# GEODESICS IN THE TENSOR BUNDLE OF DIAGONAL LIFTS 

N. Cengiz* and A. A. Salimov*

Received 21. 12. 2001


#### Abstract

Let $M_{n}$ be an $n$-dimensional differentiable manifold of class $C^{\infty}$ and $T_{q}^{1}\left(M_{n}\right)$ the tensor bundle over $M_{n}$ of tensor of type $(1, q)$. The purpose of this paper is to define a diagonal lift ${ }^{D} g$ of a Riemannian metric $g$ of a manifold $M_{n}$ to the tensor bundle $T_{q}^{1}\left(M_{n}\right)$ of $M_{n}$ and and to investigate geodesics in a tensor bundle with respect to the Levi-Civita connection of ${ }^{D} g$.


Key Words: Tensor bundle, Riemannian metric, Diagonal lift, Levi-Civita connection, Geodesics.
Mathematics Subject Classification: Primary: 53 A 45, Secondary: 53 B 21

## 1. Introduction

Let $M_{n}$ be an $n$-dimensional differentiable manifold of class $C^{\infty}$ and $T_{q}^{1}\left(M_{n}\right)$ the tensor bundle over $M_{n}$ of tensor of type $(1, q)$. If $x^{i}$ are local coordinates in a neighborhood $U$ of point $x \in M_{n}$, then a tensor $t$ at $x$ which is an element of $T_{q}^{1}\left(M_{n}\right)$ is expressible in the form $\left(x^{i}, t_{i_{1} \ldots i_{q}}^{j}\right)$, where $t_{i_{1} \ldots i_{q}}^{j}$ are components of $t$ with respect to the natural frame. We may consider $\left(x^{i}, t_{i_{1} \ldots i_{q}}^{j}\right)=\left(x^{i}, x^{\bar{i}}\right)=$ $\left(x^{I}\right), i=1, \ldots, n, \bar{\imath}=n+1, \ldots, n\left(1+n^{q}\right), I=1, \ldots, n\left(1+n^{q}\right)$ as local coordinates in a neigbourhood $\pi^{-1}(U)$ ( $\pi$ is the natural projection $T_{q}^{1}\left(M_{n}\right)$ onto $\left.M_{n}\right)$.

Let now $M_{n}$ be a Riemannian manifold with non-degenerate metric $g$ whose components in a coordinate neigbourhood $U$ are $g_{j i}$ and denote by $\Gamma_{j i}^{h}$ the Christoffel symbols formed with $g_{j i}$.

We denote by $\mathcal{T}_{s}^{r}\left(M_{n}\right)$ the module over $F\left(M_{n}\right)\left(F\left(M_{n}\right)\right.$ is the ring of $C^{\infty}$ functions in $M_{n}$ ) all tensor fields of class $C^{\infty}$ and of type ( $r, s$ ) in $M_{n}$. Let $X \in \mathcal{T}_{0}^{1}\left(M_{n}\right)$ and $w \in \mathcal{T}_{q}^{1}\left(M_{n}\right)$. Then ${ }^{C} X \in \mathcal{T}_{0}^{1}\left(T_{q}^{1}\left(M_{n}\right)\right)$ (complete lift) ${ }^{H} X \in \mathcal{T}_{0}^{1}\left(T_{q}^{1}\left(M_{n}\right)\right)$

[^0](horizontal lift) and ${ }^{V} w \in \mathcal{T}_{0}^{1}\left(T_{q}^{1}\left(M_{n}\right)\right)$ (vertical lift) have, respectively, components (see [5-7])
\[

$$
\begin{align*}
{ }^{C} X & =\binom{X^{h}}{t_{h_{1} \ldots h_{q}}^{m} \partial_{m} X^{k}-\sum_{\mu=1}^{q} t_{h_{1} \ldots m \ldots h_{q}}^{k} \partial_{h_{\mu}} X^{m}}  \tag{1}\\
{ }^{H} X & =\binom{X^{h}}{-x^{m}\left(\Gamma_{m s}^{k} t_{h_{1} \ldots h_{q}}^{s}-\sum_{\mu=1}^{q} \Gamma_{m h_{\mu}}^{s} t_{h_{1} \ldots m \ldots h_{q}}^{k}\right.} \\
{ }^{V} w & =\binom{0}{w_{h_{1} \ldots h_{q}}^{k}}
\end{align*}
$$
\]

with respect to the natural frame $\left\{\partial_{H}\right\}=\left\{\partial_{h}, \partial_{\bar{h}}\right\}, x^{\bar{h}}=t_{h_{1} \ldots h_{q}}^{k}$ in $T_{q}^{1}\left(M_{n}\right)$, where $X^{h}$ and $w_{h_{1} \ldots h_{q}}^{k}$ are respectively local components of $X$ and $w$.

In each coordinate neighborhood $U\left(x^{h}\right)$ of $M_{n}$, we put

$$
\begin{aligned}
X_{j} & =\frac{\partial}{\partial x^{j}}=\delta_{j}^{h} \frac{\partial}{\partial x^{h}} \in \mathcal{T}_{0}^{1}\left(M_{n}\right), j=1, \ldots, n \\
w_{\bar{\jmath}} & =\partial_{l} \otimes d x^{j_{1}} \otimes \cdots \otimes d x^{j_{q}} \\
& =\delta_{l}^{k} \delta_{h_{1}}^{j_{1}} \cdots \delta_{h_{q}}^{j_{q}} \partial_{k} \otimes d x^{h_{1}} \otimes \cdots \otimes d x^{h_{q}} \in \mathcal{T}_{q}^{1}\left(M_{n}\right) \\
& \bar{\jmath}=n+1, \ldots, n\left(1+n^{q}\right)
\end{aligned}
$$

