of 
N such that M < M1 < M2 <  < Mr-1 <  Since (N) 
is a complete r-partite graph a partition of (N) must be 
{{Xi}: i = 1, 2, , r where 0 ≠ Xi < N}. But N has 
infinitely many submodules, it cannot be. Let N have 
only one maximal submodule N1. If N1 contains all 
nonzero proper submodules of N, then (N) cannot be 
complete r-partite graph. Then there exists at least one 
0 ≠ Y < N such that Y ≮ N1. Since (N) is a complete 
r-partite graph, we have a partition {N1, X: 0 ≠ X ≤ N1}, 
{{M1}, , {Mr-1}} where 0 ≠ Mi < N and Mi ≮ N1 for 
i  {1, , r-1}. Since M1 is not maximal and 0 ≠ M1 ≮ 
N1, there exists a non-maximal submodule T1, M1 < T1. 
If we continue in this way, we can find non-maximal 
submodules of N such that M1 < T1 < T2 < T3 <  So 
there exists at least one Tk  {M1, , Mr-1}. Then Tk = 
N1 or Tk = X. But these cannot be. Assume that N has 
at least two maximal submodules N1 and N2. Since 
(N) is a complete r-partite graph, (N) has a partition 
which contains T1 = {N1, X: 0 ≠ X ≤ N1} and T2 = {N2, 
Y: 0 ≠ Y ≤ N2}. If N1  N2 ≠ 0 then N1  N2  T1 and 
N1  N2  T2. But this cannot be. Then N1  N2 = 0, 
and hence N = N1  N2 where N1 and N2 are simple. 
But this is a contradiction.     

Example 3.16. (N) may not be a perfect graph.  (( 
ℤ60)) = 4 and w((ℤ60)) = 3 in the following diagram 
where 30, 20, 15, 12, 10, 6, 5, 4, 3, 2 means that the 
number of elements of submodules of ℤ60.        
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