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Edelstein-type fixed point theorems in compact
TVS-cone metric spaces

Thabet Abdeljawad ∗

Abstract

In this paper we prove two fixed point theorems in compact cone metric
spaces over normal cones. The first theorem generalizes Edelstein the-
orem [8] and is different from the generalization obtained in [11]. The
second theorem generalizes the main result in [10] and the first theorem.
However, the two theorems fail in different categories. Moreover, differ-
ent versions of the two theorems are proved in TVS-cone metric spaces
by making use of the nonlinear scalarization function used very recently
by Wei-Shih Du in [A note on cone metric fixed point theory and its
equivalence, Nonlinear Analysis,72(5),2259-2261 (2010).] to prove the
equivalence of the Banach contraction principle in cone metric spaces
and usual metric spaces.
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1. Introduction and Preliminaries

There are thousands of fixed points theorems in complete or compact metric spaces.
However, these theorems can be categorized into the following four types. Let T :
(X, d) → (X, d) be a mapping on a metric space not assumed to be convex or normed,
then

(T1) Leader-type [1]: The mapping T has a unique fixed point and {Tnx} converges
to the fixed point for all x ∈ X. Such a mapping is called a Picard operator as in [2].

(T2) Unnamed-type: The mapping T has a unique fixed point and {Tnx} does not
necessary converge to the fixed point.

(T3) Subrahmanyam-type [3]: The mapping T may have more than one fixed point
and {Tnx} converges to the fixed point for all x ∈ X. Such a mapping is called a weakly
Picard operator as in [4] and [5].
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(T4) Caristi-type ([6], [7]): The mapping T may have more than one fixed point and
{Tnx} does not necessarily converge to a fixed point.

The following Edelstein fixed point theorem [8] belongs to (T1) because it can be
proved using Meir-Keeler theorem [9].

1.1. Theorem. Let (X, d) be a compact metric space and let T be a mapping on X.
Assume d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Then T has a unique fixed
point.

Motivated by the above, T. Suzuki in [10] generalized Theorem 1.1 by a theorem
belongs to (T2). Indeed, he obtained the following theorem

1.2. Theorem. Let (X, d) be a compact metric space and let T be a mapping on X.
Assume that

(1.1)
1

2
d(x, Tx) < d(x, y) implies d(Tx, Ty) < d(x, y) for x, y ∈ X.

Then T has a unique fixed point.

Recently, and in [11], the authors there rather implied that metric spaces do not
provide enough space for fixed point theory. They introduced the notion of cone metric
space, where they gave an example of a function which is contraction in the category of
cone metric spaces but not contraction if considered over metric spaces and hence, by
proving a fixed point theorem in cone metric spaces, ensured that this map must have
a unique fixed point. They also there generalized Theorem 1.1 to compact cone metric
spaces over regular cones. Namely, they proved

1.3. Theorem. Let (X, d) be a compact cone metric space over a regular cone and let
T be a mapping on X. Assume d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Then T
has a unique fixed point.

After that series of articles about cone metric spaces started to appear. Some of those
articles dealt with fixed point theorems in those spaces and some other with the structure
of the spaces themselves. For example we name [12], [13], [14], [15], [16], [17], [18], [19]
and [20]. For more recent articles about cone metric spaces we refer to [26, 27, 28, 29, 30].

In this article, we shall generalize Theorem 1.2 to compact cone metric spaces over
normal cones. Also, recalling that there exist normal cones with constant 1 which are
not regular, we shall prove another generalization to Theorem 1.3. Moreover, by the help
of the nonlinear scalarization, we prove other different versions of Edelstein fixed point
theorem in TVS-cone metric spaces without any normality or regularity assumptions.