Taking account of (1), we easily see that the components of ${ }^{H} X_{j}$ and ${ }^{V} w_{\bar{\jmath}}$ are respectively given by

$$
\begin{aligned}
& { }^{H} X_{j}=\left(A_{j}^{H}\right)=\binom{\delta_{j}^{h}}{\sum_{\mu=1}^{q} \Gamma_{j h_{\mu}}^{s} t_{h_{1} \ldots s \ldots h_{q}}^{k}-\Gamma_{j s}^{k} t_{h_{1} \ldots h_{q}}^{s}} \\
& { }^{V} w_{\bar{\jmath}}=\left(A_{\bar{\jmath}}^{H}\right)=\binom{0}{\delta_{l}^{k} \delta_{h_{1}}^{j_{1}} \cdots \delta_{h_{q}}^{j_{q}}}
\end{aligned}
$$

with respect to the natural frame $\left\{\partial_{H}\right\}$ where $\delta_{j}^{i}$ is the Kronecker delta. We call the set $\left\{{ }^{H} X_{j},{ }^{V} w_{j}\right\}$ the frame adapted to the Riemannian connection $\nabla$ in $\pi^{-1}(U) \subset$ $T_{q}^{1}\left(M_{n}\right)$. On putting

$$
A_{j}={ }^{H} X_{j}, A_{\bar{\jmath}}={ }^{V} w_{\bar{\jmath}}
$$

we write the adapted frame as $\left\{A_{\beta}\right\}=\left\{A_{j}, A_{\bar{\jmath}}\right\}$.
It is easily verified that $n\left(1+n^{q}\right)$ local 1-forms

$$
\begin{align*}
\tilde{A}^{i} & =\left(\tilde{A}_{H}^{i}\right)=\left(\delta_{h}^{i}, 0\right)=d x^{i}, i=1, \ldots, n \\
\tilde{A}^{\bar{\imath}} & =\left(\tilde{A}_{H}^{\bar{i}}\right)=\left(\Gamma_{h s}^{r} t_{i_{1} \ldots i_{q}}^{s}-\sum_{\mu=1}^{q} \Gamma_{h i_{\mu}}^{s} t_{i_{1} \ldots s \ldots i_{q}}^{r}, \delta_{k}^{r} \delta_{i_{1}}^{h_{1}} \ldots \delta_{i_{q}}^{h_{q}}\right)  \tag{2}\\
& =\left(\Gamma_{h s}^{r} t_{i_{1} \ldots i_{q}}^{s}-\sum_{\mu=1}^{q} \Gamma_{h i_{\mu}}^{s} t_{i_{1} \ldots s \ldots i_{q}}^{r}\right) d x^{h}+\delta_{k}^{r} \delta_{i_{1}}^{h_{1}} \ldots \delta_{i_{q}}^{h_{q}} d x^{\bar{h}} \\
& =\delta t_{i_{1} \ldots i_{q}}^{s}, \bar{\imath}=n+1, \ldots, n\left(1+n^{q}\right)
\end{align*}
$$

form a coframe $\left\{\tilde{A}^{\alpha}\right\}=\left\{\tilde{A}^{i}, \tilde{A}^{\overline{ }}\right\}$ dual to the adapted frame $\left\{A_{\beta}\right\}$, i.e. $\tilde{A}$ ${ }_{H}^{\alpha} A_{\beta}^{H}=\delta_{\beta}^{\alpha}$.

## 2. Lift ${ }^{D} g$ of a Riemannian $g$ to $T_{q}^{1}\left(M_{n}\right)$

On putting locally

$$
\begin{align*}
{ }^{D} g & ={ }^{D} g_{j i} \tilde{A}^{j} \otimes \tilde{A}^{i}+{ }^{D} g_{\bar{\jmath} \bar{\imath}} \tilde{A}^{\bar{\jmath}} \otimes \tilde{A}^{\bar{\imath}}  \tag{3}\\
& =g_{j i} d x^{j} \otimes d x^{i}+g_{l r} \delta^{j_{1} i_{1}} \cdots \delta^{j_{q} i_{q}} \delta t_{j_{1} \ldots j_{q}}^{l} \otimes \delta t_{i_{1} \ldots i_{q}}^{r}
\end{align*}
$$

where $\delta^{j i}$ is the Kronecker delta, we see that ${ }^{D} g$ defines a tensor field of type ( 0,2 ) in $T_{q}^{1}\left(M_{n}\right)$, which is called the diagonal lift of the tensor field $g$ to $T_{q}^{1}\left(M_{n}\right)$ with respect to $\nabla$. From (3) we prove that ${ }^{D} g$ has components of the form

$$
{ }^{D} g=\left({ }^{D} g_{\beta \alpha}\right)=\left(\begin{array}{ll}
g_{j i} & 0  \tag{4}\\
0 & g_{l r} \delta^{j_{1} i_{1}} \ldots \delta^{j_{q} i_{q}}
\end{array}\right)
$$

with respect to the adapted frame and components

$$
\begin{aligned}
& { }^{D} g=\left({ }^{D} g_{J I}\right)=\left(\begin{array}{cc}
{ }^{D} g_{j i} & \begin{array}{c}
D \\
g_{j \bar{\imath}} \\
{ }^{D} \\
g_{\bar{\imath} i}
\end{array} \\
D_{g_{\bar{\jmath}}}
\end{array}\right) \\
& { }^{D} g_{j i}=g_{j i}+g_{l r} \delta^{j_{1} i_{1}} \cdots \delta^{j_{q} i_{q}}\left(\Gamma_{j m}^{l} t t_{j_{1} \ldots j_{q}}^{m}-\sum_{\mu=1}^{q} \Gamma_{j j_{\mu}}^{m} t_{j_{1} \ldots m \ldots j_{q}}^{l}\right) \\
& \qquad \quad\left(\Gamma_{i s}^{r} t_{i_{1} \ldots i_{q}}^{s}-\sum_{\mu=1}^{q} \Gamma_{i i_{\mu}}^{s} t_{i_{1} \ldots s \ldots i_{q}}^{r}\right) \\
& { }^{D} g_{j \bar{\imath}}=g_{l r} \delta^{j_{1} i_{1}} \ldots \delta^{j_{q} i_{q}}\left(\Gamma_{j m}^{l} t_{j_{1} \ldots j_{q}}^{m}-\sum_{\mu=1}^{q} \Gamma_{j j_{\mu}}^{m} t_{j_{1} \ldots m \ldots j_{q}}^{l}\right) \\
& { }^{D}{ }_{g_{\bar{\jmath} i}=}=g_{l r} \delta^{j_{1} i_{1}} \ldots \delta^{j_{q} i_{q}}\left(\Gamma_{i s}^{r} t_{i_{1} \ldots i_{q}}^{s}-\sum_{\mu=1}^{q} \Gamma_{i i_{\mu}}^{s} t_{i_{1} \ldots s \ldots i_{q}}^{r}\right) \\
& { }^{D}{ }_{g_{\bar{\jmath} \bar{\imath}}=g_{l r} \delta^{j_{1} i_{1}} \ldots \delta^{j_{q} i_{q}}}
\end{aligned}
$$

