A NEW LIFETIME DISTRIBUTION: TRANSMUTED EXPONENTIAL POWER DISTRIBUTION

Bugra SARACOGLU and Caner TANIS
Department of Statistics, Selcuk University, Konya, TURKEY

ABSTRACT. In this paper, we have introduced a new statistical distribution called as transmuted Exponential Power (TEP) distribution using the quadratic rank transmutation map proposed by Shaw and Buckley [25, 26] in order to generate new distributions. We have also studied some statistical properties such as descriptive statistics (moments, variance, coefficient of skewness (CS) and kurtosis (CK)), point estimation (maximum likelihood estimation) and real data applications to illustrate usefulness of TEP distribution.

1. INTRODUCTION

In statistical literature, several lifetime distributions are introduced. Most of these distributions are generally obtained by compounding or mixing methodologies. In the other case, distributions are given through including an extra parameter to well-known distribution. By the way, family of distributions obtained using quadratic rank transmutation map (QRTM) proposed by Shaw and Buckley [25, 26] is defined with cumulative distribution function (cdf) and probability density function (pdf)

\[F(x) = (1 + \lambda)G(x) - \lambda [G(x)]^2 \] (1)

and

\[f(x) = (1 + \lambda)g(x) - 2\lambda G(x)g(x), \] (2)

respectively, where \(G(x) \) denotes cdf of baseline distribution and \(\lambda \in [-1, 1] \) is transmuting parameter. If \(\lambda = 0 \), cdf of the base distribution is obtained. In last decade, there are many studies about transmuted distributions in literature. For

Over two decades before, Smith and Bain [23] introduced the Exponential Power (EP) distribution by compounding exponential and Weibull distribution functions. The cdf and pdf of EP distribution are given

\[
G(x; \alpha, \beta) = 1 - \exp \left[1 - \exp \left(\left(\frac{x}{\alpha} \right)^\beta \right) \right],
\]

and

\[
g(x; \alpha, \beta) = \beta \left(\frac{x}{\alpha} \right)^{\beta-1} \exp \left(\left(\frac{x}{\alpha} \right)^\beta \right) \exp \left[1 - \exp \left(\left(\frac{x}{\alpha} \right)^\beta \right) \right],
\]

respectively, where \(\alpha > 0, \beta > 0 \) and \(x > 0 \). Many authors have focused on EP distribution recently. Some of these studies can be listed as follows; Chen [8], Barriga et al. [7], Akdam et al. [1].

The main purpose of this study is to suggest a new lifetime distribution as an alternative EP distribution by using QRTM. In Section 2, TEP distribution and its some statistical properties (moments, variance, CS, CK) are introduced. The maximum likelihood estimators (MLEs) for unknown parameters of introduced distribution are derived in Section 3. In Section 4, a Monte Carlo simulation study is performed to evaluate the performances of these estimators in terms of mean square errors (MSEs) and bias. In Section 5, two real data illustrations are given to show the applicability of this distribution in real life. In Section 6, the conclusion remarks are given.

2. Transmuted Exponential Power (TEP) Distribution

Let \(X \) be a random variable having TEP distribution with \(\alpha, \beta \) and \(\lambda \) parameters denoted by TEP\((\alpha, \beta, \lambda)\). The cdf and pdf of this random variable are

\[
F(x; \alpha, \beta, \lambda) = (1 + \lambda) \left[1 - \exp \left(1 - \exp \left(\left(\frac{x}{\alpha} \right)^\beta \right) \right) \right] - \lambda \left[1 - \exp \left(1 - \exp \left(\left(\frac{x}{\alpha} \right)^\beta \right) \right) \right],
\]
and

\[f(x; \alpha, \beta, \lambda) = \frac{\beta}{\alpha} (\frac{x}{\alpha})^{\beta-1} \exp \left(\left(\frac{x}{\alpha} \right)^\beta \right) \exp \left[1 - \exp \left(\left(\frac{x}{\alpha} \right)^\beta \right) \right] \times \left[1 + \lambda - 2\lambda \left(1 - \exp \left(\left(\frac{x}{\alpha} \right)^\beta \right) \right) \right], \quad (6) \]

respectively. Where \(-1 \leq \lambda \leq 1, \alpha, \beta > 0\) and \(x > 0\). The cdf of EP distribution for \(\lambda = 0\) in Eq. (5) is derived. Figure 1 shows the possible shapes of the pdf of TEP distribution for various parameter values.

