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Eksenel Basincin Dik-katmanli ve Orta Kalinlikta
Silindirlerin Serbest Titresim Frekanslarina Etkisi

Arastirma Makalesi / Research Article

izzet Ufuk CAGDAS*
Miihendislik Fakiiltesi, Ingaat Miih. Boliimii, Akdeniz Universitesi, Antalya, Tiirkiye
(Gelig/Received : 24.07.2018 ; Kabul/Accepted : 06.02.2019)
oz
Bu caligmada, eksenel basing altindaki dik-katmanli kompozit silindirlerin serbest titresim davranislar1 donel atalet ve
kalinlik/yarigap oranini igeren birinci mertebeden uygun bir kayma deformasyonlu kabuk teorisine dayanan yari-analitik bir sonlu
eleman kullanilarak arastirilmstir. Oncelikle, eksenel simetrik kabuk sonlu elemanimnin dogrulanmasi igin bir ¢alisma yapilmis ve
basincin bulunmadigr haller igin gelistirilmis sonlu eleman ile elde edilmis titresim frekanslarinin literatiirde bulunan neticeler ile
¢ok iyi uyum i¢inde oldugu goriilmiistiir. Ayn1 eleman ilk katman gd¢me analizi i¢in de dogrulanmis ve kayma deformasyonlu bir
egri kabuk elemant ile ile elde edilen ilk katman gé¢me yiikleri ile iyi uyum gozlenmistir. Daha sonra, gesitli sinir sartlarina sahip
ve burkulma ve ilk katman gd¢me yiiklerinden diisiik olacak sekilde farkli diizeylerde eksenel basinca maruz kompozit silindirler
icin serbest titresim analizleri yapilmustir. G6z oniinde bulundurulan silindirik yapilarin temel titresim frekanslarinda kars1 gelen
burkulma yiiklerinin % 60 ila 80 nispetinde eksenel yiik degerleri i¢in hizla azaldig1 gézlemlenmistir. Ayrica, bazi nispeten kalin
silindirlerde ilk-katman go¢me yiikiiniin burkulma yiikiinden az oldugu da belirlenmistir.
Anahtar Kelimeler: Titresim, burkulma, kompozit silindir, sonlu elemanlar, basing.

The Influence of Axial Compression on the Free
Vibration Frequencies of Cross-ply Laminated and
Moderately Thick Cylinders

ABSTRACT

In this study, the free vibration behavior of axially compressed cross-ply laminated composite cylinders is investigated using a
semi-analytical shell finite element based on a consistent first order shear deformable shell theory, which includes the influences
of rotatory inertia and thickness coordinate/radius ratio. First, a verification study is conducted to validate the axisymmetric shell
finite element used in this study and, for the non-compressed cases, the free vibration frequencies obtained using the finite element
developed are found out to be in excellent agreement with the published results found in the literature. The same element is also
validated for first-ply failure analysis and good agreement is observed with the first-ply failure loads obtained using a shear
deformable and curved shell element. Then, numerical results for free vibration analyses are presented for axially compressed
composite cylinders having different boundary conditions and for which the level of axial compression is kept below the
corresponding linear buckling and first ply failure loads. It is observed that, the fundamental free vibration frequencies decrease
sharply for axial load levels higher than about 60~80% of the buckling loads of the cylindrical structures considered. It is also
determined that the first-ply failure load is lower than the buckling load for some of the thicker cylinders.

Keywords: Vibration, buckling, composite cylinder, finite elements, compression.

research studies found in the literature [4-13]. Armenakas
1. INTRODUCTION [4] has investigated the influence of axial stress on the
In the present study, the influence of axial compression ~ frequncy of vibration of simply supported circular
on the vibration behavior of cross-ply laminated and  cylindrical shells using a bending theory. Rosen and
moderately cylinders is numerically investigated. The  Singer [5] have considered stiffened shells under axial
primary aim here is to determine the relationship between ~ compression and have presented analytical results for
the natural frequencies of vibration and buckling in order ~ vibration frequency in comparison with experimental
to be able to predict the onset of buckling. results. Bradford and Dong [6] and Greenberg and

