$\bigwedge^{\rm Hacettepe}$ Journal of Mathematics and Statistics Volume 33 (2004), 11–14

ON JORDAN GENERALIZED DERIVATIONS IN GAMMA RINGS

Yılmaz Çeven^{*} and M. Ali Öztürk^{*}

Received 23:09:2003 : Accepted 12:05:2004

Abstract

In this study, We define a generalized derivation and a Jordan generalized derivation on Γ -rings and show that a Jordan generalized derivation on some Γ -rings is a generalized derivation.

Keywords: Derivations, Generalized Derivations, Gamma ring.

2000 AMS Classification: $16 \le 25, 16 \le 60, 16 \le 80, 16 \le 78$

1. Introduction

The notion of generalized derivation was introduced by Hvala [2]. Let R be an associative ring. An additive mapping $f: R \longrightarrow R$ is called a *generalized derivation* if there exists a derivation $d: R \longrightarrow R$ such that f(xy) = f(x)y + xd(y) holds for all $x, y \in R$. We call an additive mapping $f: R \longrightarrow R$ a *Jordan generalized derivation* if there exists a derivation $d: R \longrightarrow R$ such that $f(x^2) = f(x)x + xd(x)$ holds for all $x \in R$.

Let M and Γ be additive Abelian groups. Then M is called a Γ - ring if for any $x, y, z \in M$ and $\alpha, \beta \in \Gamma$ the following conditions are satisfied.

(1) $x\alpha y \in M$,

(2) $(x+y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)z = x\alpha z + x\beta z$, $x\alpha(y+z) = x\alpha y + x\alpha z$, and (3) $(x\alpha y)\beta z = x\alpha(y\beta z)$,

The notion of a Γ -ring was introduced by Nobusawa [5] and generalized by Barnes [1] as defined above. Many properties of Γ -rings were obtained by Barnes [1], Kyuno [3], Luh [4], Nobusawa [5] and others.

Let M be a $\Gamma-\mathrm{ring}$ and $D:M\longrightarrow M$ an additive map. Then D is called a derivation if

 $D(x\alpha y) = D(x)\alpha y + x\alpha D(y), \ (x, y \in M, \alpha \in \Gamma)$

and ${\cal D}$ is called a Jordan derivation if

 $D(x\alpha x) = D(x)\alpha x + x\alpha D(x), \ (x \in M, \alpha \in \Gamma).$

 $^{^{*}\}mathrm{Cumhuriyet}$ University, Faculty of Arts and Science, Department of Mathematics, 58140-Sivas, Turkey.

Let M be a Γ -ring and $F: M \longrightarrow M$ an additive map. Then F is called a generalized derivation if there exists a derivation $D: M \longrightarrow M$ such that

$$F(x\alpha y) = F(x)\alpha y + x\alpha D(y)$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Finally, F is called a Jordan generalized derivation if there exists a derivation $D: M \longrightarrow M$ such that

 $F(x\alpha x) = F(x)\alpha x + x\alpha D(x)$

for all $x \in M$ and $\alpha \in \Gamma$.

The notions of derivation and Jordan derivation on a Γ -rings were defined by Sapanci and Nakajima in [6], where they showed that a Jordan derivation on a certain type of completely prime Γ -ring is a derivation. In this note we show that for our notions of generalized derivation and Jordan generalized derivation on a Γ -ring given above, a Jordan generalized derivation on certain Γ -rings is also a generalized derivation.

1.1. Example. Let $f: R \longrightarrow R$ be a generalized derivation on a ring R. Then there exists a derivation $d: R \longrightarrow R$ such that f(xy) = f(x)y + xd(y) for all $x, y \in R$. We take $M = M_{1,2}(R)$ and $\Gamma = \left\{ \begin{pmatrix} n \cdot 1 \\ 0 \end{pmatrix} : n \text{ is an integer} \right\}$. Then M is a Γ -ring. If we define the map $D: M \longrightarrow M$ by D((x, y)) = (d(x), d(y)) then D is a derivation on M. Let $F: M \longrightarrow M$ be the additive map defined by F((x, y)) = (f(x), f(y)). Then F is a generalized derivation on M. Let N be the subset $\{(x, x) : x \in R\}$ of M. Then N is a Γ -ring, and the map $F: N \longrightarrow N$ defined in terms of the generalized Jordan derivation $f: R \longrightarrow R$ on R by F((x, x)) = (f(x), f(x)) is a generalized Jordan derivation on N.

