$\begin{array}{c} \mbox{ Hacettepe Journal of Mathematics and Statistics} \\ \mbox{ Volume 33 (2004), } 23-30 \end{array}$

A WAVELET-TYPE TRANSFORM GENERATED BY THE POISSON SEMIGROUP

Melih Eryiğit * and Ilham A. Aliev [†]

Received 11:05:2004 : Accepted 16:06:2004

Abstract

A wavelet-type transform generated with the aid of the Poisson Semigroup and a signed Borel measure is introduced. An analogue of the Calderón reproducing formula (in the framework of the L_2 and L_p theory) is established.

Keywords: Wavelet transform, Poisson semigroup, Calderón's reproducing formula. 2000 AMS Classification: 65 R 10

1. Introduction

The Calderón reproducing formula is widely used in the theory of continuous wavelet transforms [3, 4], in fractional calculus and in integral geometry (see, e.g. [1, 2, 5, 6] and references therein). A version of the Calderón formula asserts that under certain conditions on u(x), $(x \in \mathbb{R}^n)$

(1.1)
$$\lim_{\substack{\varepsilon \to 0\\ \rho \to \infty}} \int_{\varepsilon}^{\rho} \frac{f * u_t}{t} dt = c_u f, \quad f \in L_2(\mathbb{R}^n),$$

where $u_t(x) = t^{-n}u(x/t)$, t > 0, "*" is a convolution operator and the limit is taken with respect to the L_2 -norm. The convolution $(W_u f)(x,t) = (f * u_t)(x)$ is called the continuous wavelet transform, generated by the "wavelet function" u.

A generalization of (1.1) has the form [6]:

(1.2)
$$\int_{0}^{\infty} \frac{f * \mu_t}{t} dt \stackrel{def}{=} \lim_{\substack{\varepsilon \to 0\\ \rho \to \infty}} \int_{\varepsilon}^{\nu} \frac{f * \mu_t}{t} dt = c_{\mu} f,$$

where μ is a suitable radial Borel measure, μ_t stands for the dilation of μ , and the limit is interpreted in the L_p -norm and in the pointwise (a.e.) sense.

^{*}Institute of Science, Akdeniz University, 07058, Antalya, Turkey. E-mail : eryigit@akdeniz.edu.tr

[†]Department of Mathematics, Akdeniz University, 07058, Antalya, Turkey. E-mail: ialiev@akdeniz.edu.tr

In this paper we introduce a new wavelet-type transform by making use of the Poisson kernel and finite Borel measure μ . The main purpose of the paper is to prove the relevant Calderón-type reproducing formula. The L_2 and L_p , $(1 \le p \le \infty)$ cases are examined separately. The pointwise (a.e.) convergence of the corresponding "truncated integrals" $\int (\cdots)$ is also studied.

2. Preliminiaries

Let

$$P(x,t) = \frac{\Gamma((n+1)/2)}{\pi^{(n+1)/2}} \cdot \frac{t}{(t^2 + |x|^2)^{(n+1)/2}}, \qquad t > 0 , x \in \mathbb{R}^n,$$

be the Poisson kernel which possess the following properties [7]:

(2.1)
$$\left[P(.,t)\right]^{\wedge}(\xi) \equiv \int_{\mathbb{R}^n} e^{-2\pi i x \cdot \xi} P(x,t) \, dx = e^{-\pi t |\xi|} \, ,$$

with $x.\xi = x_1\xi_1 + \dots + x_n\xi_n$;

(2.2)
$$\int_{\mathbb{R}^n} P(x,t) \, dx = 1, \qquad \forall t > 0 \, ;$$

P(x,t) is homogeneous function of order (-n), i.e

(2.3)
$$P(\lambda x, \lambda t) = \lambda^{-n} P(x, t), \quad \forall \lambda > 0;$$

(2.4)
$$\int_{\mathbb{R}^n} P(y, t) P(x - y, \tau) dy = P(x, t + \tau).$$

Given a function $f \in L_p(\mathbb{R}^n)$ with the norm $||f||_p = (\int_{\mathbb{R}^n} |f(x)|^p dx)^{1/p}$ we denote by $P_t f(x), t > 0$ the Poisson semigroup associated with f:

(2.5)
$$P_t f(x) = \int_{\mathbb{R}^n} f(x-z) P(z,t) dz, \ t > 0; \quad P_0 f(x) = f(x).$$

It is well known that (see, e.g. [7, p. 8-16])

(2.6)
$$||P_t f||_p \le ||f||_p, \quad (1 \le p \le \infty), \quad \forall t \ge 0;$$

(2.7)
$$P_t(P_\tau f)(x) = P_{t+\tau}f(x), \quad (t,\tau \ge 0);$$

(2.8) $\lim_{t \to 0^+} P_t f(x) = f(x) \,,$

with the limit being understood in the L_p , $(1 \le p < \infty)$ - norm or pointwise for almost all $x \in \mathbb{R}^n$. If $f \in C^0$ (the space of continuous functions vanishing at infinity), then convergence is uniform. Furthermore,

(2.9)
$$\sup_{t>0} |P_t f(x)| \le M_f(x),$$

with the well known Hardy–Littlewood maximal function

(2.10)
$$M_f(x) = \sup_{r>0} \frac{1}{|B_r|} \int_{B_r} |f(x-z)| dz, \ B_r = \{x : |x| < r\}.$$

2.1. Definition. Let μ be a signed Borel measure on \mathbb{R}^1 such that

 $\mathrm{supp}\mu\subset [0,\infty);\quad |\mu|(\mathbb{R}^1)<\infty,\quad \mu(\{0\})=0, \ \text{ and }$

(2.11)
$$\mu(\mathbb{R}^1) \equiv \int_{\mathbb{R}^1} d\mu(t) = 0.$$

In addition let P(y,t) be the Poisson kernel extended to $t \leq 0$ by zero. We define a wavelet transform of $f: \mathbb{R}^n \to \mathbb{C}$ as

(2.12)
$$W_{\mu}f(x,\eta) = \int_{\mathbb{R}^{n+1}} P(y,t)f(x-\eta y)dy\,d\mu(t)$$
$$= \int_{\mathbb{R}^{n}\times(0,\infty)} P(y,t)f(x-\eta y)dy\,d\mu(t).$$

By setting ty instead of y and using (2.3) we have

(2.13)
$$W_{\mu}f(x,\eta) = \int_{\mathbb{R}^n \times (0,\infty)} P(y,1)f(x-\eta ty)dy\,d\mu(t).$$

2.2. Remark. For any fixed $\eta > 0$ the operator W_{μ} is $L_p \to L_p$ bounded. Indeed, by the Minkowski inequality,

$$\|W_{\mu}f(.,\eta)\|_{p} \leq \|f\|_{p} \int_{\mathbb{R}^{n} \times (0,\infty)} P(y,t) dy \, d|\mu|(t) \stackrel{(2.2)}{=} \|f\|_{p} \|\mu\| < \infty$$

where

$$\|\mu\|=\int\limits_{(0,\infty)}d|\mu|(t)<\infty.$$

2.3. Remark. For $f \in L_p(\mathbb{R}^n)$, due to the Fubini theorem, we get

$$W_{\mu}f(x,\eta) = \int_{\mathbb{R}^n} f(x-\eta y) \Big(\int_{(0,\infty)} P(y,t)d\mu(t)\Big)dy.$$

Setting $w(y) = \int_{(0,\infty)} P(y,t) d\mu(t)$, by the Fubini theorem we have

$$\int_{\mathbb{R}^n} w(y) dy \stackrel{(2.2)}{=} \int_{(0,\infty)} d\mu(t) \stackrel{(2.11)}{=} 0.$$

That is, the function w(y) is a usual wavelet function. Further,

$$W_{\mu}f(x,\eta) = \int_{\mathbb{R}^n} f(x-\eta y)w(y)dy = \frac{1}{\eta^n} \int_{\mathbb{R}^n} f(y)w(\frac{x-y}{\eta})dy.$$

