(_/
NTMSCI 5, No. 1, 225-233 (2017) BISKA 2

~ NewTrendsinMathematcal Sciences

http://dx.doi.org/10.20852/ntmsci.2017.141

A new method for solving nonlinear fractional differential
equations

Serife Muge Ege and Emine Misirli

Department of Mathematics, Ege University, Bornova, I1zmirkey

Received: 12 June 2016, Accepted: 30 June 2016
Published online: 19 March 2017.

Abstract: In this paper, a new extended Kudryashov method for solviagtibnal nonlinear differential equations is proposelde T
fractional derivative in this paper is considered in thessenf modified Riemann-Liouville. We also handle the timeefional
fifth—order SawadaKotera equation and the time-fractional generalized Hir@atsuma coupled KdV equation to illustrate the the
simplicity and the effectiveness of this method. Solutiohshese equations are obtained in analytical travelingensolution form
including hyperbolic and trigonometric functions.
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1 Introduction

The development of theory of fractional calculus has affdrédditional perspectives for the theory of fractional
calculus, especially in modeling dynamical processes id<land porous structureg9,27]. Fractional derivatives also
appear in the theory of control of dynamical systems, wherctintrolled system is delineated by fractional differainti
equations. Studies, have shown that a fractional orderaiert can provide better performance than an integer order
controller. The mathematical modeling and simulation aftegns and processes naturally leads to differential ezpsti

of fractional order and to requirement to solve such equatjp, 23)].

Numerical methods for solving fractional differential edions have an intense period from both theoretical and the
viewpoint of applications in physics, chemistry, fluid manics, quantum mechanics and other fields of science. In
literature, exact solutions of fractional differentialuegions have attracted the attention of researcher froferdiit
fields. Several research works have proposed techniquesdiing fractional differential equations, such as
G'/G—expansion method3[28,30] , Exp—function method 12,29], first integral method 1,8,19,22], sub—equation
method [L3,24,32], Jacobi elliptic funtion methodd 11,26,31] , modified Kudryashov method}[5,6,17,20], extended
tanh methodT],modified simple equation methoil§] and others.

In recent years, the time-fractional fifth-order Sawa#atera equation and the time-fractional Hirota-Satsumapéed
KdV equation appear in mathematical modeling of physicamimena such as dispersive media. Moreover, traveling
wave solutions of these equations have been studied GR],26,30,28,32], the symmetrical Fibonacci function
solutions and hyperbolic function solutions have beeniobthby classical Kudryashov method 8).[

In this paper we propose a new extended Kudryashov methddafttional differential equations based on homogenous

balancing principle by means of traveling wave transforomat In this method, by using the transformation
¢ = r("l’ffm + ,_(r‘lyly) + ,_('Tl‘f& + 4 % a given fractional differential equation turn into frawial ordinary

differential equation whose solutions are in the fant§) = TN & Q' (&), whereQ(&) satisfies the fractional Riccati
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equation D?Q = Q% — Q. In addition, we handle the time-fractional fifth-order Sala-Kotera equation and the
time-fractional Hirota-Satsuma coupled KdV equationntiiee feedback is implemented in Mathematica. Figures and
results show the effectiveness of the proposed method ipadsion with the classical method. The paper is organized
as follows. Section 2 gives an overview of Jumarie's frawioderivative [4,15). Section 3 presents the extended
Kudryashov method procedure. lllustrative examples avergin Section 4 to attest the effectiveness of the proposed
method. We finish with Section 5 providing conclusions.

2 Preliminaries

Definition 1. A real function {t), t > 0, is said to be in the spaceCk € R, if there exists areal numberp k such that
f(t) =tPfy(t), where {(t) € C(0,), and it is said to be in the spacgdf ™ € C,,me N [26,27].