Surveys on the dynamics of cylindrical shells can be  Stavsky [7] ~have investigated the vibratory
found in the review papers of Qatu [1] and Khdeir et al. chqracterlstlcs of initially stressed Ia_mlnat(_ad orthotroplc
[2] and the research study of Jones et al. [3]. The cylinders. Yamada et al._[8] have mves_tlgated S|m_ply
influence of axial loading for homogeneous isotropic, supported orthotropic cylinders under axial loads using

and orthotropic cylindrical shells was treated in several ~ the transfer matrix method. Chang and Lin [9] have
considered simply supported and cross-ply laminated

*Sorumlu Yazar (Corresponding author) thin cylinders and have obtained a closed form solution.
e-posta : izzetufuk@gmail.com Greenberg and Stavsky [10] have also considered the
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influence of nonuniform axial loads on the vibration
characteristics of orthotropic composite cylindrical shells
using a complex finite Fourier transform method.
Matsunaga [11] has studied the free vibration behavior of
thick circular cylinders using a higher order shell theory.
Skusis et al. [12] have studied the vibration bahevior of
steel cylinders under axial compressive loads in a more
recent study. Arbelo et al. [13] have used experimental
results to determine the real boundary conditions of flat
plates and cylindrical shells. However, in general,
thinner composite cylinders have been studied and the
first-ply  failure (FPF) load, the thickness
coordinate/radius  ratio, and different boundary
conditions taken into account here, has not been
considered in these cited studies. In some of the related
studies correlation of Matsunaga [11] has stated that the
critical buckling stress of simply supported circular
cylindrical shells subjected to initial axial stress can be
predicted from the natural frequency of the shell without
axial stress. Similar vibration-buckling correlation
studies exist in the literature [12, 13].

The finite element numerical results are obtained here
using a semi-analytical finite element, which is based on
this consistent shell theory developed by Qatu [14], who
obtained very accurate free vibration results for
laminated composite shells by using a consistent first
order shear deformable shell theory. In this theory, the
1+z/R term is taken into account, where z and R denote
the thickness coordinate and the radius, respectively.
Using the same shell theory, Cagdas [15] has developed
a curved axi-symmetric shell element, which is modified
here for free vibration analysis, and Cagdas and Adali
[16] have investigated the influence of pressure stiffness
on the stability of cross-ply laminated moderately thick
cylinders under hydrostatic pressure. In more recent
studies, Cagdas [17, 18] has modified the same element
for the stability and stress analysis of filament wound
cones. This study is the first application of this
moderately thick shell finite element to composite
cylinder vibration problems including compressive
loads. Also different boundary conditions are considered
in this study.

In order to validate the computer code developed for free
vibration analysis, comparisons with published results in
the literature are made and excellent agreement with the
references for non-compressed cases is observed. Also,
the element is validated for FPF analysis by comparing
the FPF loads obtained with the ones obtained using a 2D
superparametric shell element, developed recently by
Cagdas and Adali [19]. After validating the finite element
developed, the influence of axial compression on the free
vibration frequencies of cross-ply laminated perfect
cylinders having different boundary conditions is
investigated. Numerical results are presented for axial
compression levels less than the corresponding linear
buckling or FPF loads of the cylinders. The influences of
axial compression on the vibration frequencies are
demonstrated by tables and graphs. Moreover, the
influence of the boundary conditions are investigated.
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2. FINITE ELEMENT FORMULATION

Brief formulation of the semi-analytical shell element
used here, which was developed recently by Cagdas [15],
is given next. In this study, this shell element is modified
for free vibration and FPF analyses. The finite element is
based on the following displacement field,;

u, [c, 0 0 0 Olu
Up| |0 s, 0 0 0 ug
u, e=>/0 0 ¢, 0 0Rul (1)
Voil ™o 0o 0 ¢, ofvh
Vi |0 0 O Sn || Vai

where ¢, , s,, and m denote cos(né), sin(nd), and the

n

total number of harmonics, respectively. u;, ug, uj,

n
al !

axial displacement components and the rotations in the
nodal coordinate system corresponding to harmonic n,
respectively. A local coordinate system («,6,z') is
defined at a Gauss point on the mid-surface of the
cylinder where u, v, and w denote the displacements
parallel to ¢, 6, and z' coordinates and v, , and v,

are the rotations of the transverse normal about € and «
axes. R, Rext, Rint, and H denote the mean radius, external
radius, internal radius, and thickness respectively.

