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Abstract: The two-parameter family of) ,(z) = A ﬁ, A € R\{0}, ze C\{0}, n € N\{1}, is considered in this paper. The

existence and nature of the real fixed pointsfpf,(x), x € R\ {0} are described fon odd andn even. It is found that the function

f.n(2) possesses infinitely many singular values. It has also bemmrsthat some critical values éf ,(2) lie in the closure and other
lie into the exterior of the disk centered at origin and hgviadiusA .
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1 Introduction

The fixed points and singular values are generally very ingoorto study the behavior of dynamical systems. The real
dynamics of functions is mostly centered around fixed paints has become an interesting research area, partially due
to applicability of it for describing properties of the Julkets and Fatou set$,b,6,9,15. Some advanced results on
transcendental dynamics can be seerB]nThe real dynamics of the cubic polynomials and generdllpgistic maps

are investigated ird] and [7] respectively. The real fixed points of one parameter fawibf functions are found irB[
10,11] and the real fixed points of two-parameter family are désatiin P]. The singular values of one parameter
families are shown in1[2,13] and the singular values of two-parameter family are foumfd 4].

Let f : C — C. A point z* € C is said to be a critical point of (z) if f/(z*) = 0. The valuef (z*) corresponding to a
critical pointz* is called a critical value of (z). A pointw € C = C U {o} is said to be an asymptotic value fbfz), if
there exists a continuous curye [0,) — C satisfying lim_,« y(t) = o and lim .. f(y(t)) = w. A singular value off
is defined to be either a critical value or an asymptotic value. A pointx is said to be a fixed point of functiof(x) if
f(x) = x. A fixed pointx; is called an attracting, neutral (indifferent) or repdliif |f'(xs)| < 1, |f'(x¢)] =1 or
|f'(x¢)| > 1 respectively.

Let
z

F = {fm(z) =A @1y :A eR\{0},ze C\{O},ne N\{l}}

be two-parameter family of transcendental meromorphictions which is neither even nor odd. Roe 1, the singular
values and fixed points df %5 are already investigated in].

The present paper describes the fixed points and singulzgsaff, , € .. In Theoreml and Theoren?, the existence
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and nature of real fixed points df ,,(x) are investigated fon odd andn even respectively. It is found that the function
fAn € % has infinitely many singular values in Theorénmit is seen that, in Theored the functionf}’\,n(z) has no
zeros in the right half plane. In Theoreinthe functionf, ,(z) maps the left half in the closure and into the exterior of
the disk according to two different regions respectivedntered at origin and having radids Further, in Theorerg, it

is shown that some critical values &f , € .7 lie in the closure and other lie into the exterior of the digkiered at
origin and having radius.

Lemma 1.Letg(x) = 1— 2, x€ R, ne N\{1}. ThenJimy, «»g(x) =1,9(0) = 1—n,limy ;o g(X) = =, g(x*) = -1
and gx**) = —1, where X and X* are the unique negative real roots of the equati@nr- nx)e*— 2 = 0 for odd ne N\ {1}
and even re N\ {1} respectively.

Proof. It is easily seen that

Xinjmg(x):lfnxinjml_efx:1fn><0:1
g(O):lfn)I(igw(Jl_X7X:1fn><1:17n
Xirpwg(x) = 1—nxirlr1oo 17Xeix =l-nxow=—0
g(x") :1—1117):;(* :1—%)(;2 — —1 since I-eX =nx*/2
gx") =1~ X LS since 1-e X" = nx*/2.

S A
1-—ex” nx< /2

This completes the proof of lemma.

2 Real fixed points off, , € % and their nature

Let us define, fon odd,

wherex* is given in Lemmal.

The following theorem gives the nature of real fixed pointtheffunctionf, , € .# for n odd greater than 1:
Theorem 1.Let f) , € .# for odd ne N\ {1}.

(a) The function £ ,(x) has a unique real fixed poinjxor A > —1 and no real fixed point fod < —1. The fixed point
Xy of f n(x) is negative for-1 < A < 0 and is positive fon > 0.

(b) The fixed point x of f ,(x) is attracting for—1 <A <0and0 < A < A*, rationally indifferent forA = A* and
repelling forA > A*,

Proof.

(a) For fixed points offy ,(x), A ﬁ = x. Forn odd greater than 1, it gives a unique fixed poipt= In(1+AY").
Therefore, the fixed poing, of f, (x) is real forA > —1 and no real fixed point fok < —1. Consequently, the real
fixed pointx, of f, ,(x) is positive ifA > 0 and negative i1 < A < 0.

