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Abstract. In this paper, we investigate the concept of Abel statistical delta
quasi Cauchy sequences. A real function f is called Abel statistically delta

ward continuous it preserves Abel statistical delta quasi Cauchy sequences,

where a sequence (αk) of points in R is called Abel statistically delta quasi
Cauchy if limx→1− (1−x)

∑
k:|∆2αk|≥ε

xk = 0 for every ε > 0, where ∆2αk =

αk+2 − 2αk+1 + αk for every k ∈ N. Some other types of continuities are also
studied and interesting results are obtained.

1. Introduction

Throughout this paper, N, and R will denote the set of positive integers, and the
set of real numbers, respectively. The boldface letters such as α, β, ζ will be used
for sequences α = (αn), β = (βn), ζ = (ζn), ... of points in R. A real function f is
continuous if and only if it preserves Abel statistical convergence, i.e. for each point
` in the domain, Abelst− limn→∞ f(αn) = f(`) whenever Abelst− limn→∞ αn = `.

Using the idea of continuity of a real function in this manner, many kinds of
continuities were introduced and investigated, not all but some of them we recall in
the following: ward continuity ([12], [5]), p-ward continuity ([19]), δ-ward continu-
ity ([15]), δ2-ward continuity ([4]), statistical ward continuity, ([16]), λ-statistical
ward continuity ([29]), ρ-statistical ward continuity ([6], [21]), slowly oscillating
continuity ([10, 44, 28]), quasi-slowly oscillating continuity ([31]), ∆-quasi-slowly
oscillating continuity ([13]), upward and downward statistical continuities ([20]),
lacunary statistical ward continuity ([7], [47], and [48]), lacunary statistical δ ward
continuity ([25]), lacunary statistical δ2 ward continuity ([46]), Nθ-ward continuity
([18], [24], [36], [8], [36], [37]), and Nθ-δ-ward continuity ([8]), which enabled some
authors to obtain interesting results.

The purpose of this paper is to introduce and investigate the concept of Abel
statistical δ-ward continuity of a real function, and prove interesting theorems.
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2. Abel statistical δ quasi Cauchy sequences

A sequence (αk) is called statistically convergent to an element ` of R if limn→∞
1
n |{k ≤

n : |αk − `| ≥ ε}| = 0 for each ε > 0 (see [34], [14], [21], and [26]).
A sequence (αk) of real numbers is called Abel convergent (or Abel summable)

to ` if the series
Σ∞k=0αkx

k

is convergent for 0 ≤ x < 1 and limx→1−(1−x)
∑∞
k=0 αkx

k = ` ([1], [3], and [35]). In
this case, we write Abel−limαk = `. The concept of a Cauchy sequence involves far
more than that the distance between successive terms is tending to 0 and specially
speaking, than that the distance between successive terms is Abel convergent to
zero. Nevertheless, sequences which satisfy this weaker property, i.e. Abel quasi
Cauchy sequences satisfying Abel− lim∆ αk = 0, are interesting in their own right.
In other words, a sequence (αk) of points in R is called Abel quasi-Cauchy if (∆αk)
is Abel convergent to 0, i.e. the series

∞∑
k=0

∆αkx
k

is convergent for 0 ≤ x < 1 and

lim
x→1−

(1− x)

∞∑
k=0

∆αkx
k = 0

where ∆αk = αk+1 − αk.
Recently the concept of Abel statistical convergence of a sequence is investigated

in [43] in the sense that a sequence (αk) is called Abel statistically convergent to a
real number L if 4 limx→1−(1−x)

∑
k:|αk−L|≥ε x

k = 04 for every ε > 0, and denoted

by Abelst − lim αk = L.
A sequence (αk) of points in R is called Abel statistically quasi Cauchy if

lim
x→1−

(1− x)
∑

k:|∆αk|≥ε

xk = 0

for every ε > 0 ([30]).
Now we introduce the concept of Abel statistically δ quasi Cauchyness in the

following:

Definition 2.1. A sequence of points in a subset A of R is called Abel statistically
δ quasi Cauchy if

lim
x→1−

(1− x)
∑

k:|∆2αk|≥ε

xk = 0

for every ε > 0, where ∆2αk = αk+2 − 2αk+1 + αk for every k ∈ N.

Any Abel statistically quasi-Cauchy sequence is Abel statistically δ quasi Cauchy,
but the converse is not always true. Any quasi-Cauchy sequence is Abel statisti-
cally δ quasi Cauchy, but the converse is not always true. Any Abel statistically
convergent sequence is Abel statistically δ quasi Cauchy. There are Abel statisti-
cally δ quasi Cauchy sequences which are not Abel statistically quasi Cauchy. Since
the set of all convergent sequences c is a proper subset of Abelδst, and Abelst is a

proper subset of Abelδ
2

st , the set of Abel statistical δ quasi Cauchy sequences, one

can easily find that c ⊂ ∆ ⊂ Abelδst ⊂ Abelδ
2

st , where c, ∆, ∆Abelst, and ∆2Abelst,
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denote the set of convergent sequences, the set of quasi Cauchy sequences, the set of
Abel statistically quasi Cauchy sequences, and the set of Abel statistically δ quasi
Cauchy sequences.

Theorem 2.1. The sum of two Abel statistical δ quasi-Cauchy sequences is Abel
statistical δ quasi-Cauchy.