Definition 2. The modified Riemann-Liouville derivative is defined asg28,

1 d /X _a
1 ax [ X&) T [f(E)—f(0)]dd, 0<a <1,
DIf(x) = r1-a)dxJo 1)
(f(x))a—n, n<a<n+1 n>1
where "
o i —a _1\k _
Dy f(x) := 'ATS“ k;( 1)*f[x+ (a —k)h]. 2
Moreover, some properties for the proposed modified Riertaouville derivative are given in16] as follows:
ri+y .,
ayy . _ " \=-TV) iy-a
Dfc=0, (4)
Df' (c1f (t) +c29(t)) = caD{' (1) +c2Df'g(b), (5)

wherec,c;, ¢, are constants and);(4),(5) are direct results of the equaliy?x(t) = I (1+ a)Dx(t) which holds for
non-differentiable functions.

3 The extended Kudryashov method

We present the main steps of the extended Kudryashov meshifodi@vs.
For a given nonlinear FDEs for a functiorof independent variableX, = (x,y,z,...,t):

F (U, U, Ux, Uy, Uz, ..., Df u,DFu, DY u,DJ u, ... ) = 0. (6)
whereD{'u,Df u,Dfu andDJ u are the modified Riemann-Liouville derivatives wivith respect td, x,y andz F is a

polynomial inu = u(x,y,z,...,t) and its various partial derivatives, in which the highestesrderivatives and nonlinear
terms are involved.

Step 1.We investigate the traveling wave solutions of Byjlfy making the transformations in the form:

k@ ny¥ m? A9

S=TFasp "raty Traze T T raray

ux,y,z,...,t) = u(é), (7)
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wherek,n,mandA are arbitrary constants. Then Bg).(educes to a nonlinear ordinary differential equatiornefform:

G:(U,UE,UEE,UEEE,...):O. (8)

Step 2.We suppose that the reduced equation admits the followilugign:

N .
&) =3 aQ(@) )
whereQ(&) = \/1117 and the functior@ is the solution of equation
Qe (8) = Q%(&) — Q&) (10)

Step 3.According to the method, we assume that the solution of8tggn be expressed in the form
u(é) =anQV¥ +---. (11)

In order to determine the value of the pole ortierwe balance the highest order nonlinear terms in&aalogously
as in the classical Kudryashov method. Supposirig)u® (&) and (u(P)(£))" are the highest order nonlinear terms of
Eq.(2.8) and balancing the highest order nonlinear termsave:

_ 2(s—rp)
B (12)

Step 4.Substituting Eq9) into Eq.@) and equating the coefficients @f to zero, we get a system of algebraic equations.
By solving this system, we obtain the exact solutions of @§gAnd the obtained solutions can depend on hyperbolic
functions.

4 Examples

4.1 Time-Fractional Fifth-Order Sawada-Kotera Equation

We consider the following the time-fractional fifth-ordea#ada-Kotera equation
Dtau + uXxxxx+ 45UXU2 + 15(uXuXX + qu)(x) == O (13)

wheret > 0, O< a <1 is an important unidirectional nonlinear evolution edoatwhich belongs to many set of
conservation rule in physics and modeling the waves thaeds® opposite directions.
By considering the traveling wave transformation

BOGt) = U(E), & =k —Sb
o ’ B rl+a)
wherek, c # 0 are constants. Equatioh3) can be reduced to the following ordinary differential efipra
U +ku® + 45kud + 153Uy’ + ud”) = 0. (14)

Also we take
u(&) =ap+aQ+--+ayQ" (15)
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whereQ(&) = %e% We note that the functio® is the solution ofQ/ () = Q3(&) — Q(&). Balancing the the linear
term of the highest order with the highest order nonlineamte Eq.(4), we compute

