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ABSTRACT. In this paper, we obtain a Prešić type common fixed point theorem for four maps in b-dislocated metric
spaces. We also present one example to illustrate our main theorem. Further, we obtain two more corollaries.
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1. INTRODUCTION AND PRELIMINARIES

There are several generalizations of the Banach contraction principle in literature on fixed
point theory. Recently, very interesting results regarding fixed point are presented in the papers
([3, 4, 5, 7]. One of the generalization is a famous Prešić type fixed point theorem. There are
a lot of generalizations of mentioned theorem (more on this topic see [1]-[2], [7]-[15]). Hitzler
and Seda [6] introduced the concept of dislocated metric spaces (metric like spaces in [5], [15])
and established a fixed point theorem in complete dislocated metric spaces to generalize the
celebrated Banach contraction principle. Recently Hussain et al. [7] introduced the definition
of b - dislocated metric spaces to generalize the dislocated metric spaces introduced by [6] and
proved two common fixed point theorems for four self mappings.

In this paper we have proved Prešić type common fixed point theorem for four mappings
in b - dislocated metric spaces. One numerical example is also presented to illustrate our main
theorem. We also obtained two corollaries for three and two maps in b - dislocated metric
spaces.

Now we give some known definitions, lemmas and theorems which are needful for further
discussion. Throughout this paper, N denotes the set of all positive integers.

Prešić [10] generalized the Banach contraction principle as follows.

Theorem 1.1. [10] Let (X, d) be a complete metric space, k be a positive integer and T : Xk → X be a
mapping satisfying

(1.1) d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1)) ≤
k∑
i=1

qid(xi, xi+1),

for all x1, x2, . . . , xk+1 ∈ X, where qi ≥ 0 and
k∑
i=1

qi < 1. Then there exists a unique point

x ∈ X such that T (x, x, ...., x) = x. Moreover, if x1, x2, . . . , xk are arbitrary points in X and for
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n ∈ N, xn+k = T (xn, xn+1, . . . , xn+k−1), then the sequence {xn} is convergent and lim
n→∞

xn =

T ( lim
n→∞

xn, lim
n→∞

xn, . . . , lim
n→∞

xn).

Inspired by the Theorem 1.1, Ćirić and Prešić [8] proved the following theorem.

Theorem 1.2. [8] Let (X, d) be a complete metric space, k a positive integer and T : Xk → X be a
mapping satisfying

(1.2) d(T (x1, x2, · · · , xk), T (x2, x3, · · · , xk+1)) ≤ λ max{d(xi, xi+1) : 1 ≤ i ≤ k}

for all x1, x2, · · · , xk, xk+1 in X , and λ ∈ (0, 1). Then there exists a point x ∈ X such that
x = T (x, x, ...., x).

Moreover, if x1, x2, . . . , xk are arbitrary points inX and for n ∈ N, xn+k = T (xn, xn+1, . . . , xn+k−1),
then the sequence {xn} is convergent and lim

n→∞
xn = T ( lim

n→∞
xn, lim

n→∞
xn, . . . , lim

n→∞
xn). If in addi-

tion, we suppose that on diagonal ∆ ⊂ Xk, d(T (u, u, ..., u), T (v, v, ..., v)) < d(u, v) holds for u, v ∈ X
with u 6= v, then x is the unique fixed point satisfying x = T (x, x, ..., x).

Later Rao et al. [11, 12] obtained some Presić fixed point theorems for two and three maps
in metric spaces.

Definition 1.1. Let X be a nonempty set, k a positive integer and T : X2k → X and f : X → X . The
pair (f, T ) is said to be 2k-weakly compatible if f(T (x, x, ..., x)) = T (fx, fx, ..., fx) whenever there
exists x ∈ X such that fx = T (x, x, ..., x)

Actully Rao et al. [11] obtained the following.

