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 ÖZ 

Bu çalışmada, eksenel basınç altındaki dik-katmanlı kompozit silindirlerin serbest titreşim davranışları dönel atalet ve 
kalınlık/yarıçap oranını içeren birinci mertebeden uygun bir kayma deformasyonlu kabuk teorisine dayanan yarı-analitik bir sonlu 
eleman kullanılarak araştırılmıştır. Öncelikle, eksenel simetrik kabuk sonlu elemanının doğrulanması için bir çalışma yapılmış ve 
basıncın bulunmadığı haller için geliştirilmiş sonlu eleman ile elde edilmiş titreşim frekanslarının literatürde bulunan neticeler ile 
çok iyi uyum içinde olduğu görülmüştür. Aynı eleman ilk katman göçme analizi için de doğrulanmış ve kayma deformasyonlu bir 
eğri kabuk elemanı ile ile elde edilen ilk katman göçme yükleri ile iyi uyum gözlenmiştir. Daha sonra, çeşitli sınır şartlarına sahip 
ve burkulma ve ilk katman göçme yüklerinden düşük olacak şekilde farklı düzeylerde eksenel basınca maruz kompozit silindirler  
için serbest titreşim analizleri yapılmıştır. Göz önünde bulundurulan silindirik yapıların temel titreşim frekanslarında karşı gelen 

burkulma yüklerinin % 60 ila 80 nispetinde eksenel yük değerleri için hızla azaldığı gözlemlenmiştir. Ayrıca, bazı nispeten kalın 
silindirlerde ilk-katman göçme yükünün burkulma yükünden az olduğu da belirlenmiştir.   

Anahtar Kelimeler: Titreşim, burkulma, kompozit silindir, sonlu elemanlar, basınç. 

The Influence of Axial Compression on the Free 

Vibration Frequencies of Cross-ply Laminated and 

Moderately Thick Cylinders 

ABSTRACT 

In this study, the free vibration behavior of axially compressed cross-ply laminated composite cylinders is investigated using a 
semi-analytical shell finite element based on a consistent first order shear deformable shell theory, which includes the influences 
of rotatory inertia and thickness coordinate/radius ratio. First, a verification study is conducted to validate the axisymmetric shell 

finite element used in this study and, for the non-compressed cases, the free vibration frequencies obtained using the finite element 
developed are found out to be in excellent agreement with the published results found in the literature. The same element is also 
validated for first-ply failure analysis and good agreement is observed with the first-ply failure loads obtained using a shear 
deformable and curved shell element. Then, numerical results for free vibration analyses are presented for axially compressed 
composite cylinders having different boundary conditions and for which the level of axial compression is kept below the 
corresponding linear buckling and first ply failure loads. It is observed that, the fundamental free vibration frequencies decrease 
sharply for axial load levels higher than about 60~80% of the buckling loads of the cylindrical structures considered. It is also 
determined that the first-ply failure load is lower than the buckling load for some of the thicker cylinders. 

Keywords: Vibration, buckling, composite cylinder, finite elements, compression. 

1. INTRODUCTION 

In the present study, the influence of axial compression 
on the vibration behavior of cross-ply laminated and 

moderately cylinders is numerically investigated. The 

primary aim here is to determine the relationship between 

the natural frequencies of vibration and buckling in order 

to be able to predict the onset of buckling. 

Surveys on the dynamics of cylindrical shells can be 

found in the review papers of Qatu [1] and Khdeir et al. 

[2] and the research study of Jones et al. [3]. The 

influence of axial loading for homogeneous isotropic, 

and orthotropic cylindrical shells was treated in several 

research studies found in the literature [4-13]. Armenàkas 

[4] has investigated the influence of axial stress on the 
frequncy of vibration of simply supported circular 

cylindrical shells using a bending theory. Rosen and 

Singer [5] have considered stiffened shells under axial 

compression and have presented analytical results for 

vibration frequency in comparison with experimental 

results. Bradford and Dong [6] and Greenberg and 

Stavsky [7] have investigated the vibratory 

characteristics of initially stressed laminated orthotropic 

cylinders. Yamada et al. [8] have investigated simply 

supported orthotropic cylinders under axial loads using 

the transfer matrix method. Chang and Lin [9] have 
considered simply supported and cross-ply laminated 

thin cylinders and have obtained a closed form solution. 

Greenberg and Stavsky [10] have also considered the 
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influence of nonuniform axial loads on the vibration 

characteristics of orthotropic composite cylindrical shells 

using a complex finite Fourier transform method. 