N=4 (16)
Thus, we have
u(é) = ao+a1Q(&) + aQ%(&) + aQ3(§) + auQ*(€) 17)
and substituting derivatives of & ) with respect tcf in Eq.(14) we obtain
U (&) = 4a4QP%(&) + 383Q°(§) + (2a2 — 4a4)Q* (&) + (a1 — 3as) Q3(§) — 28,Q%(&) — auQ(&), (18)
U"(&) = 2424Q%(&) + 1583Q7 () + (8az — 4084)Q°(§) + (3ay — 24ag)Q°(€)
+(16a4(8) — 122,Q*(8) + (9ag — 4a1)Q*(&) + 4a:Q%(€) + a1 Q(&), (19)

u” (&) = 19224Q'%(&) + 105a5Q°%(€ ) + (48, — 43224) Q% (&)
+ (1523 — 225a3)Q’(§) + (30484 — 9622)Q°(€)
+ (147ag — 27a1)Q5(£) + (56a, — 64aq) Q*(£) + (13a; — 2723)Q%(€)
—8a)Q°(&) —aQ(é), (20)
u™ (&) = 192084Q"2 + 94585Q™(€) + (384a2 — 53760Q%(€)
+ (10581 — 252083)Q°% (&) + (528084 — 9608,) Q8 (&
+ (231083 — 2408;)Q" (&) + (800m, — 208084) Q8 (&
+ (1748q — 816a3)Q°(€) + (25624 — 24082)Q* (&) + (81ag — 40a)Q3(€)
+162,Q°(&) + 21 Q(£), (21)
u¥) (&) = 23040,Q (&) + 1039mQ () + (38408, — 76800u)Q™(£)
(9453; — 330753)QM (&) + (9600Gy — 1152G2)Q0(¢)
(388503 — 26251)Q°(&) + (1248, — 5472(4) Q5 (&)
(255081 — 2025@3)Q’ (£) + (135044 — 576082) Q% (&)
( )
+

~—_ ~—

n
n
n
+ (432333 — 99081 )Q%(&) + (9922, — 1024a4)Q*(€)

+ (1212 — 24383)Q°(§) — 3222Q%(€) — a1 Q(&). (22)

Substituting Eqs1(8—4.10) into Eq.14) and collecting the coefficient of each power@f setting each of coefficient to
zero, solving the resulting system of algebraic equatiom®btain the following solutions.

Case 1.
a=-1 a=0 a=16 a3=0

as=-16 k=—-v3, c=-81/3 (23)
Inserting Eq.23) into Eq.(L7), we obtain the following solutions of EQ.)
t)y=-1+
U]_(X, ) cosf?{ 2\/§(X+r?f+aa )}a
t)=-1 4 :
D A N P
Case 2.
a=-1 a=0 a=16 az3=0 (24)

as=-16, k=+3 c=81V3.
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Inserting Eq.24) into Eq.(L7), we obtain the following solutions of E4.9):
us(x,t) = —1+ 4 ,
N e s
us(X,t) = -1+ .
O = SRR e )
Case 3. 5
1 16k
ag==(3—-4k%), a;=0, ay=-———, az=0
% ae . 3 (25)
=-—3 k=k c= = (32k° — 45K)
Inserting Eqg.25) into Eq.(L7), we obtain the following solutions of E4.)
2
Us(x,t) = 5(3—4k?) + x ;
o 3cost? 2k(x+ (332}4(113; a)
A ) ]
Us(x,t) = 2(3—4k?) + A :
o 3cost? _2k(x+ (332}4(113; a )

Fig. 1: Solution of (1.3) atk = —/3,c= —81v/3 anda = 0.5.

Figurel shows hyperbolic wave structure of the solution of timesfi@nal fifth-order Sawada-Kotera equation.
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Remark 1. Whereas two solutions were obtained by classical Kudryasiethod in p], six solutions are obtained by
this method. In case 3, polynomial coefficients and parammetee in the same equivalence class with the solutions
ontained by classical method. Moreover, increase in k pataneffects the wavelenght and speed of the wave. Thus, the
wave is achieved faster progress.