\[R(t) = 1 - (1 + \lambda) \left[1 - \exp \left(1 - \exp \left(\left(\frac{t}{\alpha} \right)^\beta \right) \right) \right] + \lambda \left[1 - \exp \left(1 - \exp \left(\left(\frac{t}{\alpha} \right)^\beta \right) \right) \right]^2 \quad (7) \]

and

\[h(t) = \frac{\beta (\frac{t}{\alpha})^{\beta-1} \exp \left(\left(\frac{t}{\alpha} \right)^\beta \right) k(t, \alpha, \beta)}{1 - (1 + \lambda) [1 - k(t, \alpha, \beta)] + \lambda [1 - k(t, \alpha, \beta)]} \]

\[\times \left[1 + \lambda - 2\lambda (1 - k(t, \alpha, \beta)) \right], \quad (8) \]

respectively. Where \(k(t, \alpha, \beta) = \exp \left[1 - \exp \left(\left(\frac{t}{\alpha} \right)^\beta \right) \right]\). Figure 2 shows that the possible shapes of \((hf)\) for TEP distribution at different parameter values.

Figure 1. Plots of the TEP density function for various values of \(\alpha, \beta\) and \(\lambda\)

The reliability function \((rf)\) and hazard function \((hf)\) of TEP distribution are defined as
Figure 2. Plots of the TEP hazard function for various values of α, β and λ

2.1. Moments of TEP distribution. The rth moment of TEP distribution is

$$E(X^r) = \int_0^\infty x^r ((1 + \lambda)g(x) - 2\lambda G(x)g(x)) \, dx$$

$$= ((1 + \lambda)I_1 - 2\lambda I_2)$$

(9)

where I_1 and I_2 are

$$I_1 = \int_0^\infty x^r g(x) \, dx$$

$$= \int_0^\infty x^r \frac{\beta}{\alpha} \left(\frac{x}{\alpha} \right)^{\beta-1} \exp \left(\left(\frac{x}{\alpha} \right)^\beta \right) s(x, \alpha, \beta) \, dx$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \alpha^r \int_1^\infty (\ln(u))^{n+(r/\beta)} \frac{e^{1-u}}{u} \, du$$

(10)

and

$$I_2 = \int_0^\infty x^r G(x)g(x) \, dx$$

$$= \int_0^\infty x^r \left[1 - s(x, \alpha, \beta) \right] \frac{\beta}{\alpha} \left(\frac{x}{\alpha} \right)^{\beta-1} \exp \left(\left(\frac{x}{\alpha} \right)^\beta \right) s(x, \alpha, \beta) \, dx$$

$$= I_1 - \sum_{n=0}^{\infty} \frac{1}{n!} \alpha^r \int_1^\infty (\ln(u))^{n+(r/\beta)} \frac{e^{2-2u}}{u} \, du,$$

(11)
respectively. Where \(s(x, \alpha, \beta) = \exp \left(1 - \exp \left(\left(\frac{x}{\alpha} \right)^{\beta} \right) \right) \). Figure 3 illustrates the plots of some descriptive statistics such as expected value, variance, CS and CK at selected parameter values for TEP distribution.

