

POLİTEKNİK DERGİSİ

JOURNAL of POLYTECHNIC

ISSN:1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE)

URL: http://dergipark.gov.tr/politeknik

Malicious xss code detection with decision

tree

Yazar(lar) (Author(s)): Ömer KASIM

ORCID: 0000-0003-4021-5412

Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Kasım Ö., “Malicious XSS code

detection with decision tree”, Politeknik Dergisi, 23(1): 67-72, (2020).

Erişim linki(To link to this article):http://dergipark.gov.tr/politeknik/archive

DOI:10.2339/politeknik.470332

http://dergipark.gov.tr/politeknik
http://dergipark.gov.tr/politeknik/archive

Politeknik Dergisi, 2020; 23(1) : 67-72 Journal of Polytechnic, 2020; 23 (1): 67-72

67

Malicious XSS Code Detection with Decision Tree
Araştırma Makalesi / Research Article

Ömer KASIM*

Dumlupinar University, Simav Technology Faculty, Electric and Electronic Engineering, Kütahya, Turkey

(Geliş/Received : 14.10.2018 ; Kabul/Accepted : 20.02.2019)

ABSTRACT

Dynamic applications such as e-commerce, blogs, forums, e-governance, e-banking and portals that are in these platforms have
become a part of our lives. However, a tremendous increase in the use of dynamic web and mobile applications has resulted in
security vulnerabilities originating from the Hypertext Markup Language (HTML) coding system. Site-to-site Script Execution
(XSS) attack is the largest contributors to security exploits. There are different models according to the dynamic content that XSS
attacks use. The interest of the study is composed of attacks on visual content with the "img" tag. In study, an algorithm has been

developed to detect XSS attacks with the decision tree which is motivated by the fact that they tend to be easier to implement and
interpret than other quantitative data-driven methods. The algorithm that successfully classifies 392 of 400 malicious and clean
codes in the data set with 8 different features. This result contributes to the use of secure internet without XSS attacks that use
visual content..

Keywords: Security vulnerability, XSS attacks, feature extraction, decision tree.
1. INTRODUCTION

The dynamic transformation of web and mobile
applications with Web 2.0 causes some vulnerability.

These vulnerabilities are used to attack systems. These

attacks are categorized by the Open Web Application

Security Project (OWASP) [1]. In OWASP report, Cross-

Site Script Execution attacks (XSS) are the most common

attack type. It has been found that XSS attacks have also

increased in parallel with an increase in the level of

interaction of an application. The most important reason

for this increase is due to the fact that the XSS commands

operate at the application layer of the Open Systems

Interconnection (OSI) architecture. This problem causes

most existing intrusion detection systems to have
difficulty detecting XSS attacks [1].

As shown in Figure 1, the attacker can use malicious

JavaScript, VBScript, ActiveX, Hypertext Markup

Language (HTML) or Flash code to attack the dynamic

web page in the XSS process. Embedded HTML and

JavaScript codes are the most used ones. In this process,

it is possible to execute code to get access to data and

cookies on the remote computer with XSS codes [2].

Information such as the user name and password of the

user canbe obtained by accessing data and cookies on the

remote computer.

XSS attacks are divided into three categories: Stored XSS

Attack, Reflected XSS Attack and Document Object

Model (DOM) [3]. The Stored XSS Attack is done by

using fields such as the forum application and a text box

that provides the visitor-book style interaction process in

the web sites. XSS codes sent via these fields are

recorded in the database. Thus, any user who uses the

attacking application or visits the page is converted to
XSS attack [4]. The Rejected XSS Attack is done with

code entry into the Uniform Resource Locator (URL)

fields. Users are searched for attacks by social media and

URL addresses which is sent via an e-mail. The user who

falls into this trap is in the target position by activating

the URL. The important point of this attack is that this

attack can be seen only by the user who composed the

XSS attack. The target user is in danger because of the

Figure 1. XSS Attack Scheme

*Sorumlu Yazar (Corresponding Author)

e-posta : omer.kasim@dpu.edu.tr

Ömer KASIM /POLİTEKNİK DERGİSİ, Politeknik Dergisi,2020;23(1): 67-72

68

unseen codes [5]. In the DOM XSS attack, the DOM field

of the HTML page is changed. With the changing DOM,

the payload field in Hyper Text Transfer Protocol

(HTTP) is used for different purposes. The requested
code in DOM is separated by the payload '#' symbol with

the part in the URL.