Proof. Let (αk) and (βk) be Abel statistical δ quasi-Cauchy sequences of of points
in A. Then limx→1−(1−x)

∑
k:|∆2αk|≥ε x

k = 0 and limx→1−(1−x)
∑
k:|∆2βk|≥ε x

k =

0 for every ε > 0. Then limx→1−(1 − x)
∑
k:|∆2(αk+βk)|≥ε x

k ≤ limx→1−(1 −
x)

∑
k:|∆2αk|≥ε x

k + limx→1−(1 − x)
∑
k:|∆2βk|≥ε x

k. This completes the proof of

the theorem. �

Now we give the definition of Abel statistical δ ward compactness.

Definition 2.2. A subset A of R is called Abel statistically δ ward compact if any
sequence of points in A has an Abel statistical δ quasi-Cauchy subsequence.

First, we note that any finite subset of R is Abel statistically δ ward compact,
the union of two Abel statistically δ ward compact subsets of R is Abel statistically
δ ward compact and the intersection of any family of Abel statistically δ ward
compact subsets of R is Abel statistically δ ward compact. Any G-sequentially
compact subset of R is Abel statistically δ ward compact for a regular subsequential
method G (see [11], [17]). Furthermore any subset of an Abel statistically δ ward
compact set is Abel statistically δ ward compact, any bounded subset of R is
Abel statistically δ ward compact, any slowly oscillating compact subset of R is
Abel statistically δ ward compact (see [10] for the definition of slowly oscillating
compactness).

Theorem 2.2. If a function f is uniformly continuous on a subset A of R, then
(f(αk)) is Abel statistical δ quasi-Cauchy whenever (αk) is a quasi-Cauchy sequence
of points in A.

Proof. Take any quasi-Cauchy sequence (αk) of points in A, and let ε be any positive
real number. By uniform continuity of f , there exists a δ > 0 such that
|f(α)− f(β)| < ε whenever |α− β| < δ and α, β ∈ E. Since (αk) is a quasi-Cauchy
sequence, there exists a positive integer k0 such that |αk+1 − αk| < δ for k ≥ k0.
Thus

lim
x→1−

(1− x)
∑

k:|∆2αk|≥ε

xk = 0.

This completes the proof of the theorem. �

Definition 2.3. A function defined on a subset A of R is called Abel statistically
δ ward continuous if it preserves Abel statistical δ quasi-Cauchy sequences, i.e.
(f(αn)) is an Abel statistical δ quasi-Cauchy sequence whenever (αn) is.

We note that Abel statistical δ ward continuity cannot be obtained by any se-
quential method G ( [9], [17]). The composition of two Abel statistical δ ward
continuous functions is Abel statistical δ ward continuous.

Theorem 2.3. If f is Abel statistically δ ward continuous on a subset A of R, then
it is Abel statistically ward continuous on A.
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Proof. Let (αn) be any sequence with Abelst−limk→∞∆αk = 0. Then the sequence

(α1, α1, α2, α2, ..., αn, αn, ...)

is Abel statistical δ quasi-Cauchy hence, by the hypothesis, the sequence

(f(α1), f(α1), f(α2), f(α2), ..., f(αn), f(αn), ...)

is Abel statistical δ quasi-Cauchy . It follows from this that

(f(α1), f(α2), ..., f(αn), ...)

is Abel statistical quasi-Cauchy. This completes the proof of the theorem. �

Corollary 2.4. Any Abel statistically δ ward continuous on a subset A of R is
ordinary continuous on A.

Theorem 2.5. The sum of two Abel statistical δ ward continuous functions is Abel
statistical δ ward continuous.

Proof. The proof of this theorem follows easily, so is omitted. �

If c is a constant real number and f is an Abel statistically δ ward continuous
function, then cf is Abel statistically δ ward continuous. Thus the set of Abel
statistical δ ward continuous functions is a vector subspace of the vector space of
continuous functions. Maximum of two Abel statistical δ ward continuous func-
tions is Abel statistical δ ward continuous, and minimum of two Abel statistical δ
ward continuous functions is Abel statistical δ ward continuous, which follow from
max{f, g} = 1

2 (f + g + |f − g|) and min{f, g} = 1
2 (f + g − |f − g|), respectively.

Theorem 2.6. Abel statistically δ ward continuous image of any Abel statistically
δ ward compact subset of R is Abel statistically δ ward compact.

Proof. Assume that f is a Abel statistically δ ward continuous function on a subset
A of R, and B is an Abel statistically δ ward compact subset of A. Let (βn)
be any sequence of points in f(B). Write βn = f(αn) where αn ∈ A for each
positive integer n. Abel statistically δ ward compactness of B implies that there is
a subsequence (γk) = (αnk

) of (αn) with Abelst− limk→∞∆2γk = 0. Write (tk) =
(f(γk)). As f is Abel statistically δ ward continuous, (f(γk)) is Abel statistically δ
quasi-Cauchy. Thus f(B) is Abel statistically δ ward compact. This completes the
proof of the theorem. �

Corollary 2.7. Abel statistically δ ward continuous image of any compact subset
of R is Abel statistically δ ward compact.

Corollary 2.8. Abel statistically δ ward continuous image of a G-sequentially com-
pact subset of R is Abel statistically δ ward compact for any subsequential regular
method G.

3. Conclusion

In this paper, we obtain results related to Abel statistically δ ward continuity,
Abel statistically δ ward compactness, ward continuity, continuity, and uniform
continuity. We suggest to investigate Abel statistically δ quasi-Cauchy sequences
of fuzzy points or soft points (see [23], [38] for the definitions and related concepts
in fuzzy setting, and see [2], and [33] for the soft setting). We also suggest to
investigate Abel statistically δ quasi-Cauchy double sequences (see for example [27],
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[32], and [40] for the definitions and related concepts in the double sequences case).
For another further study, we suggest to investigate Abel statistically δ Cauchy
sequences of points in an abstract metric space ([39], [45], [44], [22], [41], and [28]).
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