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Common fixed point theorems for two pairs of
non-self mappings in cone metric spaces

Xianjiu Huang∗†, Chuanxi Zhu‡ and Xi Wen§

Abstract
Some common fixed point theorems for two pairs of non-self mappings
defined on a closed subset of a metrically convex cone metric space (over
the cone which is not necessarily normal) are obtained which generalize
earlier results due to Imdad et al. and Jankovic et al.
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1. Introduction and preliminaries
Recently, Huang and Zhang ([14]) generalized the concept of a metric space, replacing

the set of real numbers by ordered Banach space and obtained some fixed point theorems
for mappings satisfying different contractive conditions. Subsequently, the study of fixed
point theorems in such spaces is followed by some other mathematicians, see [1]-[5], [7]-
[12], [15]-[18], [20]-[23]. The aim of this paper is to prove some common fixed point
theorems for two pairs of non-self mappings on cone metric spaces in which the cone
need not be normal. This result generalizes the result of Jankovic et al.([18]).

Consistent with Huang and Zhang ([14]), the following definitions and results will be
needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and only if:
(a) P is closed, nonempty and P 6= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P ;
(c) P ∩ (−P ) = {θ}.
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Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and
only if y− x ∈ P . A cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E,

θ ≤ x ≤ y implies ‖ x ‖≤ K ‖ y ‖.
The least positive number K satisfying the above inequality is called the normal constant
of P , while x� y stands for y − x ∈ intP (interior of P ).

1.1. Definition ([14]). LetX be a nonempty set. Suppose that the mapping d : X×X →
E satisfies:

(d1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric on X and (X, d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.

1.2. Definition ([14]). Let (X, d) be a cone metric space. We say that {xn} is:
(e) a Cauchy sequence if for every c ∈ E with θ � c, there is an N such that for all

n,m > N, d(xn, xm)� c;
(f) a convergent sequence if for every c ