Meromorphic subordination results for p-valent functions associated with convolution

M. K. Aouf* and A. O. Mostafa ${ }^{\dagger}$

Abstract

In this paper, by making use of the convolution and subordination principals, we obtain some subordination results for certain family of meromorphic p-valent functions defined by using a new linear operator.

2000 AMS Classification: 30C45.
Keywords: Meromorphic functions, subordination, convolution, linear operator.

Received 14/09/2011 : Accepted 25/08/2012 Doi : 10.15672/HJMS. 2015449107

1. Introduction

Let \sum_{p} be the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the punctured unit disk $U^{*}=U \backslash\{0\}$, where $U=$ $\{z: z \in \mathbb{C},|z|<1\}$. If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$ if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence ([5] and [10]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U) .
$$

For functions $f, g \in \Sigma_{p}$, Aouf et al. [3] defined the linear operator $D_{\lambda, p}^{n}(f * g)(z)$: $\Sigma_{p} \longrightarrow \Sigma_{p}\left(\lambda \geq 0, p \in \mathbb{N}, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ by

[^0]\[

$$
\begin{aligned}
D_{\lambda, p}^{0}(f * g)(z) & =(f * g)(z), \\
D_{\lambda, p}^{1}(f * g)(z) & =D_{\lambda, p}(f * g)(z)=(1-\lambda)(f * g)(z)+\lambda z^{-p}\left(z^{p+1}(f * g)(z)\right)^{\prime} \\
& =z^{-p}+\sum_{k=0}^{\infty}[1+\lambda(k+p)] a_{k} b_{k} z^{k}(\lambda \geq 0 ; p \in \mathbb{N}), \\
D_{\lambda, p}^{2}(f * g)(z) & =D_{\lambda, p}\left(D_{\lambda, p}(f * g)\right)(z) \\
& =z^{-p}+\sum_{k=0}^{\infty}[1+\lambda(k+p)]^{2} a_{k} b_{k} z^{k}(\lambda \geq 0 ; p \in \mathbb{N})
\end{aligned}
$$
\]

and (in general)

$$
\begin{align*}
D_{\lambda, p}^{n}(f * g)(z) & =D_{\lambda, p}\left(D_{\lambda, p}^{n-1}(f * g)(z)\right) \\
& =z^{-p}+\sum_{k=0}^{\infty}[1+\lambda(k+p)]^{n} a_{k} b_{k} z^{k}\left(\lambda \geq 0 ; p \in \mathbb{N} ; n \in \mathbb{N}_{0}\right) . \tag{1.2}
\end{align*}
$$

From (1.2) it is easy to verify that [3]:

$$
\begin{equation*}
z\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{\prime}=\frac{1}{\lambda} D_{\lambda, p}^{n+1}(f * g)(z)-\left(p+\frac{1}{\lambda}\right) D_{\lambda, p}^{n}(f * g)(z)(\lambda>0) . \tag{1.3}
\end{equation*}
$$

Specializing the parameters n, l, p, λ and g in (1.2), we have:
(i) For $n=0$ and $g(z)$ is in the form:

$$
\begin{equation*}
g(z)=z^{-p}+\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k+p} \ldots\left(\alpha_{q}\right)_{k+p}}{\left(\beta_{1}\right)_{k+p} \ldots\left(\beta_{s}\right)_{k+p}(1)_{k+p}} z^{k} \tag{1.4}
\end{equation*}
$$

$\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$ are complex or real $\left(\beta_{j} \notin Z_{0}^{-}=\{0,-1,-2, \ldots\}, j=\right.$ $1,2, \ldots, s)$, we have, $D_{\lambda, p}^{n}(f * g)(z)=H_{p, q, s}\left(\alpha_{1}\right) f(z)$, where the linear operator $H_{p, q, s}\left(\alpha_{1}\right)$ was investigated recently by Liu and Srivastava [9] and Aouf [2] and contains in turn the operator $L_{p}(a, c)\left(\right.$ see [8]) for $q=2, s=1, \alpha_{1}=a>0, \beta_{1}=c(c \neq 0,-1, \ldots)$ and $\alpha_{2}=1$ and also contains the operator $D^{\nu+p-1} \quad$ (see [13]) for $q=2, s=1$, $\alpha_{1}=\nu+p(\nu>-p, p \in \mathbb{N})$ and $\alpha_{2}=\beta_{1}=p ;$
(ii) For $n=0$ and $g(z)$ is in the form:

$$
\begin{equation*}
g(z)=z^{-p}+\sum_{k=1-p}^{\infty}\left[\frac{l+\lambda(k+p)}{l}\right]^{m} a_{k} b_{k} z^{k} \quad\left(\lambda, l \geq 0 ; m \in \mathbb{N}_{0}\right) \tag{1.5}
\end{equation*}
$$

we have $D_{\lambda, p}^{0}(f * g)(z)=I_{p}^{m}(l, \lambda) f(z)$, where the operator $I_{p}^{m}(l, \lambda)$ was introduced and studied by El-Ashwah [6] and El-Ashwah and Aouf [7];
(iii) For $n=0$ and $g(z)$ is in the form:

$$
\begin{equation*}
g(z)=z^{-p}+\frac{\Gamma(\alpha+\beta)}{\Gamma(\beta)} \sum_{k=1}^{\infty} \frac{\Gamma(k+p+\beta)}{\Gamma(k+p+\beta+\alpha)} z^{k}(\alpha \geq 0 ; \beta>-1) \tag{1.6}
\end{equation*}
$$

we have $D_{\lambda, p}^{n}(f * g)(z)=Q_{\beta, p}^{\alpha} f(z)$ where the operator $Q_{\beta, p}^{\alpha}$ was introduced and studied by Aqlan et al.[4].

To prove our main results we need the next lemmas.
Lemma 1 [11]. Let $q(z)$ be univalent in U and let $\varphi(z)$ be analytic in a domain containing $q(U)$. If $z q^{\prime}(z) \varphi(q(z))$ is starlike and

$$
z \psi^{\prime}(z) \varphi(\psi(z)) \prec z q^{\prime}(z) \varphi(q(z)),
$$

then $\psi(z) \prec q(z)$ and $q(z)$ is the best dominant.
Lemma 2 [12]. Let β, ν be any complex numbers, $\nu \neq 0$ and $q(z)=1+q_{1} z+q_{2} z^{2}+\ldots$ be univalent in $U, q(z) \neq 0$. Suppose that $Q(z)=\gamma z q^{\prime}(z) / q(z)$ be starlike, and

$$
\Re\left\{\frac{\beta}{\nu} q(z)+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0
$$

If $\psi(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is analytic in U and satisfies

$$
\beta \psi(z)+\nu \frac{z \psi^{\prime}(z)}{\psi(z)} \prec \beta q(z)+\nu \frac{z q^{\prime}(z)}{q(z)},
$$

then $\psi(z) \prec q(z)$ and $q(z)$ is the best dominant.

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that, $\gamma \in \mathbb{C}, \lambda>0, p \in$ $\mathbb{N}, n \in \mathbb{N}_{0}, f, g \in \sum_{p}$ and the powers are the principal ones.
2.1. Theorem. Let $q(z) \neq 0$ be univalent in U and $z q^{\prime}(z) / q(z)$, be starlike. If f satisfies:

$$
\begin{equation*}
\frac{1}{\lambda} \frac{D_{\lambda, p}^{n+1}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)}-\frac{\gamma}{\lambda} \frac{D_{\lambda, p}^{n+2}(f * g)(z)}{D_{\lambda, p}^{n+1}(f * g)(z)} \prec \frac{1-\gamma}{\lambda}+\frac{z q^{\prime}(z)}{q(z)}, \tag{2.1}
\end{equation*}
$$

then

$$
\frac{z^{p(1-\gamma)} D_{\lambda, p}^{n+1}(f * g)(z)}{\left[D_{\lambda, p}^{n}(f * g)(z)\right]^{\gamma}} \prec q(z)
$$

and $q(z)$ is the best dominant.
Proof. Let the function $p(z)$ defined by

$$
\begin{equation*}
p(z)=\frac{z^{p(1-\gamma)} D_{\lambda, p}^{n+1}(f * g)(z)}{\left[D_{\lambda, p}^{n}(f * g)(z)\right]^{\gamma}}(z \in U) . \tag{2.2}
\end{equation*}
$$

