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Meromorphic subordination results for p-valent
functions associated with convolution

M. K. Aouf* and A. O. Mostafa’

Abstract

In this paper, by making use of the convolution and subordination
principals, we obtain some subordination results for certain family of
meromorphic p-valent functions defined by using a new linear operator.
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1. Introduction

Let >, be the class of functions of the form:

(1.1)  flz)=2z""+ Zakzk (peN={1,2,...}),
k=0

which are analytic and p-valent in the punctured unit disk U* = U\{0}, where U =
{z:2€C, |z| <1}.If f and g are analytic functions in U, we say that f is subordinate
to g, written f < g if there exists a Schwarz function w, which (by definition) is analytic
in U with w(0) = 0 and |w(z2)] < 1 for all z € U, such that f(z) = g(w(z)), z € U.
Furthermore, if the function g is univalent in U, then we have the following equivalence
( [5] and [10]):

f(z) < g(2) & f(0) = ¢(0) and f(U) C g(U).
For functions f, g € X,, Aouf et al. [3] defined the linear operator DY ,(f * g)(2) :
¥, — %, (A>0, peN, neNyg=NU{0}) by
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DY L (f *9)(2) = (f * 9)(2),

Dip(f*9)(2) = Dap(f*9)(2) = (1= N)(f*9)(z) + A="" (" (f % 9)(2))
= z P4 Z[l + Ak + p)laxbez® (A > 0; p e N),
k=0
DXp(f*9)(2) = Dap(Drp(f*9))(z)
= 2P+ ) [+ Ak +p) arbez” (A >0; peN)
k=0

and ( in general )
DRp(f*9)(2) = Dap(D3,'(f*9)(2))

2 P+ Z[l + Ak +p)]"arbez® (A >0; peN; n e Np).
k=0

(1.2)
From (1.2) it is easy to verify that [3]:

(13)  2ADL,(f*9)(2)) =y DS (F* 0)(2) — 0+ 3)DR4(F * 9)(=) (A > 0).

Specializing the parameters n,l,p, A and g in (1.2), we have:
(¢) For n =0 and g(z) is in the form:

- O‘l k+p-- aq)k+p k
1.4 g(z) =2"F + z,
(14) Z (B1) ktp--(Bs) btp (D rtp

a1, Q,...,aq and B, B2, ..., Bs are complex or real (3; ¢ Z; = {0,-1,-2,...}, j =
1,2,...,s), we have, DY ,(f*g)(2) = Hp,q,s(c1) f(2),where the linear operator Hp 4 s(a1) was
investigated recently by Liu and Srivastava [9] and Aouf [2] and contains in turn the op-
erator Ly(a,c) (see [8] ) for g =2, s=1, a1 =a >0, 1 =c (c # 0,—1,...) and
az = 1 and also contains the operator D*TP~! (see [13] ) for ¢ = 2, s = 1,
ar=v+p¥>-p, peN)and az =31 =p;

(41) For n =0 and g¢(z) is in the form:

(1.5)  gz)=z"+ Z [w]makbkzk (A 1>0;m e Ny),
k=1—p
we have DS ,(f * g)(2) = I;*(1,\) f(z), where the operator I;"(I,\) was introduced and
studied by El-Ashwah [6] and El-Ashwah and Aouf [7];
(#i7) For n =0 and g(z) is in the form:

_ I'(k
(1.6)  g(z)=2""+ aJrﬁ Zrk—&—;i;f)a) (@2 00> 1),

we have DY ,(f * 9)(2) = Qﬁypf(z) where the operator 3, was introduced and studied
by Aqlan et al.[4].

To prove our main results we need the next lemmas.
Lemma 1 [11]. Let ¢(z) be univalent in U and let ¢(z) be analytic in a domain
containing q(U). If zq'(2)p(q(z)) is starlike and

20" (2)((2)) < 24 (2)e(q(2)),



then ¥(z) < q(z) and q(z) is the best dominant.
Lemma 2 [12]. Let 8, v be any complex numbers, v #0 and ¢(z) = 14 q1z + q22° + ...
be univalent in U, q(z) # 0. Suppose that Q(z) = vzq'(2)/q(z) be starlike, and

#{ 24+ 2E >0

v Q(z)
If (2) = 14 c1z 4 c22® + ... is analytic in U and satisfies
2’ (2) 2q'(2)
BUe) +v S < Bale) + v L,

then ¥(z) < q(z) and q(z) is the best dominant.

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that, v € C,A > 0,p €
N,n e Ny, f, g € Zp and the powers are the principal ones.

2.1. Theorem. Let q(2) # 0 be univalent in U and zq'(2)/q(2), be starlike. If f satisfies:

lD;;I(f *9)(2) B ZDT;Q(JC *9)(2)  1—v  z¢(2)
A D;\L‘p(f x g)(z) A Df;l(f x g)(z) A q(z) ’

(2.1)

then
DR (S % g)(2)
(D3, 9)2)]”

and q(z) is the best dominant.

Proof. Let the function p(z) defined by

LA=N Dt o a0 (2
02) po=T DaU9E)
D3,/ 9)(2)]

Differentiating (2.2) logarithmically with respect to z and using the identity (1.3), we
have

S 1D DI e 1

o) DL (e A DR UreE Al
that is, that

2p'(z) 1, lD:;Q(f*g)(z) B lD:,Tgl(f *g)(z)
CD e XTI e A DL, raE)
Therefore, in view of (2.3), the subordination (2.1) becomes

2p'(2) _, 2q'(2)

) " e

By an application of Lemma 1, with ¢(w) = L, w € C* = C\{0}, we have p(z) < ¢(z)
and ¢(z) is the best dominant.