2. The Main Results

Throughout the following, we assume that M is an arbitrary Γ -ring and F a generalized Jordan derivation on M. Clearly, every generalized derivation on M is a Jordan generalized derivation. The converse in general is not true. In the present paper, it is shown that every Jordan generalized derivation on certain Γ -rings is a generalized derivation.

2.1. Lemma. Let $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. Then

- (i) $F(a\alpha b + b\alpha a) = F(a)\alpha b + F(b)\alpha a + a\alpha D(b) + b\alpha D(a).$
- (ii) $F(a\alpha b\beta a + a\beta b\alpha a) = F(a)\alpha b\beta a + F(a)\beta b\alpha a + a\beta D(b)\alpha a + a\alpha D(b)\beta a + a\alpha b\beta D(a) + a\beta b\alpha D(a).$
- (iii) In particular, if M is 2-torsion free then

 $F(a\alpha b\alpha a) = F(a)\alpha b\alpha a + a\alpha D(b)\alpha a + a\alpha b\alpha D(a).$

(iv) $F(a\alpha b\alpha c + c\alpha b\alpha a) = F(a)\alpha b\alpha c + F(c)\alpha b\alpha a + a\alpha D(b)\alpha c + c\alpha D(b)\alpha a + a\alpha b\alpha D(c) + c\alpha b\alpha D(a).$

Proof. (i) is obtained by computing $F((a + b)\alpha(a + b))$ and (ii) is also obtained by replacing b with $a\beta b + b\beta a$ in (i). Moreover, (iii) can be obtained by replacing β with α in (ii). If we replace a with a + c, we can get (iv).

2.2. Lemma. Let $\delta_{\alpha}(a,b) = F(a\alpha b) - F(a)\alpha b - a\alpha D(b)$ for $a, b \in M$ and $\alpha \in \Gamma$. Then

- (i) $\delta_{\alpha}(a,b) + \delta_{\alpha}(b,a) = 0.$
- (ii) $\delta_{\alpha}(a, b+c) = \delta_{\alpha}(a, b) + \delta_{\alpha}(a, c)$
- (iii) $\delta_{\alpha}(a+b,c) = \delta_{\alpha}(a,c) + \delta_{\alpha}(b,c).$

(iv) $\delta_{\alpha+\beta}(a,b) = \delta_{\alpha}(a,b) + \delta_{\beta}(a,b)$ for all $a,b,c \in M$ and $\alpha,\beta \in \Gamma$.

Proof. These results follow easily by Lemma 1 (i) and the definition of $\delta_{\alpha}(a, b)$.

Note that F is a generalized derivation iff $\delta_{\alpha}(a, b) = 0$ for all $a, b \in M$ and $\alpha \in \Gamma$.

2.3. Lemma. Let $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. If M is 2-torsion free, then

- (i) $\delta_{\alpha}(a,b)\alpha[a,b]_{\alpha}=0.$
- (ii) $\delta_{\alpha}(a,b)\beta x\beta[a,b]_{\alpha}=0$ for any $x \in M$.

Proof. (i) Replacing c by $a\alpha b$ in Lemma 1(iv), we obtain the proof.

(ii) We set $A = a\alpha b\beta x\beta b\alpha a + b\alpha a\beta x\beta a\alpha b$. Then, since $F(A) = F(a\alpha (b\beta x\beta b)\alpha a + b\alpha (a\beta x\beta a)\alpha b)$ and $F(A) = F((a\alpha b)\beta x\beta (b\alpha a) + (b\alpha a)\beta x\beta (a\alpha b))$, by Lemma 1(ii) and Lemma 1(iv), we have the proof.

2.4. Theorem. Let M be a 2-torsion free Γ -ring. If M has two elements a and b so that for any $\alpha \in \Gamma$ we have $c\gamma x\gamma[a,b]_{\alpha} = 0$ or $[a,b]_{\alpha}\gamma x\gamma c = 0$ implies c = 0 for all $x \in M, \gamma \in \Gamma$, then every Jordan generalized derivation on M is a generalized derivation.