Theorem 1.3. Let (X, d) be a metric space and k be any positive integer. Let S, T : X2k −→ X and
f : X −→ X be mappings satisfying

(1) d(S(x1, x2, ..., x2k), T (x2, x3, ..., x2k+1)) ≤ λ max{d(fxi, fxi+1) : 1 ≤ i ≤ 2k}
for all x1, x2, ..., x2k, x2k+1 ∈ X,where λ ∈ (0, 1).

(2) d(S(u, u, ..., u), T (v, v, ..., v)) < d(fu, fv) for all u, v ∈ X with u 6= v

(3) Suppose that f(X) is complete and either (f, S) or (f, T ) is 2k-weakly compatible pair.

Then there exists a unique point p ∈ X such that p = fp = S(p, p, .., p, p) = T (p, p, .., p, p).

Hussain et al. [7] introduced b-dislocated metric spaces as follows.

Definition 1.2. Let X be a non empty set. A mapping bd : X ×X → [0,∞) is called a b - dislocated
metric (or simply bd-metric) if the following conditions hold for any x, y, z ∈ X and s ≥ 1:

(bd1) : If bd(x, y) = 0 then x = y,
(bd2) : bd(x, y) = bd(y, x),
(bd3) : bd(x, y) ≤ s[bd(x, z) + bd(z, y)].
The pair (X, bd) is called a b-dislocated metric space or bd-metric space.

Definition 1.3. [7]
(i) A sequence {xn} in b-dislocated metric space (X, bd) converges with respect to bd if there exists

x ∈ X such that bd(xn, x) converges to 0 as n → ∞. In this case, x is called the limit of {xn}
and we write xn → x.
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(ii) A sequence {xn} in a b-dislocated metric space (X, bd) is called a
bd - Cauchy sequence if given ε > 0, there exists n0 ∈ N such that
bd(xm, xn) < ε for all n,m ≥ n0 or lim

n,m→∞
bd(xm, xn) = 0.

(iii) A b-dislocated metric (X, bd) is called bd−complete if every bd-Cauchy sequence in X is bd -
convergent.

Lemma 1.1. [7] Let (X, bd) be a b-dislocated metric space with s ≥ 1.
Suppose that {xn} and {yn} are bd-convergent to x, y respectively. Then we have

1

s2
bd(x, y) ≤ lim

n→∞
inf bd(xn, yn) ≤ lim

n→∞
sup bd(xn, yn) ≤ s2 bd(x, y),

and
1

s
bd(x, z) ≤ lim

n→∞
inf bd(xn, z) ≤ lim

n→∞
sup bd(xn, z) ≤ s bd(x, z)

for all z ∈ X .

2. MAIN RESULT

We introduce the definition of jointly 2k−weakly compatible pairs as follows.

Definition 2.4. Let X be a nonempty set, k a positive integer and S, T : X2k → X and f, g : X → X .
The pairs (f, S) and (g, T ) are said to be jointly 2k-weakly compatible if

f(S(x, x, ..., x)) = S(fx, fx, ..., fx)

and
g(T (x, x, ..., x)) = T (gx, gx, ..., gx)

whenever there exists x ∈ X such that fx = S(x, x, ..., x) and gx = T (x, x, ..., x).

Now we give our main result. The contractive condition in the next theorem is similar with
conditions in [2, 7, 10, 13].

Theorem 2.4. Let (X, bd) be a bd−complete b-dislocated metric space with s ≥ 1 and k be any positive
integer. Let S, T : X2k −→ X and f, g : X −→ X be mappings satisfying

(2.3) S(X2k) ⊆ g(X), T (X2k) ⊆ f(X),

(2.4)

bd(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k)) ≤ λ max


bd(gx1, fy1), bd(fx2, gy2),
bd(gx3, fy3), bd(fx4, gy4),
..................................

bd(gx2k−1, fy2k−1), bd(fx2k, gy2k)


for all x1, x2, ..., x2k, y1, y2, .., y2k ∈ X,where λ ∈ (0, 1

s2k
).