4.2 Time-fractional Hirota-Satsuma coupled KdV equation

We apply the above method to the space-time fractional &li#tsuma-coupled KdV equation:

1
Zuxxx-i- 3ulk+ 3(—V2 + W)y,

1
a
Dt V= 7_VXXX7 BUV)(7

Diu=

D{XW - — EWXXX_ 3UVVX

whereu = u(x,t), v=v(x,t) andw=w(x,t), t>0, 0< a <1.Thissystem models the interaction between two long
waves that have distinct dispersion relation.
For our purpose, we use the transformations

u(x,t) = FU2(&), Vv(xt)=—-A+u(&), w(xt)=2A2-2Au(&),

whereé = x— then Egs26) reduced to the ordinary differential equation as follows:

(1+a)
AU 20— 2A%u=0. (26)
Also we take \

§) = _ZjaiQi 27)
whereQ(¢) = i(liez‘f)l/z . We note that the functio® is the solution ofY (&) = Q3(&) — Q(&). Balancingu” andu® in
Eq.(26), we compute

N=2 (28)
Thus, we have
u(&) = ao+a1Q(&) + a2Q*(¢) (29)
and taking derivatives af(¢& ) with respect tcf, we obtain
(&) = 2a,Q%(&) + aQ%(&) — 2a,Q°(€) — a1 Q(&), (30)
U (&) = 8a2Q°(&) +3a1Q%(§) — 128,Q%(§) — 4a1Q%(§) +42:Q%(&) + aQ(€) (31)

Substituting Eq30) and Eq.81) into Eq.@6) and collecting the coefficient of each power @f, setting each of
coefficient to zero, solving the resulting system of algebeguations we obtain the following solutions.

Case 1.
ag=-1 a;=0 a=2 A=-1 (32)
Inserting Eq.82) into Eq.R9), we obtain the following solutions of Eq26)

ug(x,t) = —tant? [2x+ r<1+a)}

vi(X,t) = 1—tanh{2x+ ,_(Ha) ,

wy(x,t) =2— 2tanh{2xaL I'(l+a)]'

(© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 1, 225-233 (2017)www.ntmsci.com

BISKA <2
Uz(X,t) = —cotr? {2x+ ,_(Ha)} ,
Vo(xt) =1— coth{2x+ m} ,
Wa(x,t) =2 — Zcoth[2x+ I'(zlt—J:a)} .
Case 2.
=1 a=0 a=-2 A=-1 (33)
Inserting Eq.4.2) into Eq.R9), we obtain the following solutions of Eq2K)
uz(x,t) = —tant? {2x+ ,_(Ha)} ,
va(xt) = 1+tanh[2x+ I'(1+a)}
w3 (x,t) = 2+2tanh[2x+ r(1+a)}
uz(x,t) = —cotr? {2x+ I'(1+a)} ,
v3(x,t) = 1+C0th|:2X+ m} ,
wa(x,t) = 2+2coth[2x+ r(zlt—ia)} .
0.
0.5 0.0 “0s
0s [ sy B ik L
Yoo
05t \
-0.5 I oo 0.5
0.
0.
-0.5 0.0 0.5

Fig. 2: Solution of u(x,t) in g6) atA = —1 anda = 0.5.

Figure2 shows the hyperbolic wave structure of the space-timeifnaat Hirota-Satsuma-coupled KdV equation.
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Remark 2. Although the obtained solutions of space-time fractionabta-Satsuma-coupled KdV equation are in the
similar structure and the same equivalence class of theisaduobtained classical Kudryashov method, coefficiefts o
polynomial andA parameter that determines the speed of wave, are incregsedibtimes. Altering inA parameter
provides the increase in speed of the wave.

5 Conclusion

In this work, we have proposed a new extended Kudryashovaddthsolve nonlinear fractional differential equations
with the help of Mathematica. By this way, degree of the aryilpolynomials are increased and more solutions are
provided an opportunity for some models. The time-fradidifth-order Sawada-Kotera equation and the space-time
fractional Hirota-Satsuma-coupled KdV equation are hathtth demonstrate the effectiveness of the proposed mdthod.
comparision with the classical Kudryashov method, mongetiag wave solutions are obtained. In addition, changhén t
parameters that determine the speed of the wave effectshmottavelenght and the speed of the solutions. Consequently
the method is effective and convenient for solving otheetgpspace-time fractional differential equations in whilsh
homogenous balance principle is satisfied.
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