The cylinder problem considered is schematically shown
in Fig. 1 excluding the restraints. The boundary
conditions considered are explained in Table 1.

and V,; denote the radial, circumferential, and

Fig. 1. Details of the cylinder problem and the global and local
coordinate systems
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Table 1. Boundary conditions considered (F:free,
R:restrained) (See Fig. 1)
Name | u, | uy, | u, | V, | Vy
S3 F* R R F R
S4 F* F R F R
C3 F* R R R R
C4 F* F R R R

* U, isnot free at the restrained end

2.1. The Strain-Displacement Relations

The linear and non-linear strain-displacement relations
are given below;

Eu =80 +1' Xy (2.1)
g = (ﬁ}(%e + Z'la) (2.2
1
Va0 = €00t (m}?ow +
. 2.3)
Z'ijl&z +la9:|
=l ow) 24)
Ya 1+ z/R Yoar .
Yo =Va t+ WO,a (25)
g(r;; = % [(Uo,a)z + (VO,a )2 + (WO,a)z] (26)
no_ 1 (Uo,e)z +(V0,0 f +(Wo,a Fe.. 27
%" 2R? 2Wq Vg g — 2V Wy g + V4 + W5 '
58&9 = %(_VOWO,Q +WOVO,a) (2.8)
E0p = %(UO,aUO,H +Vo,oVo,6 + WO,aWO,H) (2.9)
and,
oy 1 ((Uo,a) )
B £00 ~ E WO +V0‘9
oo ] Moo) [
€06a %(Uoﬂ)
V)
la 1 ( )
_ Xo _ = l//e,e
X Xao ?V/H,a) l
Xt E(l//aﬂ)
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¥ l//a+W0,a

_J/0az" | _

R S Y
06z R R [

2.2. The force and Moment Resultants
The force and moment resultants are given below;

N, K11 612 'Kl(i 6‘16 €0a

Ng _ 512 Az ézs A || 0o .

Ngo A 'f\ze Ass 666 €0ab

Tﬂa A:LG_ Ax Ass Pes | f00n 3.1)

Bi1 I?12 Bis I?’16 Xa

B, By By By || 2o

B_le ?26 §66 I?ee Xao

Bie By Bes Bgs (e

M, By Bi By B | €oa
I My _ By, é22 Bas éze €00 .

Mo Bie Bax Bes Bes ||S0as

'\_/' Oc BlG_ éZG Bes ése €06a (32)

Dy I?12 Dis [316 Xa

D, Dy Dy Do | 2o

516 [326 566 [366 Xab

Dis D2 Des Des || X0a
GHRz e

Qo) 6| A5 Ay lYoa

The rigidity terms appearing in Equations (3.1, 3.2, and
3.3) were presented by Qatu [14]. The lamination angle
is taken as the angle between the fiber direction and the
local « axis.

2.3. The Element Matrices
The strain energy U, of element e can be written as

1
u, :EJ(NT80+MT1+QT(|))dA )

A
where N=Ag’ + By, M=Be’+ Dy, and Q=Cg¢ are

defined in Equations (3.1, 3.2, and 3.3) and the element
stiffness matrix is given below in Eq. (5)

[B1DB, +BIBB, +... "
KD —kz[|BICB, +BlAB, +... | (-z.)Rds (5)
B} BB,
where, k=2 for n=0,and k=1 for n=1...,m. B,,

BZ , B¢ are the strain-displacement matrices, and the

superscript n stands for the n" harmonic. & denotes the
shape function coordinate.
The kinetic energy of the shell can be expressed as
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22 1), ]
(ué+v§+w§(ll+lzﬁ +...

P 1
T :E” (y/§+y/§(|3+ I“E}”'

al

Rdadd  (6)

(. . . 1
UV o +Vo¥e |2+|3E

where {Il,lz,l3,l4}:%pk{l,z,zz,f} and p* is the
k=1

mass density of the K layer of the cylinder per unit mid-
surface area; see Qatu [14]. Similarly, the element mass
matrix denoted by M*®" can be obtained.