This character is not received by the server. If malicious

codes integrated after this character, this request is

processed. The “document.referrer”, which represents

the URL of the uploading document, is directed with the
DOM routing object. The payload is received by the

server in the routing header information. Thus, the

malicious codes are placed on the page by interfering

with the code structure and index page of the web site.

These operations are usually done with terminal-side

JavaScript codes [6].

Risk reporting, using of SSL, login validation and

authorization are used to protect the system from attacks

during the design phase [7]. However, a malicious script

running in the context of the current user, firewall,

encryption method, or Intrusion Detection System (IDS)

in XSS attacks may be ineffective in preventing these

types of attacks [8]. Because, the XSS codes are run

directly in the browser program that causing the

application or web page to be damaged. Static, dynamic

and hybrid approaches are used to solve this problem [9].

These solutions include some investment strategies in
corporations and intuitions. These investments that can

be applied in the process of making cyber security

investment decisions are grouped into 5 categories. These

categories are the determination and measurement of

cyber security risks, measurement of the cost and effect

of security attacks, measurement of the effectiveness of

security technologies and determination of the optimal

level of security investments [10]. To determine the

investments, the malicious code analysis can be done.

Code propagation analysis, string test and software test

tools are used in Static analyzes. One of them, code

propagation analysis, is based on flow control structure

[11]. Each node in the flow is represented by a label.

When a decision variable of a node is observed, the web

page is considered vulnerable or no problem in the

running code. Another static analysis, String Analysis,

uses the Context Free Grammar (CFG) structure [12].
CFG refers to the whole grammar or rules used in

language design. Content in CFG structure consists of

four features. These features consist of the ending ones,

the continuous ones, the relations and the starting

symbol. These 4 labels define the features of the string

expressions. In the software-based test process, which is

the third static analysis, error injection and penetration

tests are used [13]. In dynamic analysis, XSS attacks are
not tried to be detected with proxy based solutions. In this

process, specific codes are allowed to operate according

to the structure of the application and the service model

[14]. In some cases, both static and dynamic structures

are used together. This is the name given to the hybrid

solution. Static and dynamic models are used together

according to the application's service model and code

structure [15].

There are different solutions in literature to overcome

malicious codes which contains XSS. The easiest one is

to disable the Javascript command execution process in

browser programs. The other solution is Server-side

programs. XSS-Guard is the one of them [16]. XSS

Guard creates a shadow page for the actual response page

of the programs on the server. This process makes it

difficult for the attacker to kill or harm the process

because the shadow page is accessed instead of the actual
response page in the XSS attacks. On terminal side

solution is proposed to prevent terminal-side High-Rate

Distributed Denial of Service (HDDoS) attacks. In the

first step of the work, the data is transformed by

preprocessing, then the features of the captured data are

extracted and in the last step the α-divergence test is

performed. This process is applied to all incoming and

outgoing packets through the proxy. When the

distribution is examined, if the threshold value exceeds a

predetermined value, the demand is not further processed

and the process is terminated [17]. In the work of attack

detection by following the proxy process, the parameter
values of the request pages and the HTML and JavaScript

codes of the response pages are analyzed. The method

includes data collection, preprocessing, feature

extraction and attack clustering on the most appropriate

subset of related properties. In an attack, the JavaScript

is disabled by the proposed program [18]. An artificial

learning algorithm, on the other hand, detects XSS

attacks with self-generated qualities on both static and

dynamic structures. In proposed method, high false alarm

rate and scaling problems have been observed in the

detection process [19,20].

The proposed algorithm resolves the high false positive

problem without having to disable Javascript and to make

cyber security investment decisions. It is designed as

server, client or proxy-side that provides .