Matsunaga [11] has studied the free vibration behavior of 
thick circular cylinders using a higher order shell theory. 

Skusis et al. [12] have studied the vibration bahevior of 

steel cylinders under axial compressive loads in a more 

recent study. Arbelo et al. [13] have used experimental 

results to determine the real boundary conditions of flat 

plates and cylindrical shells.  However, in general, 

thinner composite cylinders have been studied and the 

first-ply failure (FPF) load, the thickness 

coordinate/radius ratio, and different boundary 

conditions taken into account here, has not been 

considered in these cited studies. In some of the related 

studies correlation of Matsunaga [11] has stated that the 
critical buckling stress of simply supported circular 

cylindrical shells subjected to initial axial stress can be 

predicted from the natural frequency of the shell without 

axial stress. Similar vibration-buckling correlation 

studies exist in the literature [12, 13]. 

The finite element numerical results are obtained here 

using a semi-analytical finite element, which is based on 

this consistent shell theory developed by Qatu [14], who 

obtained very accurate free vibration results for 

laminated composite shells by using a consistent first 

order shear deformable shell theory. In this theory, the 

1+z/R term is taken into account, where z and R denote 

the thickness coordinate and the radius, respectively. 

Using the same shell theory, Cagdas [15] has developed 

a curved axi-symmetric shell element, which is modified 

here for free vibration analysis, and Cagdas and Adali 

[16] have investigated the influence of pressure stiffness 
on the stability of cross-ply laminated moderately thick 

cylinders under hydrostatic pressure. In more recent 

studies, Cagdas [17, 18] has modified the same element 

for the stability and stress analysis of filament wound 

cones. This study is the first application of this 

moderately thick shell finite element to composite 

cylinder vibration problems including compressive 

loads. Also different boundary conditions are considered 

in this study. 

In order to validate the computer code developed for free 

vibration analysis, comparisons with published results in 

the literature are made and excellent agreement with the 

references for non-compressed cases is observed. Also, 

the element is validated for FPF analysis by comparing 

the FPF loads obtained with the ones obtained using a 2D 

superparametric shell element, developed recently by 

Cagdas and Adali [19]. After validating the finite element 
developed, the influence of axial compression on the free 

vibration frequencies of cross-ply laminated perfect 

cylinders having different boundary conditions is 

investigated. Numerical results are presented for axial 

compression levels less than the corresponding linear 

buckling or FPF loads of the cylinders. The influences of 

axial compression on the vibration frequencies are 

demonstrated by tables and graphs. Moreover, the 

influence of the boundary conditions are investigated. 

2. FINITE ELEMENT FORMULATION 

Brief formulation of the semi-analytical shell element 

used here, which was developed recently by Cagdas [15], 

is given next. In this study, this shell element is modified 

for free vibration and FPF analyses. The finite element is 

based on the following displacement field;  
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where nc , ns , and m denote  cos n ,  sin n , and the 

total number of harmonics, respectively. 
n
ru , 

nu , 
n
zu , 

n
iV , and n

iV  denote the radial, circumferential, and 

axial displacement components and the rotations in the 

nodal coordinate system corresponding to harmonic n, 

respectively. A local coordinate system ( , , 'z ) is 

defined at a Gauss point on the mid-surface of the 

cylinder where u , v , and w  denote the displacements 

parallel to  ,  , and 'z  coordinates and  , and   

are the rotations of the transverse normal about   and   

axes. R, Rext, Rint, and H denote the mean radius, external 

radius, internal radius, and thickness respectively. 

The cylinder problem considered is schematically shown 
in Fig. 1 excluding the restraints. The boundary 

conditions considered are explained in Table 1. 

 

Fig. 1. Details of the cylinder problem and the global and local 
coordinate systems 
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Table 1.  Boundary conditions considered (F:free, 
R:restrained) (See Fig. 1) 

Name 
zu  u  ru  V  V  

S3 F* R R F R 

S4 F* F R F R 

C3 F* R R R R 

C4 F* F R R R 

* zu  is not free at the restrained end 

2.1. The Strain-Displacement Relations 

The linear and non-linear strain-displacement relations 

are given below; 
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2.2. The force and Moment Resultants 

The force and moment resultants are given below; 
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The rigidity terms appearing in Equations (3.1, 3.2, and 

3.3) were presented by Qatu [14]. The lamination angle 

is taken as the angle between the fiber direction and the 

local  axis. 