Therefore, $W_{\mu}f(x,\eta)$ is a continuous wavelet transform generated by the wavelet function $w(y) = \int_{(0,\infty)} P(y,t)d\mu(t).$

2.4. Remark. In the following we will use the convention $\int_{a}^{b} \varphi(t)d\mu(t) = \int_{[a,b)} \varphi(t)d\mu(t)$. In the case where $\lim_{t\to 0^+} \varphi(t) = \infty$ we assume that $\mu(0) = 0$ and $\int_{0}^{b} \varphi(t)d\mu(t) = \int_{(0,b)} \varphi(t)d\mu(t)$. We will need the following lemmas.

2.5. Lemma. [5, p.189] Let μ be a Borel measure satisfying the conditions (2.11) and $\int_{0}^{\infty} |\log t| d|\mu|(t) < \infty$. Set $k(s) = \frac{1}{s} \int_{0}^{s} d\mu(t)$. Then

$$k(s) \in L_1(0,\infty)$$
 and $\int_0^\infty k(s)ds = \int_0^\infty \log \frac{1}{s} d\mu(s)$

2.6. Lemma. [7, p.60] Let $T_{\varepsilon}, \varepsilon > 0$ be a family of linear operators, mapping $L^{p}(\mathbb{R}^{n}), 1 \leq p \leq \infty$ into the space of measurable functions on \mathbb{R}^{n} . Define $T^{*}f$ by setting

$$(T^*f)(x) = \sup_{\varepsilon > 0} |(T_{\varepsilon}f)(x)|, \ x \in \mathbb{R}^n.$$

Suppose that there exists a constant c > 0 and a real number $q \ge 1$ such that

$$\max\{x: |(T^*f)(x)| > t\} \le (c||f||_{L^p}t^{-1})^q$$

for all t > 0 and $f \in L^p(\mathbb{R}^n)$. If there exists a dense subset \mathcal{D} of $L^p(\mathbb{R}^n)$ such that $\lim_{\varepsilon \to 0} (T_\varepsilon g)(x)$ exists and is finite almost everywhere (a.e.) whenever $g \in \mathcal{D}$, then for each $f \in L^p(\mathbb{R}^n)$, $\lim_{\varepsilon \to 0} (T_\varepsilon f)(x)$ exists and is finite a.e.

3. A Calderon-type reproducing formula associated with the wavelet-type transform $W_{\mu}f$

We will examine the L_2 and L_p , $(1 \le p \le \infty)$ cases separately. In the L_2 -case the conditions on μ are expressed in terms of the Laplace transform of μ , and in the general case – in terms of μ itself.

3.1. Theorem. Let μ satisfy the conditions in (2.11). Suppose that $\tilde{\mu}(t) = \int_{0}^{\infty} e^{-st} d\mu(s)$ is the Laplace transform of μ and the integral $\tilde{c}_{\mu} = \int_{0}^{\infty} \tilde{\mu}(t) dt/t$ is finite. Then,

$$\int_{0}^{\infty} W_{\mu}f(x,\eta)\frac{d\eta}{\eta} \equiv \lim_{\substack{\varepsilon \to 0\\ \rho \to \infty}} \int_{\varepsilon}^{\rho} W_{\mu}f(x,\eta)\frac{d\eta}{\eta} = \tilde{c}_{\mu}f(x), \quad \forall f \in L_{2}(\mathbb{R}^{n}),$$

where the limit is interpreted in the L_2 -norm.