Clean

Code

Malicious

Code "img" code detector
with Regex function

Feature
Extraction

Evaluation with
Decision Tree

Source
Code

Figure 2. Block Diagram of Algorithm

MALICIOUS XSS CODE DETECTION WITH DECISION TREE- … Politeknik Dergisi, 2020; 23 (1) : 67-72

69

Figure 3. Pseudo Codes of the Proposed Algorithm

protection against dynamic and static XSS attacks by

using the characteristics of the code. The decision tree

method has been used as a classification technique and a

predictive approach in order to analyses these

characteristics. The trained decision tree algorithm

classifies 400 sets of attributes with clean and
maliciously code of visual html requests in the data set

with 98% success. It supports secure internet usage by

detecting XSS attacks to be done with html “img” tags.

2. PROPOSED APPROACHED

Block diagram of the proposed method which includes

artificial learning algorithm with the decision tree

structure is shown in Figure 2. The source code
isreceived on request. Then the “img” label is detected by

Regex function. If there is “img” label on request, it is

analyzed by the proposed method. At analyze stage

features of the code is obtained. Then the obtained

features are given to the trained decision tree. At final

stage the code status is determined as malicious or clean

code. Also, the pseudo code of the algorithm is shown in

Figure 3.

3. DETECTION OF XSS ATTACK

In the experimental part of the study, 3 steps are

followed. These are the creation of the data set, feature

extraction and evaluation steps.

3.1. Collection of Data

The malicious codes used in the training and testing

phase of the study were taken from OWASP [21]. These

malicious codes contain different XSS attack options.Our
scope of in this study is about the malicious visual

content. Therefore, the 350 malicious code line contains

“img” labels. Then, our dataset is enriched with 50 clean

code sets with clean "img" tags. The training and testing

dataset of the decision tree is expressed on the Table 1.

Table 1: Training and Testing Dataset of Decision Tree

 Clean

Code

Malicious

Code

Codes in

Dataset

Training
16 48 64

Testing
50 350 400

Table 2: Clean and Malicious Code Samples from Dataset

Clean Code

<img id="resim" src="
http://www.xyz. org /images/
slide/slide-2/slide5.jpg "onmouseover=
"hover(this);"

onmouseout="unhover(this);" />

XSS Malicious

Code

Structure

Disabling

WAF

<img src="x:x" onerror=
"alert(XSS)">

 The code samples of the “img” tag used in web

operations that represent the visual content are in the data
set of the study. Sample of clean and malicious code of

these are shown in Table 2. The clean code which is in

the Table 2 is effective in loading and using visual

content. On the other hand, the "x: x" in XSS containing

malicious code structure allows to exceed the firewall of

the application.

3.2. Preprocessing and Feature Extraction

This step includes the creation of features to identify

aggregated data. With the Regexp function, incoming

and outgoing HTML requests are scanned on the terminal

or server. For each request that is scanned, the tags

areobtained in array form with the token and match sub-
functions. When tags are defined with tokens, the

parameters and values which are contained in the tags are

obtained as a string array with the plug-in function. When

“img” tags are derived from the token, the parameters and

values of all the lines containing “img” tag are obtained

with the matched plug-in. The code of the acquired visual

content request contains the feature vector, these

parameters and values.

Table 3: Features

Feature Explanation of Feature

f1 Img

f2 #

f3 Hex

f4 Src

f5 “=” After character “/”

f6 www.

f7 http://

f8 https://

The 8 features obtained from the data set of the worker

are described in Table 3. The f1 feature changes to "1" if
it is the "img" tag. When the "img" tag is not found, this

feature information remains "0”. The second feature is

the "#" character. This character is used before the

functions in the distressed code lines are called. f2 feature

is "0" if it is not "1" in case of "#" character in “img”. In

the case of f3, these features are updated as "1", otherwise

they remain as "0" in the feature vector. The f4 measures

the “src” characters. If these characters are composed of

the together, this feature is set to “1”. Otherwise the f4

- Initialize HTML request
- Initialize Regexp Function
- while the img tag token
- Calculate 8 Features
- while img tag matches
- If src,www,http,https are equals 1 and =/,#,hex are equals 0

- Print Code is clear, Keep Going Application or Web Page
- Else
- Print Code is not clear, Block the Web Page or Application

Ömer KASIM /POLİTEKNİK DERGİSİ, Politeknik Dergisi,2020;23(1): 67-72

70

feature is set to “0”. The = and / characters combination

is the another XSS detect feature and it is represeted with

f5. If this combination is in the code then f5 is set to 1. In

the case of a visual request " f6, f7, and f8 when the "src"

part has "www", "http" or "https", the update is made in

thefeature vector as "1" in case of these expressions and

as "0" in case of these expressions.