Throughout this paper, (E,S) stands for real Hausdorff locally convex topological
vector space (t.v.s.) with S its generating system of seminorms. A non-empty subset P
of E is called cone if P + P ⊂ P , λP ⊂ P for λ ≥ 0 and P ∩ (−P ) = {0}. The cone
P will be assumed to be closed and has nonempty interior as well. For a given cone P ,
one can define a partial ordering (denoted by ≤: or ≤P ) with respect to P by x ≤ y
if and only if y − x ∈ P . The notation x < y indicates that x ≤ y and x 6= y while
x << y will show y − x ∈ int(P ), where int(P ) denotes the interior of P . Continuity of
the algebric operations in a topological vector space and the properties of the cone imply
the relations:

int(P ) + int(P ) ⊆ int(P ) and λint(P ) ⊆ int(P ) (λ > 0).

We appeal to these operations in the following.

1.4. Definition. [23] A cone P of a topological vector space (X, τ) is said to be normal
whenever τ has a base of zero consisting of P− full sets. Where a subset of A of an
order vector space via a cone P is said to be P−full if for each x, y ∈ A we have
{a ∈ E : x ≤ a ≤ y} ⊂ A.
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1.5. Theorem. [23] (a) A cone P of a topological vector space (X, τ) is normal if and
only if whenever {xα} and {yα}, α ∈ ∆ are two nets in X with 0 ≤ xα ≤ yα for each
α ∈ ∆ and yα → 0, then xα → 0.

(b) The cone of an ordered locally convex space (X, τ) is normal if and only if τ is
generated by a family of monotone τ− continuous seminorms. Where a seminorm q on
X is called monotone if q(x) ≤ q(y) for all x, y ∈ X with 0 ≤ x ≤ y.

1.6. Definition. A cone P of a locally convex topological vector space (E,S) is said
to be (sequentially) regular if every sequence in E which is increasing and bounded
above must be convergent in (E,S). That is, if {an} is a sequence in E such that
a1 ≤ a2 ≤ ... ≤ an ≤ ... ≤ b for some b ∈ E, then there is a ∈ E such that q(an) → 0
as n → ∞, for all q ∈ S. Equivalently, if every sequence in E which is decreasing and
bounded below is convergent.

It is well-known that if E is a real Banach space then every (sequentially) regular cone
is normal.

In particular, if P is a cone of a real Banach space E, then it is called normal if there is
a number K ≥ 1 such that for all x, y ∈ E: 0 ≤ x ≤ y ⇒ ‖x‖ ≤ K‖y‖. The least positive
integer K, satisfying this inequality, is called the normal constant of P . Also, P is said
to be regular if every increasing sequence which is bounded from above is convergent.
That is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤ · · · ≤ y for some y ∈ E, then there
is x ∈ E such that limn→∞ ‖xn− x‖ = 0. For more details about cones in locally convex
topological vector spaces we may refer the reader to [23].

It is worthwhile to mention here, that there are certain real Banach spaces whose
positive cones have empty interior such as the sequences spaces lp, 1 ≤ p < ∞ and
the Lebesgue integrable spaces Lp, 1 ≤ p < ∞ [21]. On the other hand the positive
cone in the Euclidean space Rn does not have empty interior. For example in R2 the
interior of the positive cone P = {(x, y) : x ≥ 0, y ≥ 0} is {(x, y) : x > 0, y > 0} which
is nonempty. For the infinite dimensional case the positive cones of AM − spaces can
have nonempty interiors [22]. For the purposes in defining convergence [11] and other
topological concepts in cone metric spaces [15], the cones under consideration are always
assumed to have nonempty interiors.

The cone [0,∞) in (R, |.|) and the cone P = {(x, y) : x ≥ 0, y ≥ 0} in R2 are normal
cones with constant K = 1. However, there are examples of non-normal cones.

1.7. Example. [24] Let E = C1[0, 1] with the norm ‖f‖ = ‖f‖∞+ ‖f ′‖∞, and consider
the cone P = {f ∈ E : f ≥ 0}.

For each k ≥ 1, put f(x) = x and g(x) = x2k. Then, 0 ≤ g ≤ f, ‖f‖ = 2 and
‖g‖ = 2k + 1. Since k‖f‖ < ‖g‖, k is not normal constant of P and hence P is a
non-normal cone.