with respect to the natural frame. The indices $\alpha=(i, \bar{\imath}), \beta=(j, \bar{\jmath})=1, \ldots, n(1+$ $\left.n^{q}\right)$ and $I=(i, \bar{\imath}), J=(j, \bar{\jmath})=1, \ldots, n\left(1+n^{q}\right)$ indicate the indices with respect to the adapted frame and natural frame respectively.

From (4) it easily follows that if $g$ is a Riemannian metric in $M_{n}$, then ${ }^{D} g$ is a Riemannnian metric in $T_{q}^{1}\left(M_{n}\right)$.
2.1. Remark. The metric ${ }^{D} g$ is similar to that of the Riemannian extension studied by S. Sasaki in the tangent bundle $T_{0}^{1}\left(M_{n}\right)(q=0)$ [8] (see also [9], p.155, for the frame bundle, see [1, 4]. O. Kowalski [2] studied the Levi-Civita connection of the Sasaki metric on the tangent bundle. Section 3 in this paper will be devoted to a study of the Levi-Civita connection of ${ }^{D} g$ in $T_{q}^{1}\left(M_{n}\right)$.

From (1) and (2) we see that components of ${ }^{C} X,{ }^{H} X$ and ${ }^{V} w$ :

$$
{ }^{C} X^{\alpha}=\tilde{A}{ }_{H}^{\alpha}{ }^{C} X^{H}, \quad{ }^{H} X^{\alpha}=\tilde{A}{ }_{H}^{\alpha}{ }^{H} X^{H}, \quad V^{\alpha} w^{\alpha}=\tilde{A}_{H}^{\alpha}{ }^{V} w^{H}
$$

with respect to the adapted frame are given respectively by

$$
\left\{\begin{align*}
\left({ }^{C} X^{\alpha}\right) & =\binom{X^{i}}{t_{i_{1} \ldots i_{q}}^{m} \nabla_{m} X^{r}-\sum_{\mu=1}^{q} t_{i_{1} \ldots m \ldots i_{q}}^{r} \nabla_{i_{\mu}} X^{m}}  \tag{5}\\
\left({ }^{H} X^{\alpha}\right) & =\binom{X^{i}}{0} \\
\left({ }^{V} w^{\alpha}\right) & =\binom{0}{w_{i_{1} \ldots i_{q}}^{r}}
\end{align*}\right.
$$

From (4) and (5) we have

$$
\begin{align*}
& { }^{D} g\left({ }^{H} X,{ }^{H} Y\right)=g(X, Y)  \tag{6}\\
& { }^{D} g\left({ }^{V} w,{ }^{H} Y\right)=0 \tag{7}
\end{align*}
$$

from (6). Hence we have:
2.2. Theorem : Let $X, Y \in \mathcal{T}_{0}^{1}\left(M_{n}\right)$. Then the inner product of the horizontal lifts ${ }^{H} X$ and ${ }^{H} Y$ to $T_{q}^{1}\left(M_{n}\right)$ with metric ${ }^{D} g$ is equal to the vertical lift of the inner product of $X$ and $Y$ in $M_{n}$.

From (4) and (5) we have also

$$
\begin{align*}
{ }^{D} g\left({ }^{V} w,{ }^{V} \theta\right) & =\sum_{(i)}^{V}\left(g\left(w_{(i)}, \theta_{(i)}\right)\right)  \tag{8}\\
{ }^{D} g\left({ }^{V} w,{ }^{C} Y\right) & \left.=\sum_{(i)}^{V} g\left(w_{(i)}, \iota(\nabla Y)_{(i)}\right)\right)  \tag{9}\\
{ }^{D} g\left({ }^{C} X,{ }^{C} Y\right) & ={ }^{V}(g(X, Y))+\sum_{(i)}^{V}\left(g\left(\imath(\nabla X)_{(i)}, \imath(\nabla Y)_{(i)}\right)\right) \tag{10}
\end{align*}
$$

where $(i)=\left(i_{1} \ldots i_{q}\right)$ and $\imath(\nabla X)_{(i)}=\left(t_{(i)}^{m} \nabla_{m} X^{r}-\sum_{\mu=1}^{q} t_{i_{1} \ldots m \ldots i_{q}}^{r} \nabla_{i_{\mu}} X^{m}\right) \partial_{r}$.
Since the horizontal (or complete) and the vertical lifts to $T_{q}^{1}\left(M_{n}\right)$ of vector fields in $M_{n}$ span the module of vector fields in $T_{q}^{1}\left(M_{n}\right)$, formulas (6)-(8) (or (8)(10)) completely determine the diagonal lift ${ }^{D} g$ of the Riemannian metric $g$ to the tensor bundle $T_{q}^{1}\left(M_{n}\right)$.
2.3. Remark. We recall that any element $\tilde{g} \in \mathcal{T}_{2}^{0}\left(T_{0}^{1}\left(M_{n}\right)\right)$ of type $(0,2)$ in the tangent bundle $T_{0}^{1}\left(M_{n}\right),(q=0)$ is completely determined by its action on lifts of the type ${ }^{C} X_{1},{ }^{C} X_{2}$, where $X_{i}, i=1,2$ are arbitrary vector fields in $M_{n}$ ([9], p.33). Then ${ }^{D} g \in \mathcal{T}_{2}^{0}\left(T_{0}^{1}\left(M_{n}\right)\right)$ is completely determined by (10) alone.