3.3. Evaluation with Decision Tree

The decision tree algorithm tends to be easier to

implement and interpret than other quantitative data-

driven methods [22]. It starts with a single node that

covers all the data in the training data set. The data in this

node are divided into leafs and placed in the most

appropriate class according to the division criterion. This

criterion is to maximize the acquisition of information

between random sub-samples of the dimensions obtained

at each point. The splitting process continues until the

minimum criterion or variance stop criterion is obtained.
Decision trees and other classification algorithms have

been tested and applied to malicious code detection.

Generally, decision tree classifiers have been

successfully created using data from honeypots and data

from normal activities.This analysis leads to the creation

of decision rules to identify malicious activity [23].

There are certain labels in the process of defining the

XSS attacks in the OWASP report [1]. These labels are

used to prepare the training vector of the decision tree.

There are 64 raw data in training vector which is

composed of 8 feature. The decision tree structure was

formed with this vector.

When a decision tree of 8 features expressed in Table 3

is formed, a process as shown in Figure 4 is obtained

from the dataset of the work. 8 feature information of

each code line with the "img" tag is calculated and passed

through the decision tree. Detection of malicious code is

still being carried out at the request stage by obtaining

output related to the tree branches.

Decision tree nodes are places where decisions are made

in the flow. Leaves are the final step in which decisions

are a result. There are 4 nodes and 3 leaves in the decision

tree structure designed in the study. The "Code clean",

"Code malicious" or "No visual content of the code" in

terms of the decisions made at each node is expressed by

Leaf 1, Leaf 2 and Leaf 3 respectively.

The first step in the decision tree is to look at the f1

feature in the first node. In case this value is "1", if 2nd

node is "0", it goes to 1st leaf. At node 2, f3 and f4 are

decided using feature information. If f3 is "0" and f4 is

"1", the third node is going to 3rd leaf if neither or both

of these conditions can be provided. If the values of the

features f2 and f5 at node 3 are "0", the node 4 is directed

to the leaf 3 in other cases. If the value of any one of f6,
f7 and f8 at node 4 is "1", the analysis is terminated by

going to leaf 3 if all values are "0" to leaf 2.

4. RESULTS AND DISCUSSION

 XSS is one of the most used attack methods in the

direction of OWASP's report [1]. These attacks, which

are made through the means of interacting in the

application, target the user's cookies. The ability of

attackers to run malicious code on the application layer

makes XSS detection difficult. XSS-style requests can be

blocked by passing the request codes in the page or

instantly through a filter. The proposed algorithm which

is based on decision trees structure can detect these
attacks that can be done with visual tags through “img”

tags.

Figure 4. Structure of Decision Tree

MALICIOUS XSS CODE DETECTION WITH DECISION TREE- … Politeknik Dergisi, 2020; 23 (1) : 67-72

71

First, the code line with the “img” tag is determined by

the Regexp function. With the analysis of the string

expression in the “img” tag, it is decided by the tree leaf

about the case that there is no hex expression after the

trace of the word first. After analyzing “#” character and
“=/” characters, “img” examines whether there is at least

one of “www”, “http: //” or “https: //” in triplet. If

thedecisions in the process are positive for each node, the

code is cleared. If any of this process is not successful,

the code is malicious.

 The data set containing 50 clean img code lines and 350
malicious img code lines has been successfully

categorized by the algorithm developed to work cleanly

or malicious when the code passed through the decision

tree. The distribution of usage of the 400 data features in

the data set of the study is shown in Figure 5.

Classification Result with Confusion Matrix is obtained

from the classification of this data set with decision tree

is given in Table 4. 342 of the attack codes containing

different tags in the data set were placed in the correct

classes. On the other hand, the data containing 8

malicious code that have problems in classification are
determined as http and https along with the attributes

with “hex” and “src”.