![Figure 3. Descriptive statistics for \(\alpha = 2, \beta \in \{1, 1.5, 2\}, \lambda \in [-1, 1] \).](image)

2.2. Random Number Generator. The method of inversion transformation to generate random numbers from TEP distribution with parameters \(\alpha, \beta \) and \(\lambda \) is used as follows;

\[
F(x; \alpha, \beta, \lambda) = (1 + \lambda) [1 - s(x, \alpha, \beta)] - \lambda [1 - s(x, \alpha, \beta)]^2 = u, \tag{12}
\]

where \(s(x, \alpha, \beta) = \exp \left(1 - \exp \left(\left(\frac{x}{\alpha} \right)^{\beta} \right) \right) \) and \(u \) is a number generated from Uniform distribution shown as \(U(0, 1) \). Solution of Eq. (12) is given by

\[
x = \alpha \left[\ln \left(1 - \ln \left(1 - \left(1 + \lambda - \sqrt{(\lambda + 1)^2 - 4\lambda u} \right) \right) \right) \right]^{1/\beta}. \tag{13}
\]

Maximum Likelihood Estimation
Let $X_1, X_2, ..., X_n$ be a random sample having TEP distribution with parameters α, β and λ. Then the log-likelihood function is given by

\[
\ell (\alpha, \beta, \lambda \mid x) = n \ln (\beta) - n \ln (\alpha) + \sum_{i=1}^{n} \left(\frac{x_i}{\alpha} \right)^\beta + n - \left(\sum_{i=1}^{n} \exp \left(\left(\frac{x_i}{\alpha} \right)^\beta \right) \right) + (\beta - 1) \sum_{i=1}^{n} \ln \left(\frac{x_i}{\alpha} \right) + \sum_{i=1}^{n} \ln \left(\frac{x_i}{\alpha} \right) \ln \left(1 + \lambda - 2\lambda \left(1 - s(x_i, \alpha, \beta) \right) \right) \quad (14)
\]

Differentiating the $\ell (\alpha, \beta, \lambda \mid x)$ with respect to α, β and λ parameters, then equating to zero, non-linear equations is obtained as follows;

\[
\frac{\partial \ell (\alpha, \beta, \lambda \mid x)}{\partial \alpha} = 0 \Rightarrow -\frac{n}{\alpha} - \sum_{i=1}^{n} \left(\frac{\beta}{\alpha} \right) \left(\frac{x_i}{\alpha} \right)^\beta - \sum_{i=1}^{n} \left(\frac{\beta}{\alpha} \right) \left(\frac{x_i}{\alpha} \right)^\beta \exp \left(\left(\frac{x_i}{\alpha} \right)^\beta \right) - \frac{n(\beta - 1)}{\alpha} + \sum_{i=1}^{n} 2\lambda \frac{\beta}{\alpha} \left(\frac{x_i}{\alpha} \right)^\beta \exp \left(\left(\frac{x_i}{\alpha} \right)^\beta \right) \times s(x_i, \alpha, \beta) \left(1 + \lambda - 2\lambda \left(1 - s(x_i, \alpha, \beta) \right) \right)^{-1} = 0 \quad (15)
\]

\[
\frac{\partial \ell (\alpha, \beta, \lambda \mid x)}{\partial \beta} = 0 \Rightarrow \frac{n}{\beta} + \sum_{i=1}^{n} \left(\frac{x_i}{\alpha} \right)^\beta \ln \left(\frac{x_i}{\alpha} \right) - \sum_{i=1}^{n} \left(\frac{x_i}{\alpha} \right)^\beta \ln \left(\frac{x_i}{\alpha} \right) \exp \left(\left(\frac{x_i}{\alpha} \right)^\beta \right) + \sum_{i=1}^{n} \ln \left(\frac{x_i}{\alpha} \right) - \sum_{i=1}^{n} 2\lambda \left(\frac{x_i}{\alpha} \right) \ln \left(\frac{x_i}{\alpha} \right) \exp \left(\left(\frac{x_i}{\alpha} \right)^\beta \right) \times s(x_i, \alpha, \beta) \left(1 + \lambda - 2\lambda \left(1 - s(x_i, \alpha, \beta) \right) \right)^{-1} = 0 \quad (16)
\]

\[
\frac{\partial \ell (\alpha, \beta, \lambda \mid x)}{\partial \lambda} = 0 \Rightarrow -1 + 2 \left(1 - \exp \left(\left(\frac{x_i}{\alpha} \right)^\beta \right) \right) \left(1 + \lambda - 2\lambda \left(1 - s(x_i, \alpha, \beta) \right) \right)^{-1} = 0. \quad (17)
\]