2.3. The Element Matrices 

The strain energy Ue of element e can be written as 

 dAU
A

TTT
e   φQχMεN
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where χBεAN  0
, χDεBM  0

, and φCQ   are 

defined in Equations (3.1, 3.2, and 3.3) and the element 
stiffness matrix is given below in Eq. (5) 
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where, 2k  for 0n , and 1k  for mn ,,1  . B , 

B , B  are the strain-displacement matrices, and the 

superscript n stands for the nth harmonic.   denotes the 

shape function coordinate. 

The kinetic energy of the shell can be expressed as 
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   and 
k  is the 

mass density of the thk  layer of the cylinder per unit mid-

surface area; see Qatu [14]. Similarly, the element mass 

matrix denoted by ne,
M  can be obtained. 

The element geometric stiffness matrix is defined in Eq. 

(7) 
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1

,
,   dRzk

nTne
SGGKG                 (7) 

where S  is a matrix of membrane stresses and G  is a 

vector of derivatives of in-plane deformations at a Gauss 

point. 

2.4. Free Vibration Analysis of the Axially 

Compressed Structure 

Before conducting the free vibration analysis of the 

prestressed (axially compressed) structure, the 

corresponding buckling load should be calculated. First, 

the pre-buckling deformations under given axial 
compressive load   should be calculated. Then, the 

buckling load parameter   can be obtained by solving the 

eigenvalue problem given in Eq.(8) 

  0det 11 
n
Gcr

n
KK                   (8) 

where 1n
K  is the global stiffness matrix, 1n

GK  is the 

global geometric stiffness matrix corresponding to the 

harmonic 1n . The critical value of 1n  and the 

corresponding buckling load, which is equal to 

crcr PP 0 , are determined by trial. 

The natural frequency of vibration of a cylinder under a 

pre-determined level of axial compressive load can be 

obtained by solving the eigenvalue problem given in 

Eq.(9) 

    0det 2222
2







 
nnn

Gcr
n

f MKK 
           

(9) 

where, 2n  is the circular vibration frequency and 2n
M  

is the global mass matrix corresponding to the harmonic 

2n . The multiplier f is a positive real number, which 

scales the axial compressive load level. In the present 

study it is assumed that, 95.00  f . Buckling will 

generally not be the dominant failure mode for relatively 

thick cylinders; i.e. cylinders will fail due to excessive 
stress before buckling. Therefore, first-ply failure 

analysis using the maximum stress failure criterion is also 

conducted after obtaining the buckling load. If the FPF 

load is less than the buckling load, then the axial load 

level is kept below the FPF load. 

 

3. VERIFICATION PROBLEMS 

The finite element used here has been verified for linear 

static and stability analyses by Cagdas and Adali [16], 

and Cagdas [15] and therefore verification problems are 

only presented for vibration and FPF analyses as given in 

the following sections. 

The non-dimensional in-plane load parameter N  and the 

non-dimensional circular frequency   are defined as 

LHE

NR
N

1

610
 , 1ER                (10) 

where, 1E  is the modulus of elasticity in the fiber 

direction.  

3.1.  Verification of the Element for Free Vibration 

Analysis 
The problem considered here has been examined by Qatu 

[14], who has presented exact solutions for open 

cylindrical shells having two opposite edges simply 

supported. This type of boundary condition is also 

referred to in the literature as “all edges simply supported 

with shear diaphragm boundaries” or S3 type boundary 
condition as explained in Table 1; Khdeir et al. [2]. To be 

able to compare the numerical results with the reference 

analytical results and to prevent numerical problems, zu  

is restrained only at the mid-length in the finite element 

model and not at the cylinder ends. The “shear-

diaphragm” compatible boundary conditions used in this 

study are shown in Fig.2.  

Free vibration frequencies of cross-ply laminated 

cylinders made up of a graphite-epoxy material with 

psiE 6
1 1020.02  , psiE 6

2 103.1  , 

psiG 6
12 1003.1  , 3.012    

are listed in Table1 in comparison with the results 

presented by Qatu [14]. For the results presented in Table 

1, R/H=100 and stacking sequence is [90°/0°]. The RL  

ratio varies between 0.5 and 8. A total of 50 elements are 

used in the finite element model. 

 
Fig. 2. The “shear-diaphragm” compatible boundary conditions 

Excellent agreement with the analytical results of Qatu 

[14] can be observed from Table 2. It can also be 

observed that the accuracies of the numerical results do  
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not significantly detoriate with increasing mode number 

n. This probably is because the number of elements used 

was relatively high for the problem under consideration. 