Proof. Let

$$f_{\varepsilon,\rho}(x) = \int_{\varepsilon}^{\rho} W_{\mu}f(x,\eta)\frac{d\eta}{\eta}, \qquad 0 < \varepsilon < \rho < \infty; \quad f \in L_1 \cap L_2$$

By employing the Fourier transform and the Fubini theorem, from (2.13) we have

26

$$\begin{split} f^{\wedge}_{\varepsilon,\rho}(y) &= \int_{\varepsilon}^{\rho} \frac{d\eta}{\eta} \int_{\mathbb{R}^n \times (0,\infty)} P(z,1) \Big(\int_{\mathbb{R}^n} e^{-2\pi i x \cdot y} f(x-\eta tz) dx \Big) dz d\mu(t) \\ & \text{(we replace } x \text{ with } x+\eta tz) \\ &= f^{\wedge}(y) \int_{\varepsilon}^{\rho} \frac{d\eta}{\eta} \int_{\mathbb{R}^n \times (0,\infty)} P(z,1) e^{-2\pi i (z,y)\eta t} dz d\mu(t) \\ & \stackrel{(2.1)}{=} f^{\wedge}(y) \int_{\varepsilon}^{\rho} \frac{d\eta}{\eta} \int_{0}^{\infty} e^{-\pi \eta t |y|} d\mu(t) \quad (\text{put } \eta = s/\pi |y|) \\ &= f^{\wedge}(y) \int_{\varepsilon\pi |y|}^{\rho\pi |y|} \frac{ds}{s} \int_{0}^{\infty} e^{-st} d\mu(t) = f^{\wedge}(y) \int_{\varepsilon\pi |y|}^{\rho\pi |y|} \tilde{\mu}(s) \frac{ds}{s}. \end{split}$$

Setting $k_{\varepsilon,\rho}(y) = \int_{\varepsilon\pi|y|}^{\rho\pi|y|} \tilde{\mu}(s) \frac{ds}{s}$, we have

(3.1)
$$f_{\varepsilon,\rho}^{\wedge}(y) = f^{\wedge}(y)k_{\varepsilon,\rho}(y).$$

Since $\tilde{c}_{\mu} = \int_{0}^{\infty} \tilde{\mu}(s)\frac{ds}{s}$ is finite and the function $\int_{0}^{t} \tilde{\mu}(s)\frac{ds}{s}$ continuous on $[0,\infty)$,

$$c \stackrel{def}{=} \sup_{t>0} \bigg| \int_{0}^{t} \tilde{\mu}(s) \frac{ds}{s}$$

is finite. Hence

(3.2)
$$|k_{\varepsilon,\rho}(y)| = \Big| \int_{0}^{\rho\pi|y|} \tilde{\mu}(s) \frac{ds}{s} - \int_{0}^{\varepsilon\pi|y|} \tilde{\mu}(s) \frac{ds}{s} \Big| \le 2c$$

Now by the Plancherel and Lebesque Dominated Convergence theorems it follows that

$$\|f_{\varepsilon,\rho} - \tilde{c}_{\mu}f\|_{2} = \|f_{\varepsilon,\rho}^{\wedge} - \tilde{c}_{\mu}f^{\wedge}\|_{2} \stackrel{(3.1)}{=} \|f^{\wedge}(k_{\varepsilon,\rho} - \tilde{c}_{\mu})\|_{2} \to 0 \text{ as } \varepsilon \to 0, \ \rho \to \infty.$$

Hence, for any $f \in L_1 \cap L_2$,

$$\lim_{\substack{\varepsilon \to 0\\ \rho \to \infty}} \left\| f_{\varepsilon,\rho} - \tilde{c}_{\mu} f \right\|_2 = 0.$$

The statement for arbitrary $f \in L_2$ follows in a standard way by using uniform $L_2 \to L_2$ boundedness of the family of linear operators $A_{\varepsilon,\rho}f \equiv f_{\varepsilon,\rho}$:

$$\|A_{\varepsilon,\rho}f\|_{2} = \|f_{\varepsilon,\rho}\|_{2} = \|f_{\varepsilon,\rho}^{\wedge}\|_{2} = \|f^{\wedge}k_{\varepsilon,\rho}\|_{2} \stackrel{(3.2)}{\leq} 2c\|f^{\wedge}\|_{2} = 2c\|f\|_{2},$$

that is $\|A_{\varepsilon,\rho}f\|_{2} \leq 2c\|f\|_{2}, \ \forall f \in L_{1} \cap L_{2}.$

The General case follows by density.