The MLEs of α, β and λ are obtained by solving of Eqs. [15-17] via some numerical methods.
A NEW LIFETIME DISTRIBUTION

Table 1. The MSEs and biases of α, β and λ.

<table>
<thead>
<tr>
<th>n</th>
<th>parameter values</th>
<th>α</th>
<th>β</th>
<th>λ</th>
<th>α</th>
<th>β</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.4738</td>
<td>0.7255</td>
<td>-0.8020</td>
<td>0.5023</td>
<td>1.1866</td>
<td>0.7368</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-0.3492</td>
<td>0.2620</td>
<td>-0.6964</td>
<td>0.2502</td>
<td>0.1958</td>
<td>0.4855</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-0.3460</td>
<td>0.1159</td>
<td>-0.4095</td>
<td>0.1858</td>
<td>0.0498</td>
<td>0.2452</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>(2,0,8,0.1)</td>
<td>-0.3439</td>
<td>0.0578</td>
<td>-0.2558</td>
<td>0.1510</td>
<td>0.0126</td>
<td>0.0796</td>
</tr>
<tr>
<td>100</td>
<td>-0.3314</td>
<td>0.0433</td>
<td>-0.2167</td>
<td>0.1320</td>
<td>0.0061</td>
<td>0.0532</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>-0.2863</td>
<td>0.0275</td>
<td>-0.1834</td>
<td>0.1052</td>
<td>0.0022</td>
<td>0.0428</td>
<td></td>
</tr>
</tbody>
</table>

3. Simulation Study

In this section, a Monte Carlo simulation study is performed to evaluate the performances of MLEs according to MSEs and biases. Algorithm steps regarding to simulation study are as follows:

Step 1. Random numbers are generated from TEP distribution with parameters α, β and λ by using Eq. 13.

Step 2. MLEs of α, β and λ are calculated by using Eqs. 15-17 as based on 10000 replicates.

Step 3. The biases and MSEs of these estimators are simulated for different sample sizes as 5, 10, 20, 50, 100 and 300 at selected parameter values ($(\alpha,\beta,\lambda) = (2,0,8,0.1), (0.4,0.6,-0.8), (3,2,0.5)$, and $(0.3,0.4,0.8)$). The results of simulation study are presented in Table 1.

According to Table 1, it is clearly seen that the MSEs and biases of MLEs for all parameter cases decrease as sample sizes increases. This case indicates that estimate values approach to true values as sample size n increases.
4. Real Data Analysis

In this section, we aim to compare TEP distribution with other distributions in terms of goodness of fit measures to demonstrate the applicability of TEP distribution. Two real data sets have been used for these purposes. We have considered some goodness of fit measures such as the Akaike’s Information Criterion (AIC), corrected Akaike’s Information Criterion (AICc), -2×log-likelihood value, Kolmogorov-Smirnov (KS) statistics and its p-value to compare the fits of the distributions for two data sets. These statistics are given as follows;

\[AIC = -2\ell + 2k, \quad (18) \]

\[AICc = AIC + \left(\frac{2k(k + 1)}{n - k - 1}\right), \quad (19) \]

\[KS = \sup \left(|F(x) - F_n(x)| \right). \quad (20) \]

where \(k \) is number of parameters, \(n \) is sample size, \(\ell \) is the value of log-likelihood function.

4.1. Operation and empirical data. The first real data set consist of 50 observations has been obtained by Dasgupta [9]. This data set relates to holes operation on jobs made of iron sheet is given by in Table 2.