(2.5) (f, S) and (g, T ) are jointly 2k − weakly compatible pairs,

Assume that there exists u ∈ X such that fu = gu whenever there is sequence(2.6)
{y2k+n}∞n=1 ∈ X with lim lim

n→∞
y2k+n = fu = gu = z ∈ X.
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Then z is the unique point in X such that z = fz = gz = S(z, z, .., z, z) = T (z, z, ..., z, z).

Proof. Suppose x1, x2, ..., x2k are arbitrary points in X , From (2.3), we can define

y2k+2n−1 = S(x2n−1, x2n, ..., x2k+2n−2) = gx2k+2n−1,

and
y2k+2n = T (x2n, x2n+1, ..., x2k+2n−1) = fx2k+2n, n = 1, 2, . . .

Let
α2n = bd(fx2n, gx2n+1),

and
α2n−1 = bd(gx2n−1, fx2n) n = 1, 2, . . .

Write θ = λ
1
2k and µ = max{α1

θ ,
α2

(θ)2 , ....,
α2k

(θ)2k
}.

Then 0 < θ < 1 and by the selection of µ, we have

(2.7) αn ≤ µ · (θ)n, n = 1, 2, . . . , 2k

Consider

α2k+1 = bd(gx2k+1, fx2k+2) = bd(S(x1, x2, ..., x2k−1, x2k), T (x2, x3, ..., x2k, x2k+1))(2.8)

≤ λ max


bd(gx1, fx2), bd(fx2, gx3),
bd(gx3, fx4), bd(fx4, gx5),
...................................

bd(gx2k−1, fx2k), bd(fx2k, gx2k+1)


≤ λ max{α1, α2, α3, α4, ...., α2k−1, α2k}
≤ λ max{µ · θ, µ · (θ)2, ..., µ · (θ)2k},
= λµ · θ = µ · θ · (θ)2k = µ · (θ)2k+1.

using (2.7),
and

(2.9) α2k+2 = bd(fx2k+2, gx2k+3)

= bd(T (x2, x3, ..., x2k, x2k+1), S(x3, x4, ..., x2k+1, x2k+2))

= bd(S(x3, x4, ..., x2k+1, x2k+2), T (x2, x3, ..., x2k, x2k+1))

≤ λ max


bd(gx3, fx2), bd(fx4, gx3),
bd(gx5, fx4), bd(fx6, gx5),
...................................

bd(gx2k+1, fx2k), bd(fx2k+2, gx2k+1)


≤ λ max{α2, α3, α4, α5, ...., α2k, α2k+1}
≤ λ max{µ · (θ)2, µ · (θ)3, ..., µ · (θ)2k, µ · (θ)2k+1},
= λµ · (θ)2 = µ · (θ)2(θ)2k = µ · (θ)2k+2,

using (2.7) and (2.8).
Continuing in this way, we get

(2.10) αn ≤ µ · (θ)n,
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for n = 1, 2, . . .
Consider now

(2.11) bd(y2k+2n−1, y2k+2n) = bd(S(x2n−1, x2n, ..., , x2k+2n−2), T (x2n, x2n+1, ..., x2k+2n−1))

≤ λ max


bd(gx2n−1, fx2n), bd(fx2n, gx2n+1),

........................................
bd(gx2k+2n−3, fx2k+2n−2),
bd(fx2k+2n−2, gx2k+2n−1)


≤ λ max{α2n−1, α2n, ...., α2k+2n−3, α2k+2n−2}
≤ λ max{µ · (θ)2n−1, µ · (θ)2n, ..., µ · (θ)2k+2n−3, µ · (θ)2k+2n−2},
= λµ · (θ)2n−1 = µ · (θ)2k(θ)2n−1 = µ · (θ)2k+2n−1

Also

(2.12) bd(y2k+2n, y2k+2n+1) = bd(T (x2n, x2n+1, ..., x2k+2n−1), S(x2n+1, x2n+2, . . . , x2k+2n))

= bd(S(x2n+1, x2n+2, . . . , x2k+2n), T (x2n, x2n+1, . . . , x2k+2n−1))

≤ λ max


bd(gx2n+1, fx2n), bd(fx2n+2, gx2n+1),
bd(gx2n+3, fx2n+2), bd(fx2n+4, gx2n+3),
........................................................

bd(gx2k+2n−1, fx2k+2n−2), bd(fx2k+2n, gx2k+2n−1)


≤ λ max{α2n, α2n+1, α2n+2, α2n+3, ...., α2k+2n−1}
≤ λ max{µ · (θ)2n, µ · (θ)2n+1, ..., µ · (θ)2k+2n−1},
= λµ · (θ)2n = µ · (θ)2n(θ)2k = µ · (θ)2k+2n.