## 3. Levi-Civita Connection of ${ }^{D} g$

We now need the components of the non-holonomic object which is important when we use a frame of reference such as $\left\{A_{\beta}\right\}$. They are defined by

$$
\begin{aligned}
{\left[A_{\gamma}, A_{\beta}\right] } & =\Omega_{\gamma \beta}^{\alpha} A_{\alpha}, \text { or }, \\
\Omega_{\gamma \beta}^{\alpha} & =\left(A_{\gamma} A_{\beta}^{H}-A_{\beta} A_{\gamma}^{H}\right) \tilde{A}^{\alpha}{ }_{H} .
\end{aligned}
$$

According to $A_{j}=\partial_{j}+\left(\sum_{\mu=1}^{q} \Gamma_{j h_{\mu}}^{s} t_{h_{1} \ldots s \ldots h_{q}}^{k}-\Gamma_{j s}^{k} t_{h_{1} \ldots h_{q}}^{s}\right) \partial_{\bar{h}}, \quad A_{\bar{\jmath}}=\partial_{\bar{\jmath}}$, the components $\Omega_{\gamma \beta}{ }^{\alpha}$ are given by

$$
\left\{\begin{array}{l}
\Omega_{\bar{\imath} j}{ }^{\bar{s}}=-\Omega_{j}{ }_{j}^{\bar{s}}=\sum_{\mu=1}^{q} \Gamma_{j s_{\mu}}^{t} \delta_{r}^{n} \delta_{s_{1}}^{i_{1}} \cdots \delta_{t}^{i_{\mu}} \cdots \delta_{s_{q}}^{i_{q}}-\Gamma_{j r}^{n} \delta_{s_{1}}^{i_{1}} \ldots \delta_{s_{q}}^{i_{q}}  \tag{11}\\
\Omega_{i j}{ }^{\bar{s}}=-\Omega_{j i}{ }^{\bar{s}}=\sum_{\mu=1}^{q} R_{i s_{\mu}} t_{\mu}^{r} t_{s_{1} \ldots t \ldots s_{q}}^{r}-R_{i j t}{ }^{r} t_{s_{1} \ldots s_{q}}^{t} \\
\Omega_{i j}{ }^{s}=\Omega_{\bar{\imath} \bar{j}}{ }^{s}=\Omega_{i \bar{\jmath}}{ }^{s}=\Omega_{\bar{\imath} \bar{\jmath}}{ }^{s}=\Omega_{\bar{\imath} \bar{\jmath}}{ }^{s}=0,
\end{array}\right.
$$

where $R_{k j i}{ }^{h}$ are components of the curvature tensor of the Riemannian connection $\nabla$.

Components of the Riemannian connection determined by the metric ${ }^{D} g$ are given by:

$$
\begin{equation*}
{ }^{D} \Gamma_{\gamma \beta}^{\alpha}=\frac{1}{2}{ }^{D} g^{\alpha \epsilon}\left(A_{\gamma}{ }^{D} g_{\epsilon \beta}+A_{\beta}{ }^{D} g_{\gamma \epsilon}-A_{\epsilon}{ }^{D} g_{\gamma \beta}\right)+\frac{1}{2}\left(\Omega_{\gamma \beta}^{\alpha}+\Omega_{\gamma \beta}^{\alpha}+\Omega_{\beta \gamma}^{\alpha}\right), \tag{12}
\end{equation*}
$$

where $\Omega^{\alpha}{ }_{\gamma \beta}={ }^{D} g^{\alpha \epsilon}{ }^{D} g_{\delta \beta} \Omega_{\epsilon \gamma}{ }^{\delta},{ }^{D} g^{\alpha \epsilon}$ are the contravariant components of the metric ${ }^{D} g$ with respect to the adapted frame:

$$
\left({ }^{D} g^{\beta \alpha}\right)=\left(\begin{array}{ll}
g^{j i} & 0  \tag{13}\\
0 & g^{l r} \delta_{j_{1} i_{1}} \cdots \delta_{j_{q} i_{q}}
\end{array}\right)
$$

Then, taking account of (11), (12), and (13), we have

$$
\left\{\begin{array}{l}
{ }^{D} \Gamma_{i j}^{h}=\Gamma_{i j}^{h}, \quad{ }^{D} \Gamma_{\bar{\imath} j}^{\bar{h}}=\sum_{\mu=1}^{q} \Gamma_{j h_{\mu}}^{t} \delta_{h_{1}}^{i_{1}} \cdots \delta_{t}^{i_{\mu}} \cdots \delta_{h_{q}}^{i_{q}} \delta_{r}^{k}  \tag{14}\\
{ }^{D} \Gamma_{i \bar{\jmath}}^{h}=\frac{1}{2} g^{h n} g_{\theta r} \delta^{m_{1} j_{1}} \cdots \delta^{m_{q} j_{q}}\left(\sum_{\mu=1}^{q} R_{n i m_{\mu}}{ }_{\mu}^{t} t_{m_{1} \ldots t \ldots m_{q}}^{\theta}-R_{n i t}{ }^{\theta} t_{m_{1} \ldots m_{q}}^{t}\right) \\
{ }^{D} \Gamma_{\bar{\imath} j}^{h}=\frac{1}{2} g^{h n} g_{\theta r} \delta^{m_{1} i_{1}} \cdots \delta^{m_{q} i_{q}}\left(\sum_{\mu=1}^{q} R_{n j m_{\mu}}^{t} t_{m_{1} \ldots t \ldots m_{q}}^{\theta}-R_{n j t}{ }^{\theta} t_{m_{1} \ldots m_{q}}^{t}\right) \\
{ }^{D} \Gamma_{i j}^{\bar{h}}=\frac{1}{2}\left(\sum_{\mu=1}^{q} R_{i j h_{\mu}}{ }^{t} t_{h_{1} \ldots t \ldots h_{q}}^{k}-R_{i j t}{ }^{k} t_{h_{1} \ldots h_{q}}^{t}\right) \\
{ }^{D} \Gamma_{i \bar{\jmath}}^{\bar{h}}=\Gamma_{i l}^{k} \delta_{h_{1}}^{j_{1}} \cdots \delta_{h_{q}}^{j_{q}}, \quad{ }^{D} \Gamma_{\bar{\imath} \bar{\jmath}}^{h}=0, \quad{ }_{\bar{\imath}}^{\bar{\jmath}}=0
\end{array}\right.
$$