Differentiating (2.2) logarithmically with respect to z and using the identity (1.3), we have

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{1}{\lambda} \frac{D_{\lambda, p}^{n+2}(f * g)(z)}{D_{\lambda, p}^{n+1}(f * g)(z)}-\frac{\gamma}{\lambda} \frac{D_{\lambda, p}^{n+1}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)}-\frac{1}{\lambda}(1-\gamma),
$$

that is, that

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)}+\frac{1}{\lambda}(1-\gamma)=\frac{1}{\lambda} \frac{D_{\lambda, p}^{n+2}(f * g)(z)}{D_{\lambda, p}^{n+1}(f * g)(z)}-\frac{\gamma}{\lambda} \frac{D_{\lambda, p}^{n+1}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)} . \tag{2.3}
\end{equation*}
$$

Therefore, in view of (2.3), the subordination (2.1) becomes

$$
\frac{z p^{\prime}(z)}{p(z)} \prec \frac{z q^{\prime}(z)}{q(z)}
$$

By an application of Lemma 1, with $\varphi(w)=\frac{1}{w}, w \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$, we have $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

Taking $n=0$ and $g(z)$ of the form (1.4) and using the identity (see [9]):

$$
\begin{equation*}
z\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}=\alpha_{1} H_{p, q, s}\left(\alpha_{1}+1\right) f(z)-\left(\alpha_{1}+p\right) H_{p, q, s}\left(\alpha_{1}\right) f(z) \tag{2.4}
\end{equation*}
$$

we have the following corollary.
2.2. Corollary. Let $q(z) \neq 0$ be univalent in U and $z q^{\prime}(z) / q(z)$, be starlike. If f satisfies

$$
\left(\alpha_{1}+1\right) \frac{H_{p, q, s}\left(\alpha_{1}+2\right) f(z)}{H_{p, q, s}\left(\alpha_{1}+1\right) f(z)}-\gamma \alpha_{1} \frac{H_{p, q, s}\left(\alpha_{1}+1\right) f(z)}{H_{p, q, s}\left(\alpha_{1}\right) f(z)} \prec \alpha_{1}(1-\gamma)+1+\frac{z q^{\prime}(z)}{q(z)},
$$

then

$$
\frac{z^{p(1-\gamma)} H_{p, q, s}\left(\alpha_{1}+1\right) f(z)}{\left[H_{p, q, s}\left(\alpha_{1}\right) f(z)\right]^{\gamma}} \prec q(z)
$$

and $q(z)$ is the best dominant.
Taking $q=2, s=1, \alpha_{1}=a>0, \beta_{1}=c>0$ and $\alpha_{2}=1$, in Corollary 1, we have the following result which correctes the result obtained by Ali and Ravichandran [1, Theorems 2.3].
2.3. Corollary. Let $q(z) \neq 0$ be univalent in U and $z q^{\prime}(z) / q(z)$, be starlike. If f satisfies

$$
(a+1) \frac{L_{p}(a+2 ; c) f(z)}{L_{p}(a+1 ; c) f(z)}-\gamma a \frac{L_{p}(a+1 ; c) f(z)}{L_{p}(a ; c) f(z)} \prec a(1-\gamma)+1+\frac{z q^{\prime}(z)}{q(z)}
$$

then

$$
\frac{z^{p(1-\gamma)} L_{p}(a+1 ; c) f(z)}{\left[L_{p}(a ; c) f(z)\right]^{\gamma}} \prec q(z)
$$

and $q(z)$ is the best dominant.
Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ in Theorem 1, we have
2.4. Corollary. Let $-1 \leq B<A \leq 1$. If $f \in \sum_{p}$ satisfies

$$
\begin{aligned}
& \frac{1}{\lambda} \frac{D_{\lambda, p}^{n+2}(f * g)(z)}{D_{\lambda, p}^{n+1}(f * g)(z)}-\frac{\gamma}{\lambda} \frac{D_{\lambda, p}^{n+1}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)} \\
& \prec \frac{1}{\lambda}(1-\gamma)+\frac{(A-B) z}{(1+A z)(1+B z)},
\end{aligned}
$$

then

$$
\frac{z^{p(1-\gamma)} D_{\lambda, p}^{n+1}(f * g)(z)}{\left[D_{\lambda, p}^{n}(f * g)(z)\right]^{\gamma}} \prec \frac{1+A z}{1+B z} .
$$