Normal cones are very important when some fixed point theorems are generalized to
cone metric spaces. Most of normal cones have normal constant 1. Hence, it is still of
great interest when some fixed point theorems are generalized to cone metric spaces over
normal cones with normal constant 1. Here are some examples of normal cones with
normal constant 1.

1.8. Example. Let E = Rn, n ≥ 1 and P = {(x1, x2, ..., xn) : xi ≥ 0, i = 1, 2, ..., n}.
Then, P is a normal cone with normal constant K = 1.

1.9. Example. Let E = C[0, 1] with the supremum norm and P = {f ∈ E : f ≥ 0}.
Then P is a cone with normal constant K = 1 which is not regular. This is clear, since
the sequence xn is monotonically decreasing, but not uniformly convergent to 0.
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A cone P of real Banach space E is called strictly normal with normal constant K, if
K is the least number such that

0 ≤ a < b implies ‖a‖ < K‖b‖, for all a, b ∈ E.
The cone given in Example 1.8 is clearly strictly normal. Also, the positive cones of the
Lp−spaces with 1 ≤ p < ∞ are strictly normal with K = 1. Actually, the norms of
those spaces are strictly monotone ([22]). However, the cone given in Example 1.9 is not
strictly normal.

1.10. Definition. (See [25], [30]) For e ∈ int(P ), the nonlinear scalarization function
ξe : E → R is defined by

ξe(y) = inf{t ∈ R : y ∈ tc− P}, for all y ∈ E.
1.11. Lemma. (See [25],[30]) For each t ∈ R and y ∈ E, the following are satisfied:

(i) ξe(y) ≤ t⇔ y ∈ te− P ,
(ii) ξe(y) > t⇔ y /∈ te− P ,

(iii) ξe(y) ≥ t⇔ y /∈ te− int(P ),
(iv) ξe(y) < t⇔ y ∈ te− int(P ),
(v) ξe(y) is positively homogeneous and continuous on E,

(vi) if y1 ∈ y2 + P , then ξe(y2) ≤ ξe(y1),
(vii) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2), for all y1, y2 ∈ E,

(viii) if y1 ∈ y2 + int(P ), then ξe(y2) < ξe(y1).

Lemma 1.11 (vi) and Lemma 1.11 (viii) mean that the nonlinear scalarization function
ξe is monotone and strictly monotone. However, it is not strongly monotone (see [30]).

1.12. Definition. Let X be a non-empty set. and E as usual a Hausdorff locally convex
topological space. Suppose a vector-valued function p : X ×X → E satisfies:

(M1) 0 ≤ p(x, y) for all x, y ∈ X,
(M2) p(x, y) = 0 if and only if x = y,
(M3) p(x, y) = p(y, x) for all x, y ∈ X
(M4) p(x, y) ≤ p(x, z) + p(z, y), for all x, y, z ∈ X.

Then, p is called TVS-cone metric on X, and the pair (X, p) is called a TVS-cone metric
space (in short, TVS-CMS).

Note that in [11], the authors considered E as a real Banach space in the definition of
TVS-CMS. Thus, a cone metric space (in short, CMS) in the sense of Huang and Zhang
[11] is a special case of TVS-CMS.

1.13. Lemma. (See [25]) Let (X, p) be a TVS-CMS. Then, dp : X×X → [0,∞) defined
by dp = ξe ◦ p is a metric.

1.14. Remark. Since a cone metric space (X, d) in the sense of Huang and Zhang [11],
is a special case of TVS-CMS, then dp : X ×X → [0,∞) defined by dp = ξe ◦ d is also a
metric.

1.15. Definition. (See [25]) Let (X, p) be a TVS-CMS, x ∈ X and {xn}∞n=1 a sequence
in X.

(i) {xn}∞n=1 TVS-cone converges to x ∈ X whenever for every 0 << c ∈ E, there
is a natural number M such that p(xn, x) << c for all n ≥ M and denoted by

cone− limn→∞ xn = x (or xn
cone→ x as n→∞),

(ii) {xn}∞n=1 TVS-cone Cauchy sequence in (X, p) whenever for every 0 << c ∈ E,
there is a natural number M such that p(xn, xm) << c for all n,m ≥M ,
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(iii) (X, p) is TVS-cone complete if every sequence TVS-cone Cauchy sequence in X
is a TVS-cone convergent.