3.2. Verification of the element for FPF analysis  

FPF analysis of a R/H=60, RL =1, composite cylinder 

made up of T300/5208 material under axial compression 

is considered next. The S3 boundary conditions are 

imposed. The properties of T300/5208 graphite/epoxy 

pre-preg are listed in Table 3, see Ochoa and Reddy [20]. 

The numerical results obtained using the axisymmetric 

shell element are given in Table 4, in comparison with 

the results obtained using a 2D shell element; Cagdas and 

Adali [16]. For both models, stresses are extrapolated 

from the Gauss points to the element corner nodes. As 

can be seen from Table 4 the maximum difference 

between the 2D shell element results and the 

axisymmetric shell element results is less than 3% for all 

of the cases considered. A refined mesh is required to 

obtain plausible FPF analysis results using the 2D shell 

elements. However, it should be noted that, excessive 

mesh refinement may result in errors when using the 2D 

shell element. It is observed that, if, due to mesh 

refinement, the thickness of the 2D shell element 

becomes less than ¼ of the element’s shorter edge length 

a finer mesh may yield unreliable results. The 

axisymmetric element does not demonstrate such 

behavior. 

 

3.3. Verification of the element for free vibration 

analysis including axial stress 

Before proceeding with the numerical study, the 

numerical results presented by Greenberg and Stavsky 

[10] for two layered cross-ply laminated composite 

cylinders under 104lbs/in. axial compressive force with 

S3 B.C. are compared with the results obtained in this 
study; see Table 5. Note that, the inner layer has fibers 

aligned in circumferential direction with a thickness of 4 

mm and the total thickness is equal to 10 mm. The 

material properties used by Greenberg and Stavsky [10] 

are; 
29

1 1019 mNE  , 29
2 107.6 mNE   

Table 2. Frequency parameters   for R/H=100, [90°/0°] cylinders (material 1). 

n 

RL =8 RL =4 RL =2 RL =1 RL =0.5 

Present 

Study 

Qatu 

[14] 

Present 

Study 

Qatu 

[14] 

Present 

Study 

Qatu 

[14] 

Present 

Study 

Qatu 

[14] 

Present 

Study 

Qatu 

[14] 
0 0.08907 0.08907 0.17815 0.17815 0.35629 0.35629 0.73575 0.71259 0.73078 0.73090 

1 0.04925 0.04925 0.11653 0.11653 0.24079 0.24079 0.44337 0.44339 0.63562 0.63573 

2 0.02182 0.02182 0.06276 0.06276 0.14667 0.14668 0.29320 0.29322 0.49547 0.49559 

3 0.01553 0.01553 0.03836 0.03836 0.09770 0.09770 0.21023 0.21025 0.38987 0.38999 

4 0.02143 0.02143 0.03146 0.03147 0.07183 0.07184 0.16103 0.16105 0.31682 0.31694 

5 0.03296 0.03298 0.03697 0.03699 0.06124 0.06126 0.13133 0.13136 0.26676 0.26689 

6 0.04785 0.04789 0.04971 0.04975 0.06308 0.06312 0.11555 0.11560 0.23332 0.23335 

7 0.06562 0.06570 0.06669 0.06678 0.07425 0.07433 0.11152 0.11160 0.21256 0.21273 

8 0.08618 0.08632 0.08692 0.08707 0.09162 0.09177 0.11763 0.11777 0.20288 0.20311 

9 0.10948 0.10971 0.11007 0.11030 0.11336 0.11359 0.13192 0.13216 0.20295 0.20327 

10 0.13552 0.13587 0.13602 0.13637 0.13856 0.13892 0.15247 0.15284 0.21162 0.21208 

 

Table 4. FPF load parameters FPFN  for R/H=60, 

               RL =1, S3 B.C., material T300/5208. 

Lay-up Axisym.(50 el.) 2D (32×10) 

[90/90]s 112465 115469 

[0/0]s 3482472 3394267 

[90/0]s 756430 767994 

[0/90]s 812289 814023 

 

Table 3. Material properties of T300/5208 

graphite/epoxy pre-preg. (units: N-mm) 

1E  132379.37 TX  1513.40 

2E  10755.82 CX  1696.11 

3E  10755.82 TT ZY   43.78 

1312 GG   5653.70 CC ZY   43.78 

23G  3378.43 R  67.57 

1312    0.24 TS   86.87 

23  0.49   

 

Table 5. Free vibration frequencies   310n  (sec-1) for R/H=20, S3 B.C. 