<table>
<thead>
<tr>
<th>0.04</th>
<th>0.02</th>
<th>0.06</th>
<th>0.12</th>
<th>0.14</th>
<th>0.08</th>
<th>0.22</th>
<th>0.12</th>
<th>0.08</th>
<th>0.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24</td>
<td>0.04</td>
<td>0.14</td>
<td>0.16</td>
<td>0.08</td>
<td>0.26</td>
<td>0.32</td>
<td>0.28</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>0.24</td>
<td>0.22</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.32</td>
<td>0.16</td>
<td>0.14</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>0.24</td>
<td>0.16</td>
<td>0.32</td>
<td>0.18</td>
<td>0.24</td>
<td>0.22</td>
<td>0.16</td>
<td>0.12</td>
<td>0.24</td>
<td>0.06</td>
</tr>
<tr>
<td>0.02</td>
<td>0.18</td>
<td>0.22</td>
<td>0.14</td>
<td>0.06</td>
<td>0.04</td>
<td>0.14</td>
<td>0.26</td>
<td>0.18</td>
<td>0.16</td>
</tr>
</tbody>
</table>

These data have been fitted to TEP, generalized Gompertz (GG) [11], transmuted generalized Gompertz (TGG) [16], transmuted Kumaraswamy (TKw) [14], transmuted Rayleigh (TR) [18], transmuted exponentiated exponential (TEE) [21] and transmuted Weibull (TW) [3] distributions. The density functions of the fitted
distributions are given by:

\[TGG : f(x) = \alpha e^{bx} x \left(1 - e^{(-\frac{x}{\lambda})} \right) \left[1 - e^{(-\frac{x}{\lambda})} \right]^{\alpha - 1} \]
\[\times \left[1 + \lambda - 2\lambda \left(1 - e^{(-\frac{x}{\lambda})} \right)^\alpha \right], x > 0, b, \alpha > 0, \lambda \in [-1, 1] \]

\[GG : f(x) = \alpha e^{bx} x \left(1 - e^{(-\frac{x}{\lambda})} \right) \left[1 - e^{(-\frac{x}{\lambda})} \right]^{\alpha - 1}, x > 0, b, \alpha > 0 \]

\[TEE : f(x) = \theta (1 - e^{-ax})^{\theta - 1} e^{-ax} \left[1 + \lambda - 2\lambda (1 - e^{-ax})^{\theta} \right], x > 0, a, \theta > 0, \lambda \in [-1, 1] \]

\[TKw : f(x) = abx^{a-1} (1 - x^a)^{b-1} \left[1 + \lambda + 2\lambda (1 - x^a)^{b} \right], x \in [0, 1], a, b > 0, \lambda \in [-1, 1] \]

\[TR : f(x) = \frac{x}{\sigma} e^{-\frac{x^2}{2\sigma^2}} \left[1 - 2\lambda e^{-\frac{x^2}{2\sigma^2}} \right], x > 0, \sigma > 0, \lambda \in [-1, 1] \]

\[TW : f(x) = \frac{\mu}{\sigma} (\frac{x}{\sigma})^{\mu - 1} e^{-\left(\frac{x}{\sigma}\right)^\mu} \left[1 - 2\lambda e^{-\left(\frac{x}{\sigma}\right)^\mu} \right], x > 0, \mu, \sigma > 0, \lambda \in [-1, 1] \]

For operation and empirical data set, the MLEs (standard errors) of fitted distributions are given in Table 3 and the selection criteria statistics are given in Table 4. Furthermore, The plots which shows fits of distributions to this data set can be examined from Figure 4 and Figure 5.