From (2.11) and (2.12), we have

(2.13) bd(y2k+n, y2k+n+1) ≤ µ · (θ)2k+n, n = 1, 2, 3, . . .

Now, using (2.13), for m > n and using the fact that s > 1 we have

bd(y2k+n, y2k+m) ≤


s bd(y2k+n, y2k+n+1) + s2 bd(y2k+n+1, y2k+n+2)

+s3 bd(y2k+n+2, y2k+n+3) + ...+
sm−n−1 bd(y2k+m−1, y2k+m)


≤

(
s µ · (θ)2k+n + s2 µ · (θ)2k+n+1 + s3 µ · (θ)2k+n+2

+...+ sm−n−1µ · (θ)2k+m−1,

)

≤ µ ·
[

(sθ)2k+n + (sθ)2k+n+1 + (sθ)2k+n+2

+...+ (sθ)2k+m−1]

]

≤ µ(sθ)2k
[

(sθ)n

1− sθ

]
since sθ = sλ

1
2k < s · 1

s
= 1

→ 0 as n→∞,m→∞.
Therefore, {y2k+n} is a Cauchy sequence in (X, bd). Since X is bd−complete, there exists

z ∈ X such that y2k+n → z as n→∞.
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From (2.6), there exists u ∈ X such that

(2.14) z = fu = gu.

Now consider

bd(S(u, u, ..., u), y2k+2n) = bd(S(u, u, ..., u), T (x2n, x2n+1, ..., x2n+2k−1))

≤ λ max

 bd(gu, fx2n), bd(fu, gx2n+1),
...........................................
bd(gu, fx2k+2n−2), bd(fu, gx2k+2n−1)

 .

Letting n→∞ and using (2.14), we get

(2.15)
1

s
bd(S(u, u, ..., u), fu) ≤ 0 so that S(u, u, ..., u) = fu.

Similarly we have

(2.16) T (u, u, ..., u) = gu.

Since (f, S) and (g, T ) are jointly 2k-weakly compatible pairs and from (2.15) and (2.16), we
have

(2.17) fz = f(fu) = f(S(u, u, ..., u)) = S(fu, fu, ..., fu) = S(z, z, ..., z),

and

(2.18) gz = T (z, z, ..., z, z).

Now using (2.16) and (2.17), we get

bd(fz, z) = bd(fz, gu)

= bd(S(z, z, ..., z, z), T (u, u, ..., u, u))

≤ λ max


bd(gz, fu), bd(fz, gu),
bd(gz, fu), bd(fz, gu),
..........................
bd(gz, fu), bd(fz, gu)


≤ λ max{bd(gz, z), bd(fz, z)}.

Thus

(2.19) bd(fz, z) ≤ λmax{bd(gz, z), bd(fz, z)}.

Similarly, we have

(2.20) bd(gz, z) ≤ λmax{bd(gz, z), bd(fz, z)}.

From (2.19) and (2.20), we have

max{bd(gz, z), bd(fz, z)} ≤ λ max{bd(gz, z), bd(fz, z)}.

which in turn yields that

(2.21) fz = z = gz.

From (2.17), (2.18) and (2.21), we have

(2.22) fz = z = gz = S(z, z, ..., z, z) = T (z, z, ..., z, z).
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Suppose there exists z′ ∈ X such that
z′ = fz′ = gz′ = S(z′, z′, ..., z′, z′) = T (z′, z′, ..., z′, z′).
Then from (2.4), we have

bd(z, z
′) = bd(S(z, z, ..., z, z), T (z′, z′, ..., z′, z′))

≤ λ max

 bd(gz, fz
′), bd(fz, gz

′),
..........................
bd(gz, fz

′), bd(fz, gz
′)


≤ λbd(z, z

′).