 In the case of the detection of the compilation process

to the hex codes of the malicious code and the absence of

the src tag used next to the “img” tag, two lines of

malicious code for the absence of “http” and “https”
before the pages are specified as false negative and false

Figure 5. Frequency of Features in Dataset

positive. In order to determine clean code distribution

with https, 2 lines of code are set to true negative.

sensitivity is 98% and specificity is 96%. The results is

shown at Table 5.

 To create a model, 50 data sets and 50 JavaScript

keywords and symbols were created. XOS malicious

code was detected using four classifiers, Naive Bayes

[24], ADTree [25], SVM [26] and RIPPER [27]. In the

test phase, classifiers were used to distinguish between

normal and malicious code-containing attack commands.

It is seen that the SVM classifier has the highest
sensitivity and RIPPER has the highest recall value. In

general, the average of malicious tagged scripts by a

classifier is 90% [28].

Table 5: Table of Confusion Matrix

Actual class

Malicious

Code
Clean Code

Predicted

class

Detected

Code

342
True

Positives

48
False

Positives

Non-Detected

Code

6
False

Negatives

2
True

Negatives

 The XSS attack system is implemented by using

different fields in dynamic content. One of them is XSS

attacks on visual content. "Filter bypass-based polyglot",

"IMG OnError and JavaScript warning ciphers", and

"WAF Bypass Strings for XSS" are XSS attacks using

visual content [19]. In various studies, the proxies [13],

request quantities of packages [15] and shadow pages

instead of real pages [16] are examined. In an Attack

Detection and Prevention system uses a whitelist, which

may not be always enough can be detect stored XSS
attacks [29]. However, proposed algorithm examines the

codes at request code instantly. This process is provided

protection by blocking the visual contents in case there is

a negative attack by testing visual elements of request

without loading. Each HTML request can be checked

0
10
20
30
40
50
60
70

Table 4: Classification Result with Confusion Matrix

 Actual class

P
re

d
ic

te
d

 C
la

ss

Features img # Hex Src
“=” After

“/”
www. http:// https://

Clean
Code

img 60

40

Hex 18 2

Src 2 48

“=” After “/” 30

www. 60

http:// 48 2

https:// 38 2

Clean Code 48

Ömer KASIM /POLİTEKNİK DERGİSİ, Politeknik Dergisi,2020;23(1): 67-72

72

instantly terminal and server sides or in a proxy. This is

an important consequence of this work, where malicious

code can be caught if malicious code is sent over the

monitoring result visual content.

REFERENCES

[1] https://www. owasp.org/ index.php/Top_10_2013-
Top_10

[2] Garcia A., Navarro A., "Prevention of Cross-Site

Scripting Attacks on Current Web Applications”, Greece

Proceedings of the OTM Confederated International,
1770-1784, (2007).

[3] Imran Y., Pathan A., "Preventing Persistent Cross-Site
Scripting (XSS) Attack by Applying Pattern Filtering

Approach", IEEE The 5th International Conference on

Information and Communication Technology, 1-6,
(2014).

[4] Jasmine M., Devi K., George G., "Detecting XSS Based

Web Application Vulnerabilities", International Journal

of Computer Technology & Applications, 8(2): 291-297,
(2017).

[5] Gupta, B., Gupta, S., Gangwar, S., Kumar, M., Meena, P.,

“Cross-Site Scripting (XSS) Abuse and Defense:
Exploitation on Several Testing Bed Environments and
Its Defense”, Journal of Information Privacy and
Security, 11(2): 118-136, (2015).

[6] Dong R.Z., Ling J., Liu Y., "DOM Based XSS Detecting
Method Based on Phantomjs", Proceedings of the

International Conference on Applied Mechanics,
Mechatronics and Intelligent Systems, 237-241, (2015).

[7] Kasım Ö., “Evolving Web Process and Security”, 9th

International Conference on Information Security and
Cryptology, 149-154, (2016).

[8] Yılmaz V., Sağıroğlu Ş., "Kurumsal Bilgi Güvenliği ve
Standartları Üzerine Bir İnceleme", Gazi Üniversity

Journal of Faculty of Engineering and Architecture,
23(2):507-522, (2008).

[9] Saha S., “Consideration Points Detecting Cross-Site
Scripting", International Journal of Computer Science

and Information Security, 4(1):1-8, (2009).