The following result gives a L_p -version of the Calderón-type reproducing formula for arbitrary $p\geq 1.$

3.2. Theorem. Let $f \in L_p(\mathbb{R}^n)$, $1 \leq p \leq \infty$ ($L_{\infty} \equiv C^0$ - the space of continuous functions vanishing at infinity). Let μ be a finite (signed) Borel measure on \mathbb{R}^1 such that

$$\mu(\mathbb{R}^{1}) = 0, \ \mu(\{0\}) = 0, \ \text{ supp } \mu \subset [0, \infty) \quad and \quad \int_{0}^{\infty} |\log t| d |\mu|(t) < \infty,$$

then

(3.3)
$$\int_{0}^{\infty} W_{\mu}f(x,\eta)\frac{d\eta}{\eta} \equiv \lim_{\varepsilon \to 0} \int_{\varepsilon}^{\infty} W_{\mu}f(x,\eta)\frac{d\eta}{\eta} = c_{\mu}f(x)$$

where

$$c_{\mu} = \int_{0}^{\infty} \log \frac{1}{t} d\mu(t),$$

the limit being with respect to the L_p -norm $(1 \le p < \infty)$, or taken pointwise for almost all $x \in \mathbb{R}^n$. In the case $p = \infty$ it is assumed that $L_{\infty} = C^0$ and the limit is understood in the sup-norm.

Proof. We need the following modification of the wavelet-type transform $W_{\mu}f$.

(3.4)

$$W_{\mu}f(x,\eta) = \int_{\mathbb{R}^{n} \times (0,\infty)} P(y,t)f(x-\eta y)dy \,d\mu(t)$$
(we put $y = (1/\eta)z, \, dy = (1/\eta)^{n}dz$ and use (2.3))

$$= \int_{0}^{\infty} \left(\int_{\mathbb{R}^{n}} P(z,\eta t)f(x-z)dz\right)d\mu(t) \stackrel{(2.5)}{=} \int_{0}^{\infty} P_{t\eta}f(x) \,d\mu(t).$$

Let

(3.5)
$$V_{\varepsilon}f(x) = \int_{\varepsilon}^{\infty} W_{\mu}f(x,\eta)\frac{d\eta}{\eta}, \quad \varepsilon > 0$$

Then, by using (3.4) and the Fubini theorem, we have

$$V_{\varepsilon}f(x) = \int_{\varepsilon}^{\infty} \Big(\int_{0}^{\infty} P_{t\eta}f(x) \, d\mu(t)\Big) \frac{d\eta}{\eta} = \int_{0}^{\infty} \Big(\int_{\varepsilon}^{\infty} P_{t\eta}f(x) \, \frac{d\eta}{\eta}\Big) d\mu(t)$$

(3.6)
$$= \int_{0}^{\infty} \Big(\int_{\varepsilon t}^{\infty} P_{s}f(x) \, \frac{ds}{s}\Big) d\mu(t) = \int_{0}^{\infty} \Big(\frac{1}{s} \int_{0}^{s/\varepsilon} d\mu(t)\Big) P_{s}f(x) \, ds.$$

Setting $k(s) = \frac{1}{s} \int_{0}^{s} d\mu(t)$ and $k_{\tau}(s) = \frac{1}{\tau} k(s/\tau)$, we have $k_{\tau}(s) = \frac{1}{s} \int_{0}^{s/\tau} d\mu(t)$ and therefore, $\frac{1}{s} \int_{0}^{s/\varepsilon} d\mu(t) = k_{\varepsilon}(s)$. Making use of this in (3.6) we have