1.16. Lemma. (See [25]) Let (X, p) be a TVS-CMS, x ∈ X and {xn}∞n=1 a sequence in
X. Set dp = ξe ◦ p. Then the following statements hold:

(i) If {xn}∞n=1 converges to x in TVS-CMS (X, p), then dp(xn, x)→ 0 as n→∞,
(ii) If {xn}∞n=1 is Cauchy sequence in TVS-CMS (X, p), then {xn}∞n=1 is a Cauchy

sequence (in usual sense) in (X, dp),
(iii) If (X, p) is complete TVS-CMS, then (X, dp) is a complete metric space.

1.17. Remark. (see also [30, 31]) Note that the implications in (i) and (ii) of Lemma 1.16
are also conversely true. Regarding (i) we prove that if xn → x in (X, dp) then xn → x
in (X, p). To this end, let c >> 0 be given, then find q ∈ S and δ > 0 such that q(b) < δ
implies that b << c. Since e

n
→ 0 in (E,S) find ε = 1

n0
such that εq(e) = q(εe) < δ and

hence εe << c. Now, find n0 such that dp(xn, x) = ξe◦p(xn, x) < ε for all n ≥ n0. Hence,
by Lemma 1.11 (iv) p(xn, x) << εe << c for all n ≥ n0. The proof of the converse of
implication (ii) is similar. Now it is possible to say that (iii) of Lemma 1.16 is immediate
from (i) and (ii). This remark clearly is also valid for any topological vector space since
neighborhood elements are symmetric.

The following lemma characterizes convergence and Cauchyness in cone metric spaces
by means of the scalar norm of the Banach space E under the normality assumption for
the cone P .

1.18. Lemma. [11] Let (X, d) be a cone metric space and P a normal cone with normal
constant K. Let {xn} be a sequence in X. Then,

(i) {xn} converges to x if and only if limn→∞ds(xn, x) = 0,
(ii) {xn} is Cauchy if and only if limm,n→∞ds(xn, xm) = 0,
where ds(x, y) = ‖d(x, y)‖, for x, y ∈ X.

Regarding the above Lemma, It is always worthwhile to mention that normality is
only used in proving the necessity (for example see [24]).

1.19. Lemma. [11] Let (X, d) be a cone metric space and P a normal cone with normal
constant K. Let {xn} and {yn} be two sequences in X such that limn→∞xn = x and
limn→∞yn = y. Then

limn→∞‖d(xn, yn)− d(x, y)‖ = 0

In case Int(P ) 6= ∅ it was proved in [15] that cone metric spaces are topological spaces
and compactness and sequential compactness coincide (see also [15]).

2. The Main Results

2.1. Theorem. Let (X, d) be a (sequentially) compact cone metric space over a normal
cone P with normal constant K. Suppose the mapping T : X → X satisfies the contractive
condition

(2.1) ds(Tx, Ty) < ds(x, y), for all x, y ∈ X, x 6= y.

Then T has a unique fixed point in X.

Proof. Choose x0 ∈ X. Set x1 = Tx0, x2 = Tx2, ..., xn+1 = Txn = Tn+1x0, ..... If for
some n, xn+1 = xn, then {xn} is a fixed point of T , the proof is complete. So we assume
that for all n, xn+1 6= xn. Set dn = ds(xn, xn+1), then the contractive condition (2.1)
implies

dn+1 = ds(xn+1, xn+2) = ds(Txn, Txn+1) < ds(xn, xn+1).
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Therefore, the sequence {dn} is a decreasing sequence of positive real numbers and
hence convergent. Assume dn → d∗. From the compactness of X, we may assume
that xn → x∗ in (X, d). Then, by the contractive condition (2.1) we have Txn → Tx∗

and T 2xn → T 2x∗. By using Lemma 1.19 and uniform continuity of the norm ‖.‖, we
have ds(Txn, xn) → ds(Tx

∗, x∗) and ds(T
2xn, Txn) → ds(T

2x∗, Tx∗). Hence, we have
ds(Txn, xn) → d∗ = ds(Tx

∗, x∗). Finally, we show that Tx∗ = x∗. If not, then d∗ 6= 0
and hence

d∗ = ds(Tx
∗, x∗) > ds(T

2x∗, Tx∗) = lim
n→∞

ds(T
2xn, Txn) = lim

n→∞
dn+1 = d∗.