[10] Şentürk, H., Çil, C.Z., Sağiroğlu S., “Siber Güvenlik
Yatırım Kararları Üzerine Literatür İncelemesi”,
Politeknik Dergisi, 19(1): 39-51, (2016).

[11] Zou C.C., Gong W., Towsley D., "Code Red Worm
Propagation Modeling and Analysis", Proceedings of the

9th ACM Conference on Computer and
Communications Security, 138-147, (2002).

[12] Prithvi B., Venkatakrishnan V.N., "XSS-GUARD:
Precise Dynamic Prevention of Cross-Site Scripting
Attacks", International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment,
23-43, (2008).

[13] Baykara M., Daş R., Karadoğan İ, "Bilgi Güvenliği
Sistemlerinde Kullanılan Araçların İncelenmesi", 1st

International Symposium on Digital Forensics and
Security, 27:231-239, (2013).

[14] Di Lucca G.A., Fasolino A.R., Mastoianni M.,
"Identifying Cross Site Scripting Vulnerabilities in Web
Applications", Sixth IEEE International Workshop On

Web Site Evolution, 71-80, (2004).

[15] Bhuyan M.H., Bhattacharyya D.K., Kalita J.K., "Survey
on Incremental Approaches for Network Anomaly
Detection", International Journal of Communication

Networks and Information Security (KUST), 3(3):226-
239, (2011).

[16] Nithya, V., Pandian, S. L., Malarvizhi, C., “A Survey on
Detection and Prevention of Cross-Site Scripting Attack”,
International Journal of Security and Its Applications,
9(3): 139-152, (2015).

[17] Boro D., Bhattacharyya D.K., "Dyprosd: A Dynamic
Protocol Specific Defense for High-Rate DDOS Flooding
Attacks", Microsystem Technologies, 23(3):593-611,
(2017).

[18] Shahriar, H., Devendran V.K., Haddad H., "Proclick: A
Framework for Testing Clickjacking Attacks in Web
Applications", Proceedings of the 6th International

Conference on Security of Information and Networks,
144-151, (2013).

[19] Goswami S., Hoque N., Bhattacharyya D.K. "An
Unsupervised Method for Detection of XSS Attack."
International Journal of Network Security, 19(5): 761-
775, (2017).

[20] Likarish P., Jung E., Jo I., "Obfuscated Malicious
Javascript Detection Using Classification Techniques",

IEEE 4th International Conference on Malicious and
Unwanted Software, 47-54, (2009).

[21] https://www.owasp.org/index.php/XSS

[22] Abdallah I., Dertimanis V., Mylonas H., Tatsis K., Chatzi
E., "Fault Diagnosis of Wind Turbine Structures Using
Decision Tree Learning Algorithms with Big Data."

Safety and Reliability–Safe Societies in a Changing
World, 3053-3061, (2018)

[23] Gregio A., Santos R., Montes A. “Evaluation of Data
Mining Techniques for Suspicious Network Activity
Classification Using Honeypots Data.”, Proceedings of
SPIR, 6570: 1-10, (2007).

[24] John G.H., Langley P., “Estimating Continuous
Distributions in Bayesian Classifiers”, 11th Conference

on Uncertainty in Artificial Intelligence, 338–345,
(1995).

[25] Freund Y., Mason L., “The Alternating Decision Tree
Learning Algorithm”, Proceeding of the 16th

International Conference on Machine Learning, 124–
133, (1999).

[26] Platt J.C., “Using Analytic QP and Sparseness to Speed
Training of Support Vector Machines,” Advances in

Neural Information Processing Systems, 557-563,
(1999).

[27] Cohen W., “Fast Effective Rule Induction”, Proceedings

of the 12th International Conference on Machine
Learning, 115–123, (1995).

[28] Sarmah U., Bhattacharyya D.K., Kalita J. K., "A survey
of Detection Methods for XSS Attacks", Journal of

Network and Computer Applications, 118(15):113-143,
(2018).

[29] Maurya S., “Positive Security Model based Server-side
Solution for Prevention of Cross-site Scripting Attacks,”
Annual IEEE India Conference (INDICON), 1–5,
(2015).