The element geometric stiffness matrix is defined in Eq.

()
K =k (676 (2. Rde )
4

where S is a matrix of membrane stresses and G is a
vector of derivatives of in-plane deformations at a Gauss
point.

2.4. Free Vibration Analysis
Compressed Structure

Before conducting the free vibration analysis of the
prestressed  (axially compressed) structure, the
corresponding buckling load should be calculated. First,
the pre-buckling deformations under given axial
compressive load  should be calculated. Then, the
buckling load parameter can be obtained by solving the
eigenvalue problem given in Eq.(8)

det(™ - 1, KY )=0 ®)

of the Axially

where K™ is the global stiffness matrix, K¢ is the

global geometric stiffness matrix corresponding to the
harmonic n,. The critical value of n; and the

corresponding buckling load, which is equal to
P.r = PoAe , are determined by trial.

The natural frequency of vibration of a cylinder under a
pre-determined level of axial compressive load can be
obtained by solving the eigenvalue problem given in

Eqg.(9)
det[K”Z —fx A (ng )+ (w”Z)ZM"Z}: 0 ©)

where, ®™ is the circular vibration frequency and M"™
is the global mass matrix corresponding to the harmonic
n, . The multiplier f is a positive real number, which

scales the axial compressive load level. In the present
study it is assumed that, 0< f <0.95. Buckling will

generally not be the dominant failure mode for relatively
thick cylinders; i.e. cylinders will fail due to excessive
stress before buckling. Therefore, first-ply failure
analysis using the maximum stress failure criterion is also
conducted after obtaining the buckling load. If the FPF

load is less than the buckling load, then the axial load
level is kept below the FPF load.

3. VERIFICATION PROBLEMS

The finite element used here has been verified for linear
static and stability analyses by Cagdas and Adali [16],
and Cagdas [15] and therefore verification problems are
only presented for vibration and FPF analyses as given in
the following sections.

The non-dimensional in-plane load parameter N and the
non-dimensional circular frequency Q are defined as
6
- 10°NR ,
E,LH

where, E; is the modulus of elasticity in the fiber

direction.
3.1. Verification of the Element for Free Vibration
Analysis

The problem considered here has been examined by Qatu
[14], who has presented exact solutions for open
cylindrical shells having two opposite edges simply
supported. This type of boundary condition is also
referred to in the literature as “all edges simply supported
with shear diaphragm boundaries” or S3 type boundary
condition as explained in Table 1; Khdeir et al. [2]. To be
able to compare the numerical results with the reference
analytical results and to prevent numerical problems, u,

is restrained only at the mid-length in the finite element
model and not at the cylinder ends. The “shear-
diaphragm” compatible boundary conditions used in this
study are shown in Fig.2.

Free vibration frequencies of cross-ply laminated
cylinders made up of a graphite-epoxy material with

E, = 20.02 x10° psi , E, =1.3x10° psi,

Gy, =1.03x10%psi , v, =0.3

are listed in Tablel in comparison with the results
presented by Qatu [14]. For the results presented in Table
1, R/H=100 and stacking sequence is [90°/0°]. The L/R

ratio varies between 0.5 and 8. A total of 50 elements are
used in the finite element model.

Q=wRp/E (20)

A B ;
| L2 | L/2 |

Fig. 2. The “shear-diaphragm” compatible boundary conditions
Excellent agreement with the analytical results of Qatu

[14] can be observed from Table 2. It can also be
observed that the accuracies of the numerical results do
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Table 2. Frequency parameters Q for R/H=100, [90°/0°] cylinders (material 1).