From (5) and (14) we see that ${ }^{D} \nabla_{V_{\theta}}{ }^{V} w,{ }^{D} \nabla_{H}{ }_{X}{ }^{H} Y,{ }^{D} \nabla_{V_{\theta}}{ }^{H} Y$ and ${ }^{D} \nabla_{H_{X}}{ }^{V} w$ have, respectively, components of the form

$$
\left\{\begin{align*}
&{ }^{D} \nabla_{V_{\theta}}{ }^{V} w=0 \\
&{ }^{D} \nabla_{H_{X}}{ }^{H} Y=\binom{X^{i} \nabla_{i} Y^{k}}{\frac{1}{2} X^{i} Y^{j}\left(\sum_{\mu=1}^{q} R_{i j k_{\mu}}^{t} t_{k_{1} \ldots t \ldots k_{q}}^{s}-R_{i j t}^{s} t_{k_{1} \ldots k_{q}}^{t}\right)} \\
&={ }^{H}\left(\nabla_{X} Y\right)-\frac{1}{2} \overline{R(X, Y)}  \tag{15}\\
&{ }^{D} \nabla_{V_{\theta}}{ }^{H} Y=\binom{\frac{1}{2} Y^{j} \theta_{i_{1} \ldots i_{q}}^{r} g^{h n} g_{l r} \delta^{m_{1} i_{1}} \ldots \delta^{m_{q} i_{q}}}{\left(\sum_{\mu=1}^{q} R_{n j m_{\mu}}^{t} t_{m_{1} \ldots t \ldots m_{q}}^{l}-R_{n j t}^{l} t_{m_{1} \ldots m_{q}}^{t}\right.} \\
& Y^{j} \sum_{\mu=1}^{q} \Gamma_{j_{h_{\mu}}}^{t} \theta_{h_{1} \ldots t \ldots h_{q}}^{k}
\end{align*}\right)
$$

where $\overline{R(X, Y)}$ has components of the form

$$
\left.\overline{R(X, Y)}=\binom{0}{\left(\sum_{\mu=1}^{q} R_{i j k_{\mu}}^{t} t_{k_{1} \ldots t \ldots k_{q}}^{s}-R_{i j t}^{s} t_{k_{1} \ldots k_{q}}^{t}\right.} X^{i} Y^{j}\right)
$$

with respect to the adapted frame (also the natural frame). Since the horizontal and vertical lifts to $T_{q}^{1}\left(M_{n}\right)$ span the module of vector field in $T_{q}^{1}\left(M_{n}\right)$, formulae (15) completely determine the Riemannian connection ${ }^{D} \nabla$ of the metric ${ }^{D} g$.

We will now define the horizontal lift ${ }^{H} \nabla$ of the Riemannian connection $\nabla$ in $M_{n}$ to $T_{q}^{1}\left(M_{n}\right.$ by the conditions

$$
\left\{\begin{array}{l}
{ }^{H} \nabla_{V_{w}}{ }^{V} \theta=0, \quad{ }^{H} \nabla_{V^{V}}{ }_{w}^{H} Y=0,  \tag{16}\\
{ }^{H} \nabla_{H}{ }^{H}{ }^{V} \theta={ }^{V}\left(\nabla_{X} \theta\right), \quad{ }^{H} \nabla_{H}{ }^{H}{ }^{H} Y={ }^{H}\left(\nabla_{X} Y\right)
\end{array}\right.
$$

for any $X, Y \in \mathcal{T}_{q}^{1}\left(M_{n}\right), w, \theta \in \mathcal{T}_{q}^{1}\left(M_{n}\right)$. The horizontal lift ${ }^{H} \nabla$ has the components

$$
\begin{aligned}
{ }^{H} \Gamma_{m s}^{i}= & \Gamma_{m s}^{i}, \quad{ }^{H} \Gamma_{\overline{m s}}^{i}=0, \quad{ }^{H} \Gamma_{m \bar{s}}^{i}=0, \quad{ }^{H} \Gamma_{\overline{m s}}^{i}=0 \\
{ }^{H} \Gamma_{\bar{m} s}^{\bar{\imath}}= & \Gamma_{s l_{1}}^{j_{1}} \delta_{i_{1}}^{m_{1}} \cdots \delta_{i_{q}}^{m_{q}}-\sum_{c=1}^{q} \delta_{l_{1}}^{j_{1}} \delta_{i_{1}}^{m_{1}} \cdots \Gamma_{s i_{c}}^{m_{c}} \cdots \delta_{i_{q}}^{m_{q}}, \\
{ }^{H} \Gamma_{m \bar{s}}^{\bar{\imath}}= & \Gamma_{m k_{1}}^{j_{1}} \delta_{i_{1}}^{s_{1}} \cdots \delta_{i_{q}}^{s_{q}}-\sum_{c=1}^{q} \delta_{k_{1}}^{j_{1}} \delta_{i_{1}}^{s_{1}} \cdots \Gamma_{m i_{c}}^{s_{c}} \cdots \delta_{i_{q}}^{s_{q}}, \\
{ }^{H} \Gamma_{m s}^{\bar{\imath}}= & \left(\partial_{m} \Gamma_{s a}^{j_{1}}+\Gamma_{m r}^{j_{1}} \Gamma_{s a}^{r}-\Gamma_{m c}^{r} \Gamma_{r a}^{j_{1}}\right) t_{i_{1} \ldots i_{q}}^{a} \\
& +\sum_{c=1}^{q}\left(-\partial_{m} \Gamma_{s i_{c}}^{a}+\Gamma_{m i_{c}}^{j_{1}} \Gamma_{s r}^{a}+\Gamma_{m s}^{r} \Gamma_{r i_{c}}^{a}\right) t_{i_{1} \ldots a \ldots i_{q}}^{a}
\end{aligned}
$$