Proof. Let u, v be fixed elements of M such that $c\gamma x\gamma[u, v]_{\alpha} = 0$ or $[u, v]_{\alpha}\gamma x\gamma c = 0$ implies c = 0. Then by Lemma 3(ii), we get

 $(2.1) \qquad \delta_{\alpha}(u,v) = 0$

for all $\alpha \in \Gamma$. Our aim is to prove that $\delta_{\alpha}(a, b) = 0$ for all $a, b \in M$ and $\alpha \in \Gamma$. In Lemma 3(ii), replacing a by a + u, we have $\delta_{\alpha}(a + u, b)\beta x\beta((a + u)\alpha b - b\alpha(a + u)) = 0$. Using Lemma 2(iii), we get $\delta_{\alpha}(a, b)\beta x\beta[a, b]_{\alpha} + \delta_{\alpha}(a, b)\beta x\beta[u, b]_{\alpha} + \delta_{\alpha}(u, b)\beta x\beta[a, b]_{\alpha} + \delta_{\alpha}(u, b)\beta x\beta[u, b]_{\alpha} = 0$.

From Lemma 3(ii), since $\delta_{\alpha}(a,b)\beta x\beta[a,b]_{\alpha} = 0$ and $\delta_{\alpha}(u,b)\beta x\beta[u,b]_{\alpha} = 0$ then we have

(2.2)
$$\delta_{\alpha}(a,b)\beta x\beta[u,b]_{\alpha} + \delta_{\alpha}(u,b)\beta x\beta[a,b]_{\alpha} = 0$$

for all $x, a, b \in M$ and $\alpha, \beta \in \Gamma$. Now replacing b by b + v in (2.2) and using Lemma 2(ii), we get $\delta_{\alpha}(a, b)\beta x\beta[u, b]_{\alpha} + \delta_{\alpha}(a, b)\beta x\beta[u, v]_{\alpha} + \delta_{\alpha}(a, v)\beta x\beta[u, b]_{\alpha} + \delta_{\alpha}(a, v)\beta x\beta[u, v]_{\alpha} + \delta_{\alpha}(u, b)\beta x\beta[a, b]_{\alpha} + \delta_{\alpha}(u, v)\beta x\beta[a, b]_{\alpha} + \delta_{\alpha}(u, v)\beta x\beta[a, v]_{\alpha} = 0$ or using equations (2.1) and 2.2 we have

 $(2.3) \quad \delta_{\alpha}(a,b)\beta x\beta[u,v]_{\alpha} + \delta_{\alpha}(a,v)\beta x\beta[u,b]_{\alpha} + \delta_{\alpha}(a,v)\beta x\beta[u,v]_{\alpha} + \delta_{\alpha}(u,b)\beta x\beta[a,v]_{\alpha} = 0.$

Replacing a by u in equation(2.3) and using equation (2.1) together with the fact that M is 2-torsion free, we have

(2.4) $\delta_{\alpha}(u,b)\beta x\beta[u,v]_{\alpha}=0$

for all $b, x \in M$ and $\alpha, \beta \in \Gamma$. Hence by hypothesis, we get

(2.5)
$$\delta_{\alpha}(u,b) = 0$$

for all $b \in M$, $\alpha \in \Gamma$. Again replacing b by v in equation (2.2), using equation (2.1) and the hypothesis, we obtain

 $(2.6) \qquad \delta_{\alpha}(a,v) = 0$

for all $a \in M$, $\alpha \in \Gamma$. Substituting equations (2.5) and (2.6) in equation (2.3) we have

$$\delta_{\alpha}(a,b)\beta x\beta[u,v]_{\alpha}=0,$$

and then from the hypothesis we obtain

 $\delta_{\alpha}(a,b) = 0$

for all $a, b \in M$, $\alpha \in \Gamma$, i.e. F is a generalized derivation on M.

Y. Çeven, M. A. Öztürk

References

- [1] Barnes, W.E. On the Γ -rings of Nobusawa, Pasific J. Math. 18, 411–422, 1966.
- [2] Hvala, B. Generalized derivations in rings, Comm. Algebra 26, 1147–1166, 1998.
- [3] Kyuno, S. On prime gamma rings, Pacific J. Math. 75, 185–190, 1978.
- [4] Luh, J. On the theory of simple Γ -rings, Michigan Math. J. 16, 65–75, 1969.
- [5] Nobusawa, N. On a generalization of the ring theory, Osaka J. Math. 1, 81–89, 1964.
- [6] Sapanci, M. and Nakajima, A. Jordan derivations on completely prime gamma rings, Math. Japonica, 46 No: 1, 47–51, 1997.

14