Taking $n=0$ and $g(z)$ in the form (1.4) with $q=2, s=1, \alpha_{1}=a, \beta_{1}=c, a, c>0$ and $\alpha_{2}=1$, in Corollary 3, we have the following result which corrects the result obtained by Ali and Ravichandran [1, Corollary 2.4].
2.5. Corollary. Let $-1 \leq B<A \leq 1$. If $f \in \sum_{p}$ satisfies

$$
\begin{aligned}
& (a+1) \frac{L_{p}(a+2 ; c) f(z)}{L_{p}(a+1 ; c) f(z)}-\gamma a \frac{L_{p}(a+1 ; c) f(z)}{L_{p}(a ; c) f(z)} \\
& \prec a(1-\gamma)+1+\frac{(A-B) z}{(1+A z)(1+B z)},
\end{aligned}
$$

then

$$
\frac{z^{p(1-\gamma)} L_{p}(a+1 ; c) f(z)}{\left[L_{p}(a ; c) f(z)\right]^{\gamma}} \prec \frac{1+A z}{1+B z} .
$$

By appealing to Lemma 2, we prove the following theorem.
2.6. Theorem. Let $\gamma \neq 0$ and $q(z)$ be univalent in $U, q(z) \neq 0, Q(z)=\gamma z q^{\prime}(z) / q(z)$ be starlike and

$$
\begin{equation*}
\Re\left\{\frac{1}{\lambda \gamma} q(z)+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0(z \in U) \tag{2.5}
\end{equation*}
$$

If $f(z) \in \sum_{p}$ satisfies

$$
(1-\gamma) \frac{D_{\lambda, p}^{n+1}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)}+\gamma \frac{D_{\lambda, p}^{n+2}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)} \prec q(z)+\lambda \gamma \frac{z q^{\prime}(z)}{q(z)},
$$

then

$$
\frac{D_{\lambda, p}^{n+1}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)} \prec q(z)
$$

and $q(z)$ is the best dominant.
Proof. Let the function $p(z)$ defined by

$$
\begin{equation*}
p(z)=\frac{D_{\lambda, p}^{n+1}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)}(z \in U) . \tag{2.6}
\end{equation*}
$$

Differentiating (2.6) logarithmically with respect to z and using the identity (1.3), we have

$$
\frac{D_{\lambda, p}^{n+2}(f * g)(z)}{D_{\lambda, p}^{n+1}(f * g)(z)}=p(z)+\lambda \frac{z p^{\prime}(z)}{p(z)}
$$

therefore, we have

$$
(1-\gamma) \frac{D_{\lambda, p}^{n+1}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)}+\gamma \frac{D_{\lambda, p}^{n+2}(f * g)(z)}{D_{\lambda, p}^{n+1}(f * g)(z)}=p(z)+\lambda \gamma \frac{z p^{\prime}(z)}{p(z)} .
$$

From (2.5), we have

$$
p(z)+\lambda \gamma \frac{z p^{\prime}(z)}{p(z)} \prec q(z)+\lambda \gamma \frac{z q^{\prime}(z)}{q(z)} .
$$

By an application of Lemma 2, it follows that $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

Taking $n=0$ and $g(z)$ of the form (1.4) and using the identity (2.4) we have the following corollary.
2.7. Corollary. Let $\gamma \neq 0, \alpha_{1} \neq-1$ and $q(z)$ be univalent in $U, q(z) \neq 0, Q(z)=$ $\gamma z q^{\prime}(z) / q(z)$ be starlike and

$$
\Re\left\{\frac{\alpha_{1}+1-\gamma}{\gamma} q(z)+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0(z \in U) .
$$