4.2. Breaking Stress data. The second data set is with regard to breaking stress of carbon fibers of 50 mm length (GPa) obtained by Nichols and Padgett [22]. This
Table 4. Selection criteria statistics for operation and empirical data

<table>
<thead>
<tr>
<th>Distribution</th>
<th>-2log</th>
<th>AIC</th>
<th>AICc</th>
<th>K-S</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEP</td>
<td>-114.9401</td>
<td>-108.9401</td>
<td>-108.4184</td>
<td>0.0893</td>
<td>0.8199</td>
</tr>
<tr>
<td>TGG</td>
<td>-114.5400</td>
<td>-106.5400</td>
<td>-105.6520</td>
<td>0.0898</td>
<td>0.8152</td>
</tr>
<tr>
<td>GG</td>
<td>-114.5924</td>
<td>-108.5924</td>
<td>-108.0707</td>
<td>0.0936</td>
<td>0.7736</td>
</tr>
<tr>
<td>TKw</td>
<td>-112.5020</td>
<td>-106.5020</td>
<td>-105.9800</td>
<td>0.1052</td>
<td>0.6375</td>
</tr>
<tr>
<td>TR</td>
<td>-112.1173</td>
<td>-108.1173</td>
<td>-107.8620</td>
<td>0.1070</td>
<td>0.6162</td>
</tr>
<tr>
<td>TW</td>
<td>-112.1179</td>
<td>-106.1179</td>
<td>-105.5962</td>
<td>0.1070</td>
<td>0.6163</td>
</tr>
<tr>
<td>TEE</td>
<td>-106.5607</td>
<td>-100.5607</td>
<td>-100.0389</td>
<td>0.1462</td>
<td>0.2357</td>
</tr>
</tbody>
</table>

Figure 4. Empirical cdf and fitted cdfs for operation and empirical data set

data set consist of 66 observations has been used by Yousof et.al. [27]. The breaking stress data are presented in Table 5.

Table 5. Breaking stress data

<table>
<thead>
<tr>
<th></th>
<th>0.39</th>
<th>0.85</th>
<th>1.08</th>
<th>1.25</th>
<th>1.47</th>
<th>1.57</th>
<th>1.61</th>
<th>1.61</th>
<th>1.69</th>
<th>1.80</th>
<th>1.84</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.87</td>
<td>1.89</td>
<td>2.03</td>
<td>2.03</td>
<td>2.05</td>
<td>2.12</td>
<td>2.35</td>
<td>2.41</td>
<td>2.43</td>
<td>2.48</td>
<td>2.50</td>
</tr>
<tr>
<td>2.53</td>
<td>2.55</td>
<td>2.55</td>
<td>2.56</td>
<td>2.59</td>
<td>2.67</td>
<td>2.73</td>
<td>2.74</td>
<td>2.79</td>
<td>2.81</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td>2.85</td>
<td>2.87</td>
<td>2.88</td>
<td>2.93</td>
<td>2.95</td>
<td>2.96</td>
<td>2.97</td>
<td>3.09</td>
<td>3.11</td>
<td>3.11</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>3.19</td>
<td>3.22</td>
<td>3.22</td>
<td>3.27</td>
<td>3.28</td>
<td>3.31</td>
<td>3.31</td>
<td>3.33</td>
<td>3.39</td>
<td>3.39</td>
<td></td>
</tr>
<tr>
<td>3.56</td>
<td>3.60</td>
<td>3.65</td>
<td>3.68</td>
<td>3.70</td>
<td>3.75</td>
<td>4.20</td>
<td>4.38</td>
<td>4.42</td>
<td>4.70</td>
<td>4.90</td>
<td></td>
</tr>
</tbody>
</table>