Taking n = 0 and g(z) of the form (1.4) and using the identity (see [9]):
(2.4) 2 (Hp,qs(1)f(2)) = arHpg,s(ar + 1) f(2) = (a1 +p)Hp,q,s(@1) f(2),

we have the following corollary. O



2.2. Corollary. Let g(z) # 0 be univalent in U and 2q'(2)/q(z) , be starlike . If f
satisfies

Hygolor +2)f(x)  Hygulon + 1Df(2) ()
) et D) ™ Hyga(anfz) TR
then
Zp(l_pr,q,S(O‘l + l)f(z) < q(z)

[Hp,q,s(a1) f(2)]”
and q(z) is the best dominant.
Taking ¢ = 2,s = 1,a1 = a > 0,61 = ¢ >0 and a2 = 1, in Corollary 1, we have

the following result which correctes the result obtained by Ali and Ravichandran [1,
Theorems 2.3].

2.3. Corollary. Let q(z) # 0 be univalent in U and zq'(2)/q(2) , be starlike. If f satisfies

oo ble420/()  LlatLof(s)
@D @t tofe 1" L@orz U0

2q'(2)

q(z) ’

then
2L (a+ 1) (2)
[Lp(a;c) f(2)]”

and q(z) is the best dominant.

< q(2)

Taking ¢(z) = }L‘gz (-1 < B< A<1)in Theorem 1, we have

2.4. Corollary. Let -1 <B<A<L If f€} satisfies
1DI( () 4 DI (S 2 9)(2)
ADYEN(f*g)(2) A DXL (f*9)(2)

1 (A—-B)z
RE R e ey L

then
FOIDENFrg)(2) 1+ Az
i .
ENE

Taking n =0 and g(z) in the form (1.4) with ¢ =2,s = 1,01 = a,B1 = c,a,¢ >0 and
as =1, in Corollary 3, we have the following result which corrects the result obtained by
Ali and Ravichandran [1, Corollary 2.4].

2.5. Corollary. Let -1 <B <A< If fe} satisfies

Ly(a+20)f(z) __ Lp(a+1;0f(2)
(a+1)Lp(a+1;c)f(z) 7 Lp(a;c) f(2)
a(l—7)+1+ Scmb)

(1+ Az)(1+ Bz)’
then
AL (a+1;0)f(z) 1+ Az
[Lp(a; c) f(2)]" 1+ Bz

By appealing to Lemma 2, we prove the following theorem.




2.6. Theorem. Let~y #0 and q(z) be univalent in U, q(z) # 0, Q(z) = v2¢'(2)/q(?)
be starlike and

(2.5) %{%q(z) + ZS(S)

If f(2) € 32, satisfies

}>0 (z€U).

D;L,;l(f*g)(z) D;;Q(f*g)(z) 2q'(2)
=N D o) TD,(Fram 1O T M0
then
D)
Dy (fro)z) ¢

and q(z) is the best dominant.

Proof. Let the function p(z) defined by
DL(f % g)(2
06 pe - D90
Dy (f *9)(2)

Differentiating (2.6) logarithmically with respect to z and using the identity (1.3), we
have

(z€U).

D;:‘;Q(f*g)(z) — p(2) )\zp’(z)

Dyt (frg)(z) p(z)
therefore, we have
D"Hf*g z D"+2f*g z ¢
(1—~) D)\T;p ( )( )—i—’y 2’}:1( )(2) :p(z)+)\72p (z)
Vo(fx9)(2) DY (f*g)(2) p(2)
From (2.5), we have
/ /
zp'(2) 2q'(2)
z)+ A <q(z)+ A
p(2) + Ay o0 q(z) + My o)
By an application of Lemma 2, it follows that p(z) < ¢(z) and ¢(z) is the best dominant.

]

Taking n = 0 and g(z) of the form (1.4) and using the identity (2.4) we have the
following corollary.

2.7. Corollary. Let v # 0,a1 # —1 and q(z) be univalent in U, q(z) # 0, Q(z) =
v2q'(2)/q(z) be starlike and

TS T [ N
ért{ g+ 26 }>o( c ).
If f(2) € 3, satisfies

Hpq,s(an +1)f(2) Hp,q,s(cn +2) f(2)

) @) T Hpgalor + D)
zq'(2)
e <oty [ e e 42228,
then

Hp,q,S(al + l)f(z) 2
Hyqo(anf(z) 1)

and q(z) is the best dominant.




Remarks. (i) Taking n = 0 and g(z) in the form (1.4) with ¢ = 2,s = 1, a1 =
a>0,61 =c>0 and az = 1, in Corollary 5, we have the result obtained by Ali and
Ravichandran [1, Theorem 2.5];

(41) Taking n =0 and g(z) of the form (1.5) and using the identity [6]:

Az (LD F(2) =0T D F(2) = Qe+ DI D f(2), A > 0,

in our results, we have the results corresponding to the operator I (\,1);

(#i1) Taking n =0 and g(z) of the form (1.6) and using the identity [4]:

2(QF,f(2) =(a+B-1)Q5,' f(2) — (a+B+p—1)QF ,f(2), 0 > 0;8 > —1,

in our results, we have the results corresponding to the operator QF ,.
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