RL  Donnel theory [10] Love-type Theory [10] Greenberg and Stavsky [10] Present Study 

.5 16.05 (4) 15.39 (4) 10.40 (4) 9.61 (4) 

.9 9.02 (4) 8.45 (3) 6.51 (4) 5.96 (4) 

2 4.86 (3) 4.33 (3) 3.96 (3) 3.27 (3) 

4 2.92 (4) 2.41 (2) 2.65 (2) 2.04 (2) 
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29

12 101.4 mNG  ,
26

13 1019 mNG  ,

26
23 1019 mNG  ,

3310643.1 mkg , 3.012  . 

As can be observed from Table 5, there are considerable 

differences between different shell theories and the 

results obtained in this study are lower than the results 

presented by Greenberg and Stavsky [10], even though 

shear deformation was considered in [10]. The 

differences may be attributed to the influence of 

thickness coordinate/radius ratio considered in the 

present study.  

 

4. NUMERICAL RESULTS AND DISCUSSION 

The problem under consideration is the determination of 

the free vibration frequencies of cross-ply laminated 

cylinders under pre-determined levels of axial 

compressive load. The axial compressive load is limited 

to the corresponding critical buckling load or to the FPF 

load of the cross-ply cylinder analyzed. 

4.1. Numerical Results 

In the following sub-sections the numerical results 

obtained using 50 axisymmetric finite elements for the 

selected problems are given both in tabular and graphical 
forms. The material used is specified as T300/5208 

graphite-epoxy for which material properties are given in 

Table 3. The non-dimensional thicknesses of the 0˚ and 

90˚ plies are given by HHh /00  and HHh /9090  , 

respectively, where 0H  and 90H  are the thicknesses of 

0˚ and 90˚ plies. 

4.1.1. The influence of L/R ratio 

In Table 6, numerical results are presented for S3 B.C., 

90h =0.25, L/R=1 and H=R/60 and for several values of 

f=[0,0.95]. The non-dimensional buckling load crN

=713160, and the corresponding critical wave number 

ncr=6 and FPFN =756430 (see Table 3) for this case. 

As can be observed from Table 6, for the non-compressed 

case, i.e. for f=0, the 5th harmonic gives min =0.1626, 

which is the lowest vibration frequency and values 
decrease with increasing f for all of the n2 values 

considered. Also, the value of n2,min does not change for 

f≤0.95 and the numerical results show that  

there is a smooth decrease up to f=0.9 and a sharp 

decrease after higher axial compressive load level is 

reached. This sudden change is a warning of buckling and 

may be helpful while inspecting or monitoring related 

structures. Another observation that can be made from 

Table 6. Frequency parameters   for R/H=60, [90°/0°]s, RL =1 cylinder.  

.n2 f =0.00 f =0.25 f =0.50 f =0.75 f =0.80
 

f =0.90
 

f =0.95
 

0 0.6492 0.6487 0.6459 0.6426 0.6406 0.6382 0.6319 

1 0.4134 0.4125 0.4080 0.4029 0.3996 0.3959 0.3938 

2 0.2714 0.2701 0.2632 0.2551 0.2499 0.2439 0.2406 

3 0.1980 0.1962 0.1867 0.1751 0.1674 0.1583 0.1531 

4 0.1645 0.1623 0.1506 0.1360 0.1259 0.1135 0.1062 

5 0.1626 0.1605 0.1486 0.1338 0.1236 0.1109 0.1033 

6 0.1876 0.1858 0.1756 0.1632 0.1550 0.1419 0.1173 

7 0.2324 0.2309 0.2228 0.2132 0.2069 0.1819 0.1462 

8 0.2913 0.2901 0.2837 0.2762 0.2690 0.2439 0.2121 

9 0.3610 0.3600 0.3549 0.3489 0.3410 0.3188 0.2951 

10 0.4398 0.4390 0.4348 0.4300 0.4230 0.4051 0.3868 

 

Table 7. Frequency parameters   for R/H=60, [90°/0°]s, RL =10 cylinder.  