This implies that z′ = z.
Thus z is the unique point in X satisfying (2.22). �

Now we give an example to illustrate our main Theorem 2.4.

Example 2.1. Let X = [0, 1] and bd(x, y) = |x+ y|2 and k = 1.
Define S(x, y) = 3x2+2y√

4608
, T (x, y) = 2x+3y2√

4608
, fx = x

6 and gx = x2

4

for all x, y ∈ X . Then clearly s = 2. Then for all x1, x2, y1, y2 ∈ X ,
we have

bd(S(x1, x2), T (y1, y2)) = |3x
2
1 + 2x2√
4608

+
2y1 + 3y22√

4608
|2

=

(
x21

16
√

2
+

x2

24
√

2
+

y1

24
√

2
+

y22
16
√

2

)2

=
1

2

((
x21
16

+
y1
24

)
+

(
x2
24

+
y22
16

))2

=
1

32

((
x21
4

+
y1
6

)
+

(
x2
6

+
y22
4

))2

=
1

8


(
x2
1

4 + y1
6

)
+
(
x2

6 +
y22
4

)
2

2

≤ 1

8

(
max

{
x21
4

+
y1
6
,
x2
6

+
y22
4

})2

=
1

8
max

{(
x21
4

+
y1
6

)2

,

(
x2
6

+
y22
6

)2
}

where used the following:

a+ b

2
≤ max{a, b}, (max(a, b))2 = max{a2, b2},

for non-negative a and b. Here λ = 1
8 ∈ (0, 14 ) = (0, 1

22 ) = (0, 1
s2k

).
One can easily verify the remaining conditions of Theorem 2.4. Clearly 0 is the unique point in X

such that f0 = 0 = g0 = S(0, 0) = T (0, 0).

Corollary 2.1. Let (X, bd) be a bd−complete b - dislocated metric space with s ≥ 1 and k be any positive
integer. Let S, T : X2k −→ X and f : X −→ X be mappings satisfying
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(2.23) S(X2k) ⊆ g(X), T (X2k) ⊆ f(X),

bd(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k)) ≤ λmax{bd(fxi, fyi) : 1 ≤ i ≤ 2k}(2.24)

for all x1, x2, ..., x2k, y1, y2, .., y2k ∈ X,where λ ∈ (0,
1

s2k
)

(2.25) f(X) is abd − complete subspace of X

(2.26) (f, S) or (f, T ) is 2k − dweakly compatible pair.

Then there exists a unique point u ∈ X such that u = fu = S(u, u, .., u, u) = T (u, u, .., u, u).

Corollary 2.2. Let (X, bd) be a bd−complete b - dislocated metric space with s ≥ 1 and k be any positive
integer. Let S, T : X2k −→ X be mappings satisfying

bd(S(x1, x2, ..., x2k), T (y1, y2, ..., y2k)) ≤ λ max{bd(xi, yi) : 1 ≤ i ≤ 2k}(2.27)

for allx1, x2, ..., x2k, y1, y2, .., y2k ∈ X,where λ ∈ (0,
1

s2k
)

Then there exists a unique point u ∈ X such that u = S(u, u, .., u, u) = T (u, u, .., u, u).
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[9] M. Pǎcurar, Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method, An. St.

Univ. Ovidius Constanta, 17(1) (2009) 153-168.
[10] S. B. Prešić, Sur une classe d’inequations aux differences finite et sur la convergence de certaines suites, Publications de

l’Institut Mathématique, 5(19) (1965) 75-78.
[11] K. P. R. Rao, G. N. V. Kishore and Md. Mustaq Ali, Generalization of Banach contraction principle of Prešić type for
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Spaces, Journal of Mathematics, (2013) ArticleID 295093.
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