(b) Sincex, is a fixed point off, (x), then

, 1—nx,)en —1
fan() ZA((@:X% @)
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Substitutingh = (¢% — 1)" in Equation (), we get

(1—nx)es —1 nx,
finla) = (@ =) =g T =1 Ten

It is easily seen that, using Lemma—1 < f; (x)) <1 for -1 <A < 0. Hence, the fixed point, of f) ,(x) is
attracting for—1< A < 0. 7

Again, by Lemmal, itis found that-1 < f; (x)) <1forO<A <A*, f; (x3)=—1forA =A*andf) (x\)<-1
for A > A*. Therefore, the fixed poin, of fy,\yn(x) is attracting for 0< A < A*, rationally indifferent forA = A* and
repelling forA > A*.

This completes the proof of theorem.
RemarkThe fixed poinix, of f) ,(x) is increasing ifA increases.

Let us define, fon even,

wherex** is given in Lemmal.

For n even greater than 0, the description of the fixed pofgts € .7 are different than fon odd greater than 1. The
following theorem shows the nature of real fixed points offthection f) , € .# for n even greater than 0

Theorem 2Let f , € .7 for even ne N\ {1}.

(i) The function f (x) has two real fixed points fd < A < 1, a unique real fixed point fok > 1 and no real fixed
point forA < 0. One fixed point x is negative fol0 < A < 1 and other fixed point}ds positive for0 < A < 1 and
forA > 1.

(i) The fixed point x is attracting forO < A < 1 and the fixed point}< is attracting forO < A < A**, rationally
indifferent forA = A** and repelling forA > A**.

Proof.

(i) For fixed points offy (x), A ﬁ — x. For evem e N\ {1}, the fixed points are given ag = In(1+AY"). It
follows thatf) ,(x) has two real fixed points for @ A < 1, a unique real fixed point fot > 1 and no real fixed
point forA < 0. For 0< A < 1, it is easily seen that one fixed poiy is negative and other fixed poilsqr is
positive. ForA > 1, the real fixed poin:tj\r of f n(x) is positive.

(ii) Sincex, is a fixed point off ,(x) andA = (% —1)", then we have

, . n(l—nx e —1 Nx;,
fAn() = (e% —1) N EI
By Lemmal, it is easily found that-1 < f; ((x;) <1forO<A <l and—1< f} (x7)forO<A <A*. It
follows that the fixed poink; is attracting for 0< A < 1 and the fixed point; is attracting for 0< A < A**.

Again, using Lemmd, f] (x7) = —1forA = A**andf] (xj) < —1forA > A**. Therefore, the fixed poin¢
of f) n(x) is rationally indifferent forA = A** and is repelling foA > A**.

The proof of theorem is completed.
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3 Singular values off, , € .7

The following theorem shows that the functifn, € .% has infinitely many singular values,

Theorem 3.Let fy , € .#. Then, the function,f,(z) possesses infinitely many singular values.

) (&=1)"—nze—1)"1

@ € -0t gives(nz— 1)+ 1 = 0. Using the real and imaginary

Proof. For critical points,f; (z) =
parts of this equation, we have

Y Lyeoyi_g @)
siny n
1

X= —ycoy 3)

Itis seen that, from Figurg Equation R) has infinitely many solutions since intersections on hmnrial axis are increased
if interval increases on it.

15

T |
10 ,."3]E1'f cotfy-1/3 ——

15 ! I'I‘ll ! ! | ! ! Jh‘. !
15 -10 -5 ] 5 10 15
Fig. 1: Graph of 2L — %eycory*% forn=3

siny

Suppose{yk}kj’jm’k?éo are solutions of Equation2). From Equation ), xx = % —ykcotyk for k= +1,4+2 +3,....
Consequently, it gives thak = X« + iyk are critical points off, ,(2) since f; (z) = 0, and then the critical values are
given by f) (). It is observed thaf, (z) are distinct for differenk. It follows that f) , € .# has infinitely many
critical values.

The finite asymptotic value dfy ,(2) is 0 sincef, ,(z) — 0 asz— « along positive real axis.

Thus, it shows thaf, , € .7 possesses infinitely many singular values.

Remark.For the zeros off)’\‘n(z) on imaginary axis, from Equatiord); it is found that cog — isiny = 1 — iny. This
equation givey = 0. Thereforef; _(z) has no zeros on imaginary axis.