L/R =8

L/R =4

L/R =2

L/R =1

L/R =0.5

N | Present
Study

Qatu
[14]

Present
Study

Qatu
[14]

Present
Study

Qatu
[14]

Present
Study

Qatu
[14]

Present | Qatu
Study [14]

0.08907

0.08907

0.17815

0.17815

0.35629

0.35629

0.73575

0.71259

0.73078 | 0.73090

0.04925

0.04925

0.11653

0.11653

0.24079

0.24079

0.44337

0.44339

0.63562 | 0.63573

0.02182

0.02182

0.06276

0.06276

0.14667

0.14668

0.29320

0.29322

0.49547 | 0.49559

0.01553

0.01553

0.03836

0.03836

0.09770

0.09770

0.21023

0.21025

0.38987 | 0.38999

0.02143

0.02143

0.03146

0.03147

0.07183

0.07184

0.16103

0.16105

0.31682 | 0.31694

0.03296

0.03298

0.03697

0.03699

0.06124

0.06126

0.13133

0.13136

0.26676 | 0.26689

0.04785

0.04789

0.04971

0.04975

0.06308

0.06312

0.11555

0.11560

0.23332 | 0.23335

0.06562

0.06570

0.06669

0.06678

0.07425

0.07433

0.11152

0.11160

0.21256 | 0.21273

0.08618

0.08632

0.08692

0.08707

0.09162

0.09177

0.11763

0.11777

0.20288 | 0.20311

O|o|N|O|O|A_([WIN(F|O

0.10948

0.10971

0.11007

0.11030

0.11336

0.11359

0.13192

0.13216

0.20295 | 0.20327

=
o

0.13552

0.13587

0.13602

0.13637

0.13856

0.13892

0.15247

0.15284

0.21162 | 0.21208

not significantly detoriate with increasing mode number
n. This probably is because the number of elements used
was relatively high for the problem under consideration.

3.2. Verification of the element for FPF analysis

FPF analysis of a R/H=60, L/R =1, composite cylinder

made up of T300/5208 material under axial compression
is considered next. The S3 boundary conditions are
imposed. The properties of T300/5208 graphite/epoxy
pre-preg are listed in Table 3, see Ochoa and Reddy [20].
The numerical results obtained using the axisymmetric

obtain plausible FPF analysis results using the 2D shell
elements. However, it should be noted that, excessive
mesh refinement may result in errors when using the 2D
shell element. It is observed that, if, due to mesh
refinement, the thickness of the 2D shell element
becomes less than % of the element’s shorter edge length
a finer mesh may vyield unreliable results. The
axisymmetric element does not demonstrate such
behavior.

Table 4. FPF load parameters NFPF for R/H=60,

Table 3. Material properties of T300/5208 ]
graphite/epoxy pre-preg. (units: N-mm) L/R =1, S3 B.C., material T300/5208.
E, 13237937 X+ 1513.40 Lay-up Axisym.(50el.) | 2D (32x10)
E, 10755.82 Xc 1696.11 [90/90]s 112465 115469
E, 10755.82 Y; =Z; 43.78 [0/0]s 3482472 3394267
Gy, =Gy3 5653.70 Yo =2Z¢ 43.78 [90/0]s 756430 767994
G 3378.43 R 67.57 3(3. PR at{on of #1828 ment for e %RSration
Vir =V 0.24 S=T 86.87 analysis including axial stress
B Before proceeding with the numerical study, the
Va3 0.49 numerical results presented by Greenberg and Stavsky

shell element are given in Table 4, in comparison with
the results obtained using a 2D shell element; Cagdas and
Adali [16]. For both models, stresses are extrapolated
from the Gauss points to the element corner nodes. As
can be seen from Table 4 the maximum difference
between the 2D shell element results and the
axisymmetric shell element results is less than 3% for all
of the cases considered. A refined mesh is required to

[10] for two layered cross-ply laminated composite
cylinders under 10%lbs/in. axial compressive force with
S3 B.C. are compared with the results obtained in this
study; see Table 5. Note that, the inner layer has fibers
aligned in circumferential direction with a thickness of 4
mm and the total thickness is equal to 10 mm. The
material properties used by Greenberg and Stavsky [10]

are; E,; =19x10° N/m?, E, =7.6 x10° N/m?

Table 5. Free vibration frequencies a)(n)/ 10° (sec?) for R/H=20, S3 B.C.

L/R Donnel theory [10] | Love-type Theory [10] | Greenberg and Stavsky [10] | Present Study
5 16.05 (4) 15.39 (4) 10.40 (4) 9.61 (4)
9 9.02 (4) 8.45 (3) 6.51 (4) 5.96 (4)
2 4.86 (3) 4.33(3) 3.96 (3) 3.27(3)
4 2.92 (4) 2.41(2) 2.65(2) 2.04 (2)

49
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Table 6. Frequency parameters Q for R/H=60, [90°/0°]s, L/R =1 cylinder.