This data set has been fitted to TEP, exponential power (EP) [23], exponentiated exponential (EE) [12], transmuted exponentiated exponential (TEE) [21] and
transmuted Rayleigh (TR) \cite{18} distributions. The density functions of the fitted distributions are given by:

\begin{align*}
EP: f(x) &= \frac{\beta}{\alpha} \left(\frac{x}{\alpha} \right)^{\beta-1} \exp \left(\left(\frac{x}{\alpha} \right)^{\beta} \right) \exp \left[1 - \exp \left(\left(\frac{x}{\alpha} \right)^{\beta} \right) \right], \quad x > 0, \alpha, \beta > 0 \\
EE: f(x) &= \theta \alpha (1 - e^{-\alpha x})^{\theta-1} e^{-\alpha x}, \quad x > 0, \alpha, \theta > 0 \\
TR: f(x) &= \frac{x}{\sigma} e^{-\frac{x^2}{2\sigma^2}} \left[1 - \lambda + 2\lambda e^{-\frac{x^2}{2\sigma^2}} \right], \quad x > 0, \sigma > 0, \lambda \in [-1, 1] \\
TEE: f(x) &= \theta \alpha (1 - e^{-\alpha x})^{\theta-1} \\
&\times e^{-\alpha x} \left[1 + \lambda - 2\lambda (1 - e^{-\alpha x})^{\theta} \right], \quad x > 0, \alpha, \theta > 0, \lambda \in [-1, 1]
\end{align*}

The MLEs of unknown parameters for these distributions and their standard errors are shown in Table 6.

For breaking stress data, the comparison statistics of fitted distributions are given in Table 7. Also, the goodness of fit plots based on the empirical and theoretical cdfs and pdfs of fitted distributions can be seen from Figure 6 and Figure 7.

Table 7. Selection criteria statistics for breaking stress data
Table 6. Parameter estimates (standard errors) for breaking stress data

<table>
<thead>
<tr>
<th>Distribution</th>
<th>MLEs</th>
<th>-2log</th>
<th>AIC</th>
<th>AICc</th>
<th>K-S</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEP</td>
<td>$\hat{\alpha} = 4.0683 \ (0.2181), \ \hat{\beta} = 2.8374 \ (0.2716), \ \hat{\lambda} = 0.7487 \ (0.2503)$</td>
<td>172.4577</td>
<td>178.4577</td>
<td>178.8448</td>
<td>0.0913</td>
<td>0.6408</td>
</tr>
<tr>
<td>EP</td>
<td>$\hat{\alpha} = 3.6807 \ (0.1182), \ \hat{\beta} = 2.3799 \ (0.2304)$</td>
<td>174.7949</td>
<td>178.7949</td>
<td>178.9854</td>
<td>0.1126</td>
<td>0.3724</td>
</tr>
<tr>
<td>EE</td>
<td>$\theta = 9.1992 \ (2.1491), \ \hat{\alpha} = 1.0076 \ (0.1002)$</td>
<td>190.7447</td>
<td>194.7447</td>
<td>194.9352</td>
<td>0.1550</td>
<td>0.0840</td>
</tr>
<tr>
<td>TEE</td>
<td>$\theta = 7.4605 \ (2.1903), \ \hat{\alpha} = 1.1195 \ (0.1089), \ \hat{\lambda} = -0.7773 \ (0.1812)$</td>
<td>185.0412</td>
<td>191.0412</td>
<td>191.4283</td>
<td>0.1344</td>
<td>0.1844</td>
</tr>
<tr>
<td>TR</td>
<td>$\hat{\sigma} = 1.6957 \ (0.0825), \ \lambda = -0.9587 \ (0.0930)$</td>
<td>177.7488</td>
<td>183.7488</td>
<td>184.1359</td>
<td>0.1410</td>
<td>0.1447</td>
</tr>
</tbody>
</table>

Figure 6. Empirical cdf and fitted cdfs for breaking stress data

5. Conclusion

In this study, we have proposed a new lifetime distribution which can be used as an alternative of EP distribution called as TEP. This new distribution having increasing, decreasing and bathtub hazard rate function has more flexibility than
EP distribution. From two real data applications, it can have been concluded that TEP distribution has the best fitting among other fitted distributions. These real data applications show that TEP distribution is usefulness for modelling real data such as carbon fibres, operation and empirical data sets. These areas of application can be extended by using various real data sets which show fitting to TEP distribution.

REFERENCES