(3.7)
$$V_{\varepsilon}f(x) = \int_{0}^{\infty} k_{\varepsilon}(s)P_{s}f(x)ds$$

28

By setting $\tilde{c}_{\mu} = \int_{0}^{\infty} k(s) ds$ (which is finite and equal to $c_{\mu} \equiv \int_{0}^{\infty} \log \frac{1}{\tau} d\mu(\tau)$ by Lemma 2.5), and using Minkowski inequality we have

$$\begin{aligned} \|V_{\varepsilon}f(x) - \tilde{c}_{\mu}f(x)\|_{p} &= \left\| \int_{0}^{\infty} k_{\varepsilon}(s)P_{s}f(x)ds - \int_{0}^{\infty} k(s)f(x)ds \right\|_{p} \\ &= \left\| \int_{0}^{\infty} k(s)P_{s\varepsilon}f(x)ds - \int_{0}^{\infty} k(s)f(x)ds \right\|_{p} \\ &\leq \int_{0}^{\infty} |k(s)|\|P_{s\varepsilon}f(x) - f(x)\|_{p}ds. \end{aligned}$$

From (2.6), (2.8) and Lebesgue's convergence theorem it follows that the last expression tends to zero as $\varepsilon \to 0$. For similar reasons the convergence is uniform for $f \in C^0$.

It remains to show the pointwise (a.e) convergence in (3.3). For $f \in L_p$, $(1 \le p < \infty)$, we have

$$|V_{\varepsilon}f(x)| \leq \int_{0}^{\infty} |k_{\varepsilon}(s)| |P_{s}f(x)| ds$$

$$(3.8) \qquad \leq \sup_{s>0} |P_{s}f(x)| \int_{0}^{\infty} |k_{\varepsilon}(s)| ds = c \cdot \sup_{s>0} |P_{s}f(x)|,$$

where $c = \int_{0}^{\infty} |k_{\varepsilon}(s)| ds = \int_{0}^{\infty} |k(s)| ds < \infty$ by Lemma 2.5. From (3.8) and (2.9) it follows that for any $\lambda > 0$

$$\max\{x \in \mathbb{R}^n : \sup_{\varepsilon > 0} |V_{\varepsilon}f(x)| > \lambda\} \le c_1 \cdot \max\{x \in \mathbb{R}^n : M_f(x)| > \lambda\} \le \left(c_2 \frac{\|f\|_p}{\lambda}\right)^p.$$

Thus the maximal operator $\sup_{\varepsilon>0} |V_{\varepsilon}f(x)|$ is of weak (p, p)-type. Now by employing Lemma 2.6 and keeping in mind that $V_{\varepsilon}f(x) \to \tilde{c}_{\mu}f(x)$ pointwise as $\varepsilon \to 0$ for any $f \in C^0$ (this class of functions is dense in L_p , $(1 \le p < \infty)$), we obtain for any $f \in L_p$ that $V_{\varepsilon}f(x) \to \tilde{c}_{\mu}f(x)$ a.e. as $\varepsilon \to 0$. To complete the proof of the theorem it remains only to recall that

$$\tilde{c}_{\mu} = c_{\mu} \equiv \int_{0}^{\infty} \log \frac{1}{s} d\mu(s)$$
 (see Lemma 2.5).

References

- Aliev, I. A. and Rubin, B. Parabolic wavelet transforms and Lebesgue spaces of parabolic potentials, Rocky Mountain Journal of Math. 32 No 2, 391–408, 2002.
- [2] Aliev, I.A. and Eryigit, M. Inversion of Bessel Potentials with the aid of weighted wavelet transforms, Math. Nachrichten. 242, 27–37, 2002.
- [3] Frazier, M., Jawerth B. and Weiss G. Littlewood-Paley theory and the study of function spaces, CBMS Reg. Conf. Ser. in Math. No. 79 (Amer. Math. Soc., Providence, R.I., 1991).
- [4] Meyer, Y. Wavelet and operators, (Univ. Press, Cambridge, 1992).
- [5] Rubin, B. Fractional Integrals and Potentials, (Addison Wesley Longman, Essex U.K., 1996).

M. Eryiğit, I.A. Aliev

- [6] Rubin, B. The Calderón reproducing formula, windowed X-Ray transforms and Radon
- [7] Itabili, D. The outstood opposition opposition of pourier Anal. and Appl. 4 No 2, 175–197, 1998.
 [7] Stein, E. M. and Weiss G. Introduction to Fourier analysis on Euclidean spaces, (Princeton) Univ. Press, Princeton N. J., 1971).

30