.ny f =0.00 f =0.25 f =0.50 f =0.75 f =0.80 f =0.90 f =0.95
0 0.6492 0.6487 0.6459 0.6426 0.6406 0.6382 0.6319
1 0.4134 0.4125 0.4080 0.4029 0.3996 0.3959 0.3938
2 0.2714 0.2701 0.2632 0.2551 0.2499 0.2439 0.2406
3 0.1980 0.1962 0.1867 0.1751 0.1674 0.1583 0.1531
4 0.1645 0.1623 0.1506 0.1360 0.1259 0.1135 0.1062
5 0.1626 0.1605 0.1486 0.1338 0.1236 0.1109 0.1033
6 0.1876 0.1858 0.1756 0.1632 0.1550 0.1419 0.1173
7 0.2324 0.2309 0.2228 0.2132 0.2069 0.1819 0.1462
8 0.2913 0.2901 0.2837 0.2762 0.2690 0.2439 0.2121
9 0.3610 0.3600 0.3549 0.3489 0.3410 0.3188 0.2951
10 0.4398 0.4390 0.4348 0.4300 0.4230 0.4051 0.3868
Table 7. Frequency parameters Q for R/H=60, [90°/0°]s, L/ R =10 cylinder.
Ny f =0.00 f =0.25 f =0.50 f =0.75 f =0.80 f =0.90 f =0.95
0 0.0649 0.0648 0.0646 0.0642 0.0641 0.0638 0.0637
1 0.0380 0.0379 0.0374 0.0367 0.0365 0.0361 0.0358
2 0.0222 0.0219 0.0211 0.0197 0.0193 0.0185 0.0180
3 0.0358 0.0357 0.0352 0.0342 0.0340 0.0334 0.0331
4 0.0660 0.0659 0.0656 0.0648 0.0644 0.0633 0.0624
5 0.1059 0.1059 0.1057 0.1043 0.1036 0.1010 0.0984
6 0.1547 0.1546 0.1547 0.1522 0.1509 0.1402 0.1130
7 0.2118 0.2118 0.2136 0.2084 0.2298 0.1794 0.1455
8 0.2771 0.2771 0.2788 0.2808 0.2857 0.2404 0.2125
9 0.3504 0.3504 0.3522 0.4045 0.3972 0.3171 0.2954
10 0.4312 0.4312 0.4327 0.4510 0.4528 0.4037 0.3870

Gy = 4.1x10° N/m? , Gy =19x10° N/m?,

Gy =19x10° N/m? | p=1.643x10°kg/m® , v}, =0.3.
As can be observed from Table 5, there are considerable
differences between different shell theories and the
results obtained in this study are lower than the results
presented by Greenberg and Stavsky [10], even though
shear deformation was considered in [10]. The
differences may be attributed to the influence of
thickness coordinate/radius ratio considered in the
present study.

4. NUMERICAL RESULTS AND DISCUSSION
The problem under consideration is the determination of
the free vibration frequencies of cross-ply laminated
cylinders under pre-determined levels of axial
compressive load. The axial compressive load is limited
to the corresponding critical buckling load or to the FPF
load of the cross-ply cylinder analyzed.

4.1. Numerical Results

In the following sub-sections the numerical results
obtained using 50 axisymmetric finite elements for the
selected problems are given both in tabular and graphical
forms. The material used is specified as T300/5208

50

graphite-epoxy for which material properties are given in
Table 3. The non-dimensional thicknesses of the 0° and

90° plies are given by hy =Hy/H and hgy = Hgy /H ,
respectively, where H, and Hgy, are the thicknesses of
0° and 90° plies.

4.1.1. The influence of L/R ratio

In Table 6, numerical results are presented for S3 B.C.,

hgy =0.25, L/R=1 and H=R/60 and for several values of

f=[0,0.95]. The non-dimensional buckling load N,
=713160, and the corresponding critical wave number
ner=6 and N gpr =756430 (see Table 3) for this case.