LetH* = {ze C: Reg2) > 0} be the right half plane. The following theorem gives thatftirection f} n(2) has no zeros
in the right half planeH *:

Theorem 4Let f , € .7. Then, the function;f (z) has no zeros in H.

(© 2017 BISKA Bilisim Technology
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Proof. Suppose&Reg(z) > 0, andf; A=A % = 0 which implies thae™?=1—nz Then,
cosy —isiny

= =1—nx—iny 4)

siny _

Firstly, wheny #£ 0, then, by imaginary part of Equatlon)( =ne > 1. This is not true foly > 0 and fory < 0

becausé'{,‘—y is an even function.

Secondly, wherty = 0, thenz = x > 0 and, by real part of Equatiod), e = 1}nx. Forx > % andn > 2, it is not valid
because the left hand side is positive and the right handsitegative. It is obviously not true when= % This is also
false for 0< X < % since it is easily observed that, by Figi2ethere is no any intersection of the functighwith the
function — 1 — forn=2,3,45,.

' :-E's::{x) =]
1/(1-2%%) — i
Y(A3)
~ 1/(1-4%%) =
1/(1-5%x)
| A T BT e e -
0.5 L 1 i L 1
-0.4 -0.2 0 0.2 0.4

Fig. 2: Graphs of* and X forn=2,3,4,5

Thus, it is concluded that the functldgq z) has no zeros i ™.

LetH™ = {ze C:Rez) < 0} be the left half plane. In the following theorem, it is showattthe functiorf, , € % maps
the left half plane in the closure and into the exterior ofdiek according to two different regions respectively.

Theorem 5.Let f) , € .. Then, the function,f,(z) maps H in the closure and into the exterior of the disk centered at
origin and having radius\ for |z > 1 and|z < 1 respectively.

Proof. Consider the line segmemtwhich is defined byy(t) =tz t € [0,1] and suppose the functidi(z) = € for an

arbitrary fixedze H™. Then
/h Z)dz= /h dtfz/ d2dt = 1

SinceM = max (g 1 [N(y(t))| = maxco1 €7 < 1 andm= mincpg 1 [h(¥(t))| = Mincp g €% > € >0 forze H™, then
mz < |z <|&—1|=| /h(z)dz] <M|Z <2 5)
Jy

Using the left side of Inequalitygy, | = 1 =] < \z\” mn1 < 1forall|z > 1andne N\{1}. Hence|f) ,(2)| = |)\ n| <|A|
for all |z > 1. It gives that the functlori,\yn( z) mapsH ™ in the closure of the disk centered at origin and havmg i=diu
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A for all |z > 1. Similarly, using the right side of Inequalitp) |ﬁ| > ‘Z‘% > 1 for all |z < 1 andn € N\{1}.
Therefore, it follows thatf, »(z)| = |A ﬁ| > [A | forall |z < 1. This shows that the functioiy ,(z) mapsH ™ into the
exterior of the disk centered at origin and having radidsr all |7 < 1.

The following theorem proves that the functién, € .7 has some critical values in the closure and other into theriext
of the disk centered at origin and having radluaccording to two different regions respectively.

Theorem 6.Let fy , € .#. Then, some critical values of f(z) lie in the closure and other into the exterior of the disk
centered at origin and having radiusfor z> 1 and z< 1 in the left half plane respectively.

Proof. All the critical points off, ,(z) liein H™ since, by Theorem, f] (2) has no zeros il ™. Moreover, by Theorers,
the functionf) ,,(z) maps the left half plané ~ in the closure and into the exterior of the disk centeredigtroand having
radiusA for [z > 1 and|z| < 1 respectively. Therefore, it follows that some criticalues of f, (2) lie in the closure
and other into the exterior of the disk centered at origin hadng radiusA for z> 1 andz < 1 in the left half plane
respectively.

4 Conclusion

This paper is generalization of one parameter fanlily; as two-parameter family ﬁ. The real fixed points
and singular values of two-parameter family of functidis,(z) = A (erzl)m A € R\{0}, ze C\{0}, ne N\ {1}, have
investigated. It is seen that the real fixed points,of(z) have different nature far odd andn even. We have found that
the functionf) ,(z) has infinitely many singular values farc N\{1}. We have also shown that some critical values of
fo.n(2) lie in the closure and other into the exterior of the open disitered at origin and having radidsaccording to

two different regions in the left half plane.
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