$$
\begin{gathered}
-\sum_{c=1}^{q}\left(\Gamma_{m r}^{j_{1}} \Gamma_{s i_{c}}^{a}+\Gamma_{m i_{c}}^{a} \Gamma_{s r}^{j_{1}}\right) t_{i_{1} \ldots a \ldots i_{q}}^{r} \\
+\frac{1}{2} \sum_{b=1}^{q} \sum_{c=1}^{q}\left(\Gamma_{m i_{c}}^{l} \Gamma_{s i_{b}}^{r}+\Gamma_{m i_{b}}^{r} \Gamma_{s i_{c}}^{l}\right) t_{i_{1} \ldots r \ldots l \ldots i_{q}}^{j_{1}}, \\
{ }^{H} \Gamma_{\bar{\imath} \bar{s}}^{\bar{\imath}}=0, \quad\left(x^{\bar{\imath}}=t_{i_{1} \ldots i_{q}}^{j_{1}}, x^{\bar{m}}=t_{m_{1} \ldots m_{q}}^{l_{1}}, x^{\bar{s}}=t_{s_{1} \ldots s_{q}}^{k_{1}}\right)
\end{gathered}
$$

with respect to the natural frame in $T_{q}^{1}\left(M_{n}\right)$.
Since the local vector fields ${ }^{H} X_{i}$ and ${ }^{V} w_{\bar{\imath}}$ span the module of vector fields in $\pi^{-1}(U) \subset T_{q}^{1}\left(M_{n}\right)$, any tensor field of type $(1,2)$ is determined in $\pi^{-1}(U)$ by its action on ${ }^{H} X_{i}$ and ${ }^{V} w_{\bar{\imath}}$. We now define a tensor field ${ }^{H} S \in\left(\mathcal{T}_{2}^{1}\left(M_{n}\right)\right)$ by

$$
\left\{\begin{align*}
{ }^{H} S\left({ }^{H} X,{ }^{H} Y\right) & ={ }^{H}(S(X, Y)), \forall X, Y \in \mathcal{T}_{0}^{1}\left(M_{n}\right)  \tag{17}\\
{ }^{H} S\left({ }^{V} w,{ }^{H} Y\right) & ={ }^{V}\left(S_{Y}(w)\right), \forall w \in \mathcal{T}_{q}^{1}\left(M_{n}\right) \\
{ }^{H} S\left({ }^{H} X,{ }^{V} \theta\right) & ={ }^{V}\left(S_{X}(\theta)\right), \forall \theta \in \mathcal{T}_{q}^{1}\left(M_{n}\right) \\
{ }^{H} S\left({ }^{V} w,{ }^{V} \theta\right) & =0,
\end{align*}\right.
$$

where $S_{X}(w), S_{X}(\theta) \in \mathcal{T}_{q}^{1}\left(M_{n}\right)$ and ${ }^{H} S$ is called the horizontal lift of $S \in \mathcal{T}_{2}^{1}\left(M_{n}\right)$ to $T_{q}^{1}\left(M_{n}\right)$ [5].

Denote by $T$ and $\widetilde{T}$, respectively, the torsion tensors of $\nabla$ and ${ }^{H} \nabla$. Directly from the definition of the torsion tensor, we get

$$
\begin{aligned}
& \tilde{T}\left({ }^{V} w,{ }^{V} \theta\right)={ }^{H} \nabla_{V_{w}}{ }^{V} \theta-{ }^{H} \nabla_{V_{\theta}}{ }^{V} w-\left[{ }^{V} w,{ }^{V} \theta\right] \\
& \tilde{T}\left({ }^{V} w,{ }^{H} Y\right)={ }^{H} \nabla_{V_{w}}{ }^{H} Y-{ }^{H} \nabla_{H_{Y}}{ }^{V} w-\left[{ }^{V} w,{ }^{H} Y\right] \\
& \tilde{T}\left({ }^{H} X,{ }^{H} Y\right)={ }^{H} \nabla_{H^{H}}{ }^{H} Y-{ }^{H} \nabla_{H^{H}}{ }^{H} X-\left[{ }^{H} X,{ }^{H} Y\right] .
\end{aligned}
$$

On other hand, let $R$ denote the curvature tensor field of the connection $\nabla$. Then [3],

$$
\left\{\begin{array}{l}
{\left[{ }^{V} w,{ }^{V} \theta\right]=0, \quad\left[{ }^{V} w,{ }^{H} Y\right]=-{ }^{V}\left(\nabla_{Y} w\right),}  \tag{18}\\
\left.{ }^{H} X,{ }^{H} Y\right]={ }^{H}[X, Y]+\overline{R(X, Y)}
\end{array}\right.
$$

Taking into account (16), (17) and (18), we obtain

$$
\begin{aligned}
\tilde{T}\left({ }^{V} w,{ }^{V} \theta\right) & =0, \tilde{T}\left({ }^{V} w,{ }^{H} Y\right)=0 \\
\tilde{T}\left({ }^{H} X,{ }^{H} Y\right) & ={ }^{H} T\left({ }^{H} X,{ }^{H} Y\right)-\overline{R(X, Y)} \\
& ={ }^{H}(T(X, Y))-\overline{R(X, Y)}=-\overline{R(X, Y)}
\end{aligned}
$$

Therefore we have
3.1. Theorem: When $\nabla$ is a Riemannian connection, ${ }^{H} \nabla$ is torsionless if $\nabla$ is locally flat, i.e. $T=0$ and $R=0$.