As can be observed from Table 6, for the non-compressed
case, i.e. for =0, the 5" harmonic gives Q,;, =0.1626,

which is the lowest vibration frequency and Q values
decrease with increasing f for all of the n, values
considered. Also, the value of n,min does not change for
f<0.95 and the numerical results show that

there is a smooth decrease up to f=0.9 and a sharp
decrease after higher axial compressive load level is
reached. This sudden change is a warning of buckling and
may be helpful while inspecting or monitoring related
structures. Another observation that can be made from
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Fig. 3. Variations of » with R/t and f for L/R=1, [90°,0°]s (a) S4 (b) C4

Table 6 is that, the negative influence of axial
compression on the free vibration frequency is very high
for some n values, especially for the ones corresponding
to the lowest natural frequency and the buckling mode
shape. Here, for the cases considered, f=0.75 leads to a
reduction of around 20% in Q,;, and the other
frequency values are reduced less. The decrease in Q
with increasing f is more pronounced for n,=5 and 6.
These preliminary results obtained show that the negative
influence of axial compression on the free vibration
behavior will be lower if appropriate safety factors are
used against buckling.

Numerical results are also presented in Table 7 for L/R
=10, in order to investigate the influence of cylinder L/R

ratio. For this case, N, =88740, ny=6 and N epr
=106266. It can be observed from Table 7 that, for L/R
=10, the negative influence of axial compression is lower
comparing with the case L/R =1.

4.1.2. Buckling and FPF critical cylinders
The percentage difference denoted by 7 is defined as

" (Qn,f:O _Qn,fio)
B onf=0

n %100
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where Q™™ 0"™"=0 denote the n' vibration mode
non-dimensional frequencies corresponding to the cases
f#0and f=0.

It can be observed from Figures 3(a) and 3(b) that, the
influence of axial compression on the free vibration
frequencies is higher for thicker cylinders and thicker
cylinders more rapidly loose rigidity with increasing
axial compression level comparing with thinner cylinders
especially for f<0.8. The curvature of the 7 curve changes
rapidly for £>0.8 and the behavior is only slightly
different for S4 and C4 boundary conditions. It can also
be observed that the decrease in omega with increasing f
is unexpectedly lower for thinner cylinders.

The results obtained, in general, show that it may not be
possible to correlate free vibration and buckling
parameters. Different boundary conditions are also
considered and the vibration frequency-buckling load
correlation is shown to be related with the boundary
conditions. However, it is influence is found out to be
limited. However, as expected cylinders with C4 BC are
more stiff comparing with the cylinders with S4 BC.
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4. CONCLUSIONS

A finite element formulation for free vibration analysis
of axially compressed, moderately thick, cross-ply
laminated composite cylinders is presented. Firstly, some
verification problems are solved and the high accuracy of
the element in free vibration and FPF analyses is
demonstrated. The free vibration frequencies obtained
for the non-compressed cases are found out to be in
excellent agreement with the analytical results found in
the literature. Then, the effects of the axial compression,
geometry, end conditions, and the stacking sequence on
the free vibration frequencies are investigated. Numerical
results for free vibration analyses are presented for
axially compressed cylinders having different boundary
conditions and for which the level of axial compression
is kept below the corresponding linear buckling and the
first ply failure loads. The numerical results show that,
the related natural frequencies decrease somewhat
linearly with increasing axial compressive load levels up
to about 70~80% of the buckling loads of the structures
considered and decrease non-linearly for higher load
levels. Therefore, it is deduced that, it may, in practical
applications, be possible to predict the onset of buckling
by monitoring the change of the natural frequencies
under increasing axial compressive load levels. It is also
revealed that the decrease in frequency parameters is
more pronounced for the mode shapes corresponding to
the lowest frequency, i.e. not for the ones corresponding
to the buckling mode shapes.

The most important outcome of this study for design
purposes is that, the negative influence of axial
compression is found out to be the reduction of the
minimum natural frequency by about 20% even for
f=0.75. Also, it is revealed that higher L/R ratios lead to
lower reduction and for thick cylinders, for which the
buckling load is lower than the FPF load, the reduction in
free vibration frequency will be much lower.
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