If $f(z) \in \sum_{p}$ satisfies

$$
\begin{aligned}
& (1-\gamma) \frac{H_{p, q, s}\left(\alpha_{1}+1\right) f(z)}{H_{p, q, s}\left(\alpha_{1}\right) f(z)}+\gamma \frac{H_{p, q, s}\left(\alpha_{1}+2\right) f(z)}{H_{p, q, s}\left(\alpha_{1}+1\right) f(z)} \\
& \prec \frac{1}{\alpha_{1}+1}\left[\gamma+\left(1+\alpha_{1}-\gamma\right) q(z)+\gamma \frac{z q^{\prime}(z)}{q(z)}\right],
\end{aligned}
$$

then

$$
\frac{H_{p, q, s}\left(\alpha_{1}+1\right) f(z)}{H_{p, q, s}\left(\alpha_{1}\right) f(z)} \prec q(z)
$$

and $q(z)$ is the best dominant.

Remarks. (i) Taking $n=0$ and $g(z)$ in the form (1.4) with $q=2, s=1, \alpha_{1}=$ $a>0, \beta_{1}=c>0$ and $\alpha_{2}=1$, in Corollary 5, we have the result obtained by Ali and Ravichandran [1, Theorem 2.5];
(ii) Taking $n=0$ and $g(z)$ of the form (1.5) and using the identity [6]:

$$
\lambda z\left(I_{p}^{m}(\lambda, l) f(z)\right)^{\prime}=l I_{p}^{m+1}(\lambda, l) f(z)-(\lambda p+l) I_{p}^{m}(\lambda, l) f(z), \lambda>0
$$

in our results, we have the results corresponding to the operator $I_{p}^{m}(\lambda, l)$;
(iii) Taking $n=0$ and $g(z)$ of the form (1.6) and using the identity [4]:

$$
z\left(Q_{\beta, p}^{\alpha} f(z)\right)^{\prime}=(\alpha+\beta-1) Q_{\beta, p}^{\alpha-1} f(z)-(\alpha+\beta+p-1) Q_{\beta, p}^{\alpha} f(z), \alpha \geq 0 ; \beta>-1,
$$

in our results, we have the results corresponding to the operator $Q_{\beta, p}^{\alpha}$.

References

[1] R. Ali and V. Ravichandran, Differential subordination for meromorphic functions defined by a linear operator, J. Analysis Appl., 2 (2004), no. 3, 149-158.
[2] M. K. Aouf, Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput. Math. Appl., 55 (2008), no. 3, 494-509.
[3] M. K. Aouf, A. Shamandy, A. O. Mostafa and S. M. Madian, Properties of some families of meromorphic p-valent functions involving certain differential operator, Acta Univ. Apulensis, (2009), no. 20, 7-15.
[4] E. Aqlan, J. M. Jahangiri and S. R. Kulkarni, Certain integral operators applied to meromorphic p-valent functions, J. Nat. Geom., 24 (2003), 111-120.
[5] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[6] R.M. El-Ashwah, A note on certain meromorphic p-valent functions, Appl. Math. Letters, 22 (2009), 1756-1759.
[7] R.M. El-Ashwah and M.K. Aouf, Some properties of certain classes of meromorphically pvalent functions involving extended multiplier transformations, Comput. Math. Appl., 59 (2010), 2111-2120.
[8] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259 (2000), 566-581.
[9] J.-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with generalized hypergeometric function, Math. Comput. Modelling, 39 (2004), 21-34.
[10] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[11] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), no. 2, 157-171.
[12] V. Ravichandran and M. Jayamala, On sufficient conditions for Caratheodory functions, Far East J. Math. Sci., 12 (2004), 191-201.
[13] B. A. Uralegaddi and C. Somanatha, Certain classes of meromorphic multivalent functions, Tamkang J. Math., 23 (1992), 223-231.

[^0]: *Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
 Email: mkaouf127@yahoo.com Corresponding Author.
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
 Email:adelaeg254@yahoo.com