Which is a contradiction, so Tx∗ = x∗. The uniqueness of the fixed point is obvious from
the contractive condition (2.1). �

It is desired to mention that Theorem 2.1 above can be applied for cone metric spaces
over the cone defined in Example 1.9. However, Theorem 2 in [11] can not be applied for
such kind of cone metric spaces.

2.2. Remark. If the cone P is strictly normal with constant K = 1 then the contractive
condition (2.1) can be replaced by

d(Tx, Ty) < d(x, y), for all x, y ∈ X, x 6= y.

In this case the proof of Theorem 2.1 can be easily also achieved by applying Edelstein
Theorem to the metric space (X, ds).

2.3. Theorem. Let (X, d) be a (sequentially) compact cone metric space over a normal
cone P with normal constant K ≥ 1 and let T be a mapping on X. Assume that

(2.2)
1

2
ds(x, Tx) < Kds(x, y) implies ds(Tx, Ty) < ds(x, y) for x, y ∈ X.

Then, T has a unique fixed point.

Proof. Set α = inf{ds(x, Tx) : x ∈ X} and choose a sequence {xn} in X such that
limn→∞ ds(xn, Txn) = α. Since X is compact, without loss of generality, we may assume
that {xn} and {Txn} converge to some elements v and w, respectively. We shall show
that α = 0. If not then α > 0. By Lemma 1.19 we have

lim
n→∞

ds(xn, w) = ds(v, w) = lim
n→∞

ds(xn, Txn) = α

We can choose n0 ∈ N such that

2

3
α < ds(xn, w) and ds(xn, Txn) <

4

3
α

for all n ≥ n0. Thus 1
2
ds(xn, Txn) < ds(xn, w) for n ≥ n0. By (3.4), ds(Txn, Tw) <

ds(xn, w) holds for n ≥ n0. This implies, again by means of Lemma 1.19, that

ds(w, Tw) = lim
n→∞

ds(Txn, Tw) ≤ lim
n→∞

ds(xn, w) = α.

From the definition of α, we obtain ds(w, Tw) = α. Since 1
2
ds(w, Tw) < ds(w, Tw), then

by (3.4), we have

ds(Tw, T
2w) < ds(w, Tw) = α.

Which contradicts the definition of α. Therefore, we must have α = 0. We next show
that T has a fixed point. Arguing by contradiction, we assume that T does not have a
fixed point. Hence, 0 < 1

2
ds(xn, Txn) < ds(xn, Txn) for all n ∈ N and so by (3.4) we

have

(2.3) ds(Txn, T
2xn) < ds(xn, Txn)

for all n ∈ N. Also by Lemma 1.19 we have
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lim
n→∞

ds(v, Txn) = ds(v, w) = lim
n→∞

ds(xn, Txn) = α = 0,

which implies that Txn → v. We also have

lim
n→∞

ds(v, T
2xn) ≤

(2.4) K lim
n→∞

(ds(v, Txn) + ds(Txn, T
2xn)) ≤ K lim

n→∞
(ds(v, Txn) + ds(xn, Txn)) = 0.