.n2 f =0.00 f =0.25 f =0.50 f =0.75 f =0.80
 

f =0.90
 

f =0.95
 

0 0.0649 0.0648 0.0646 0.0642 0.0641 0.0638 0.0637 

1 0.0380 0.0379 0.0374 0.0367 0.0365 0.0361 0.0358 

2 0.0222 0.0219 0.0211 0.0197 0.0193 0.0185 0.0180 

3 0.0358 0.0357 0.0352 0.0342 0.0340 0.0334 0.0331 

4 0.0660 0.0659 0.0656 0.0648 0.0644 0.0633 0.0624 

5 0.1059 0.1059 0.1057 0.1043 0.1036 0.1010 0.0984 

6 0.1547 0.1546 0.1547 0.1522 0.1509 0.1402 0.1130 

7 0.2118 0.2118 0.2136 0.2084 0.2298 0.1794 0.1455 

8 0.2771 0.2771 0.2788 0.2808 0.2857 0.2404 0.2125 

9 0.3504 0.3504 0.3522 0.4045 0.3972 0.3171 0.2954 

10 0.4312 0.4312 0.4327 0.4510 0.4528 0.4037 0.3870 
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Table 6 is that, the negative influence of axial 

compression on the free vibration frequency is very high 

for some n2 values, especially for the ones corresponding 
to the lowest natural frequency and the buckling mode 

shape. Here, for the cases considered, f=0.75 leads to a 

reduction of around 20% in min  and the other 

frequency values are reduced less. The decrease in  
with increasing f is more pronounced for n2=5 and 6. 

These preliminary results obtained show that the negative 

influence of axial compression on the free vibration 

behavior will be lower if appropriate safety factors are 

used against buckling. 

Numerical results are also presented in Table 7 for RL

=10, in order to investigate the influence of cylinder RL  

ratio. For this case, crN =88740, ncr=6 and FPFN

=106266. It can be observed from Table 7 that, for RL

=10, the negative influence of axial compression is lower 

comparing with the case RL =1. 

4.1.2. Buckling and FPF critical cylinders 

The percentage difference denoted by   is defined as 

 
100

0,

0,0,











fn

fnfn
n  

where 
0,  fn

, 
0,  fn

 denote the nth vibration mode 
non-dimensional frequencies corresponding to the cases 

0f  and 0f . 

It can be observed from Figures 3(a) and 3(b) that, the 

influence of axial compression on the free vibration 

frequencies is higher for thicker cylinders and thicker 

cylinders more rapidly loose rigidity with increasing 

axial compression level comparing with thinner cylinders 

especially for f<0.8. The curvature of the  curve changes 
rapidly for f>0.8 and the behavior is only slightly 

different for S4 and C4 boundary conditions. It can also 
be observed that the decrease in omega with increasing f 

is unexpectedly lower for thinner cylinders.  

The results obtained, in general, show that it may not be 

possible to correlate free vibration and buckling 

parameters. Different boundary conditions are also 

considered and the vibration frequency-buckling load 

correlation is shown to be related with the boundary 

conditions. However, it is influence is found out to be 

limited. However, as expected cylinders with C4 BC are 

more stiff comparing with the cylinders with S4 BC. 

 

 

 

(a)

(b) 
Fig. 3. Variations of  with R/t and f for L/R=1, [90°,0°]s  (a) S4 (b) C4 
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4. CONCLUSIONS 

A finite element formulation for free vibration analysis 

of axially compressed, moderately thick, cross-ply 

laminated composite cylinders is presented. Firstly, some 
verification problems are solved and the high accuracy of 

the element in free vibration and FPF analyses is 

demonstrated. The free vibration frequencies obtained 

for the non-compressed cases are found out to be in 

excellent agreement with the analytical results found in 

the literature. Then, the effects of the axial compression, 

geometry, end conditions, and the stacking sequence on 

the free vibration frequencies are investigated.Numerical 

results for free vibration analyses are presented for 

axially compressed cylinders having different boundary 

conditions and for which the level of axial compression 

is kept below the corresponding linear buckling and the 
first ply failure loads. The numerical results show that, 

the related natural frequencies decrease somewhat 

linearly with increasing axial compressive load levels up 

to about 70~80% of the buckling loads of the structures 

considered and decrease non-linearly for higher load 

levels. Therefore, it is deduced that, it may, in practical 

applications, be possible to predict the onset of buckling 

by monitoring the change of the natural frequencies 

under increasing axial compressive load levels. It is also 

revealed that the decrease in frequency parameters is 

more pronounced for the mode shapes corresponding to 
the lowest frequency, i.e. not for the ones corresponding 

to the buckling mode shapes. 

The most important outcome of this study for design 

purposes is that, the negative influence of axial 

compression is found out to be the reduction of the 

minimum natural frequency by about 20% even for 

f=0.75. Also, it is revealed that higher L/R ratios lead to 

lower reduction and for thick cylinders, for which the 

buckling load is lower than the FPF load, the reduction in 

free vibration frequency will be much lower. 
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