We put

$$
\begin{equation*}
{ }^{D} \tilde{g}=\tilde{g}^{j i} A_{j} \otimes A_{i}+\delta_{j_{1} i_{1}} \cdots \delta_{j_{q} i_{q}} \tilde{g}^{l r} A_{\bar{\jmath}} \otimes A_{\bar{\imath}} \tag{19}
\end{equation*}
$$

in $T_{q}^{1}\left(M_{n}\right)$.
From (16), we have

$$
\left\{\begin{array}{l}
{ }^{H} \nabla_{H_{X}} A_{i}=X^{s} \Gamma_{s i}^{h} A_{h}  \tag{20}\\
{ }^{H} \nabla_{H} A_{\bar{\imath}}=X^{s}\left(\Gamma_{s r}^{k} \delta_{h_{1}}^{i_{1}} \cdots \delta_{h_{q}}^{i_{q}}-\sum_{\mu=1}^{q} \Gamma_{s h_{\mu}}^{t} \delta_{r}^{k} \delta_{h_{1}}^{i_{1}} \cdots \delta_{t}^{i_{\mu}} \cdots \delta_{h_{q}}^{i_{q}}\right) A_{\bar{h}} \\
{ }^{H} \nabla_{V_{w}} A_{i}=0,{ }^{H} \nabla_{V_{w}} A_{\bar{\imath}}=0
\end{array}\right.
$$

for any $X \in \mathcal{T}_{0}^{1}\left(M_{n}\right), w \in \mathcal{T}_{q}^{1}\left(M_{n}\right)$. Thus, according to (19) and (20), we obtain

$$
\left\{\begin{array}{l}
{ }^{H} \nabla_{H_{X}}{ }^{D} \stackrel{\tilde{\sim}}{g}={ }^{D}\left(\nabla_{X} \tilde{g}\right),  \tag{21}\\
{ }^{H} \nabla_{V_{w}}{ }^{D} \stackrel{\tilde{g}}{g}=0
\end{array}\right.
$$

Let $\nabla_{X} g=0$, then $\nabla_{X} \underset{g}{g}=0$. Thus, taking account of (21), $\nabla_{X} g=0$ and ${ }^{D} g_{\alpha \gamma}{ }^{D} \widetilde{g}{ }^{\gamma \beta}=\delta_{\alpha}^{\beta}$, we obtain

$$
\begin{aligned}
{ }^{H} \nabla_{H}{ }_{X}{ }^{D} g & =0, \\
{ }^{H} \nabla_{V_{w}}{ }^{D} g & =0 .
\end{aligned}
$$

Thus we have
3.2. Theorem: Let $M_{n}$ be a Riemannian manifold with metric $g$. Then the horizontal lift ${ }^{H} \nabla$ of the Riemannian connection $\nabla$ is a metric connection with respect to ${ }^{D} g$.

## 4. Geodesics in $T_{q}^{1}\left(M_{n}\right)$ with metric ${ }^{D} g$

Let $C$ be a curve in $M_{n}$ expressed locally by $x^{h}=x^{h}(t)$ and $w_{h_{1} \ldots h_{q}}^{k}(t)$ be a tensor field of type $(1, q)$ along $C$. Then, in the tensor bundle $T_{q}^{1}\left(M_{n}\right)$, we define a curve $\tilde{C}$ by

$$
\begin{equation*}
x^{h}=x^{h}(t), x^{\tilde{h}} \stackrel{\text { def }}{=} t_{h_{1} \ldots h_{q}}^{k}=w_{h_{1} \ldots h_{q}}^{k}(t) \tag{22}
\end{equation*}
$$

If the curve $C$ satisfies at all points the relation

$$
\begin{equation*}
\frac{\delta w_{h_{1} \ldots h_{q}}^{k}}{d t}=0 \tag{23}
\end{equation*}
$$

where $\delta$ denotes absolute differentiation, then the curve $\tilde{C}$ is said to be a horizontal lift of the curve $C$ in $M_{n}$. Thus, if the initial condition $w_{h_{1} \ldots h_{q}}^{k}=\left(w_{h_{1} \ldots h_{q}}^{k}\right)_{0}$ for $t=t_{0}$ is given, there exists a unique horizontal lift expressed by (22).

We now consider differential equations of the geodesics of the tensor bundle $T_{q}^{1}\left(M_{n}\right)$ with the metric ${ }^{\mathcal{D}} g$. If $t$ is the arc length of a curve $x^{A}=x^{A}(t)$ in $T_{q}^{1}\left(M_{n}\right)$, equations of geodesics in $T_{q}^{1}\left(M_{n}\right)$ have the usual form

$$
\begin{equation*}
\frac{\delta^{2} x^{A}}{d t^{2}}=\frac{d^{2} x^{A}}{d t^{2}}+{ }^{D} \Gamma_{C B}^{A} \frac{d x^{C}}{d t} \frac{d x^{B}}{d t}=0 \tag{24}
\end{equation*}
$$

with respect to the natural coordinates $\left(x^{i}, x^{\bar{\imath}}\right)=\left(x^{i}, t_{j_{1} \ldots j_{q}}^{l}\right)$ in $T_{q}^{1}\left(M_{n}\right)$.

We find it more convenient to refer the equations (24) to the adapted frame $\left\{A_{i}, A_{\bar{\imath}}\right\}$. Using (2), we now write

$$
\begin{aligned}
& \theta^{h}=A_{A}^{(h)} d x^{A}=d x^{h}, \\
& \theta^{\bar{h}}=A_{A}^{(\bar{h})} d x^{A}=\delta t_{h_{1} \ldots h_{q}}^{k},
\end{aligned}
$$

and put

$$
\begin{aligned}
& \frac{\theta^{h}}{d t}=A_{A}^{(h)} \frac{d x^{A}}{d t}=\frac{d x^{h}}{d t}, \\
& \frac{\theta^{\bar{h}}}{d t}=A^{(\bar{h})}{ }_{A} \frac{d x^{A}}{d t}=\frac{\delta t_{h_{1} \ldots h_{q}}^{k}}{d t}
\end{aligned}
$$

along a curve $x^{A}=x^{A}(t)$, i.e., $x^{h}=x^{h}(t), t_{h_{1} \ldots h_{q}}^{k}=t_{h_{1} \ldots h_{q}}^{k}(t)$ in $T_{q}^{1}\left(M_{n}\right)$.
If we therefore write down the form equivalent to (24), namely,

$$
\frac{d}{d t}\left(\frac{\theta^{\alpha}}{d t}\right)+{ }^{D} \Gamma_{\delta}{ }_{\beta}^{\alpha}\left(\frac{\theta^{\gamma}}{d t}\right)\left(\frac{\theta^{\beta}}{d t}\right)=0
$$