Thus, T 2xn → v. If we accept

1

2
ds(xn, Txn) ≥ Kds(xn, v) and

1

2
ds(Txn, T

2xn) ≥ Kds(Txn, v),

then by the triangle inequality and (2.3) we have

ds(xn, Txn) ≤ Kds(xn, v) +Kds(Txn, v) ≤

(2.5)
1

2
ds(xn, Txn) +

1

2
ds(Txn, T

2xn) <
1

2
ds(xn, Txn) +

1

2
ds(xn, Txn) = ds(xn, Txn),

which is a contradiction. Hence for every n ∈ N, either

1

2
ds(xn, Txn) < Kds(xn, v) or

1

2
ds(Txn, T

2xn) < Kds(Txn, v)

holds. Then by assumption (3.4), either

ds(Txn, T v) < ds(xn, v) or ds(T
2xn, T v) < ds(Txn, v)

holds. Hence one of the following holds:
(i) There exists an infinite subset I of N such that

ds(Txn, T v) < ds(xn, v) for all n ∈ I.
(ii) There exists an infinite subset J of N such that

ds(T
2xn, T v) < ds(Txn, v) for all n ∈ J.

In the first case, we obtain

ds(v, Tv) = lim
n∈I,n→∞

ds(Txn, T v) ≤ limn ∈ I, n→∞ds(xn, v) = 0,

which implies that Tv = v. Also, in the second case, we obtain

ds(v, Tv) = lim
n∈J,n→∞

ds(T
2xn, T v) ≤ lim

n∈J,n→∞
ds(Txn, v) = 0,

which implies that Tv = v. That is v is a fixed point in both cases. This is a contradiction.
Therefore there exists z ∈ X such that Tz = z. To prove uniqueness, fix y ∈ X with
y 6= z. Then since 1

2
ds(z, Tz) = 0 < Kds(z, y), we have

ds(z, Ty) = ds(Tz, Ty) < ds(z, y)

and hence y is not a fixed point. �

Note that also, if in Theorem 2.3 the cone P is strictly normal with K = 1 then the
assumption (3.4) can be replaced by the condition

1

2
d(x, Tx) < d(x, y) implies d(Tx, Ty) < d(x, y) for x, y ∈ X.

As a matter of great interest in Theorem 2.3, is that the author in [10] proved that the
constant 1

2
is the best constant. Namely, he proved that for every η ∈ ( 1

2
,∞), there

exists a compact metric space (X, d) and a mapping T on X satisfying the following:
(i) T has no fixed point.
(ii) ηd(x, Tx) < d(x, y) implies d(Tx, Ty) < d(x, y) for all x, y ∈ X.
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3. Other Edelstein -type fixed point theorem in TVS-cone metric
spaces

3.1. Lemma. If (X, p) is a (sequentially) compact TVS-metric space then (X, dp) is a
(sequentially) compact metric space, where dp = ξe ◦ p.

The proof followed by Lemma 1.13 , Lemma 1.16 (ii).

3.2. Theorem. Let (X, p) be a (sequentially) compact TVS-cone metric space and let T
be a mapping on X. Assume that

(3.1)
1

2
dp(x, Tx) < dp(x, y) implies d(Tx, Ty)� d(x, y) for x, y ∈ X.

Then, T has a unique fixed point.

The proof followed by Lemma 1.11 (viii), Lemma 3.1 and the classical Edelstein fixed
point theorem.

3.3. Corollary. Let (X, p) be a (sequentially) compact TVS-cone metric space and let
T be a mapping on X. Assume that

(3.2) d(Tx, Ty)� d(x, y) for x, y ∈ X.
Then, T has a unique fixed point.

Note that no regularity assumption is not required in Lemma 3.1 and hence in Corol-
lary 3.3. Therefore, Corollary 3.3 improves Theorem 2 in [11] by replacing ” < ” by
”� ” and removing regularity.

3.4. Theorem. Let (X, p) be a (sequentially) compact TVS-cone metric space and let T
be a mapping on X. Assume that

(3.3)
1

2
dp(x, Tx) < dp(x, y) implies dp(Tx, Ty) < dp(x, y) for x, y ∈ X.

Then, T has a unique fixed point.

The proof followed by Lemma 3.1 and the classical Edelstein fixed point theorem.

3.5. Corollary. Let (X, p) be a (sequentially) compact TVS-cone metric space and let
T be a mapping on X. Assume that

(3.4) dp(Tx, Ty) < dp(x, y) for x, y ∈ X.
Then, T has a unique fixed point.

Note that no normality assumptions are needed in Theorem 3.4 and Corollary 3.5.
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