with respect to the adapted frame and take account of (14), then we have

$$
\begin{cases}\frac{\delta^{2} x^{h}}{d t^{2}}+g_{\theta l} \delta^{m_{1} i_{1}} \ldots \delta^{m_{q} i_{q}}\left(\sum_{\mu=1}^{q} R_{i m_{\mu}}^{n}{ }^{t} t_{m_{1} \ldots t \ldots m_{q}}^{\theta}-\right.  \tag{25}\\ & \left.\quad-R_{n i t}{ }^{\theta} t_{m_{1} \ldots m_{q}}^{t}\right) \frac{d x^{i}}{d t} \frac{d t_{j_{1} \ldots j_{q}}^{l}}{d t}=0 \\ \frac{d}{d t}\left(\frac{\delta t_{h_{1} \ldots h_{q}}^{k}}{d t}\right)+\frac{1}{2}\left(\sum_{\mu=1}^{q} R_{i j h_{\mu}}^{n} t_{h_{1} \ldots n \ldots h_{q}}^{k}-R_{i j n}{ }^{k} t_{h_{1} \ldots h_{q}}^{n}\right) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t} \\ +\sum_{\mu=1}^{q} \Gamma_{j h_{\mu}}^{n}\left(\frac{\delta t_{h_{1} \ldots n \ldots h_{q}}^{d t}}{d t} \frac{d x^{j}}{d t}+\Gamma_{i l}^{k} \frac{d x^{i}}{d t} \frac{\delta t_{h_{1} \ldots h_{q}}^{l}}{d t}=0\right.\end{cases}
$$

Since we have

$$
R_{j i}{ }_{h}^{m} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}=0
$$

as a consequence of $R_{(j i) h}{ }^{m}=0$, we conclude by means of (25) that a curve $x^{i}=x^{i}(t), t_{h_{1} \ldots h_{q}}^{k}=t_{h_{1} \ldots h_{q}}^{k}(t)$ in $T_{q}^{1}\left(M_{n}\right)$ with the metric ${ }^{D} g$ is a geodesic in $T_{q}^{1}\left(M_{n}\right)$, if and only if

$$
\left\{\begin{align*}
& \frac{\delta^{2} x^{h}}{d t^{2}}+g_{\theta l} \delta^{m_{1} i_{1}} \ldots \delta^{m_{q} i_{q}}( \left(\sum_{\mu=1}^{q} R_{i m_{\mu}}^{n}{ }^{t} t_{m_{1} \ldots t \ldots m_{q}}^{\theta}\right.  \tag{a}\\
&\left.-R_{n i t}{ }^{\theta} t_{m_{1} \ldots m_{q}}^{t}\right) \frac{d x^{i}}{d t} \frac{d t_{j_{1} \ldots j_{q}}^{l}}{d t}=0 \\
& \frac{d}{d t}\left(\frac{\delta t_{h_{1} \ldots h_{q}}^{k}}{d t}\right)+\sum_{\mu=1}^{q} \Gamma_{j h_{\mu}}^{n} \frac{\delta t_{h_{1} \ldots h_{q}}^{k}}{d t} \frac{d x^{j}}{d t}+\Gamma_{j l}^{k} \frac{\delta t_{j_{1} \ldots j_{q}}^{l}}{d t} \frac{d x^{j}}{d t}=0
\end{align*}\right.
$$

If a curve satisfying (26) lies on the fibre given by $x^{h}=$ const, then $(24,(b))$ reduces to

$$
\frac{d^{2} t_{h_{1} \ldots h_{q}}^{k}}{d t^{2}}=0
$$

so that $t_{h_{1} \ldots h_{q}}^{k}=a_{h_{1} \ldots h_{q}}^{k} t+b_{h_{1} \ldots h_{q}}^{k}, a_{h_{1} \ldots h_{q}}^{k}$ and $b_{h_{1} \ldots h_{q}}^{k}$ being constant. Thus we have
4.1. Theorem: If the geodesic $x^{h}=x^{h}(t), t_{h_{1} \ldots h_{q}}^{k}=t_{h_{1} \ldots h_{q}}^{k}(t)$ lies in a fibre of $T_{q}^{1}\left(M_{n}\right)$ with the metric ${ }^{D} g$, the geodesic is expressed by the linear equations $x^{h}=c^{h}, t_{h_{1} \ldots h_{q}}^{k}=a_{h_{1} \ldots h_{q}}^{k} t+b_{h_{1} \ldots h_{q}}^{k}$, where $a_{h_{1} \ldots h_{q}}^{k}, b_{h_{1} \ldots h_{q}}^{k}$ and $c^{h}$ are constant.
From (23) and (26), we have
4.2. Theorem: The horizontal lift of a geodesic in $M_{n}$ is always a geodesic in $T_{q}^{1}\left(M_{n}\right)$ with the metric ${ }^{D} g$.

## References

[1] Cordero, L. A., Dotson, C. T. J. and de Leon, M. Differential geometry of frame bundles, Kluwer Acad. Pub. 1989.
[2] Kowalski, O. Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. reine angew. Math. 250, 124-129, 1971.
[3] Ledger A. and Yano K. Almost complex structures on tensor bundles, J. Dif. Geom. 1, 355-368, 1976.
[4] Mok K. P. On the differential geometry of the frame bundles of Riemannian manifolds, J. reine angew. Math. 302, 16-31, 1976.
[5] Salimov A.A. A new method in theory of lifts of tensor fields to a tensor bundle, IZV. Vuz. Math. N 3, 69-75, 1994 (in Russian).
[6] Salimov A. A. The generalized Yano-Ako operator and the complete lift of tensor fields, Tensor N. S. Japan 55 (2), 142-146, 1994.
[7] Salimov, A. A. and Mağden, A. Complete lifts of tensor fields on a pure crosssection in the tensor bundle $T_{q}^{1}\left(M_{n}\right)$, Note Di Matematica 18 (1), 27-37, 1998.
[8] Sasaki, S. On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10, 338-354, 1958.
[9] Yano, K. and Ishihara, S. Tangent and Cotangent Bundles, Mareel Dekker, Inc. New York, 1973.


[^0]:    *Atatürk University, Faculty of Arts and Sciences, Department of Mathematics, 25240 Erzurum, Turkey.

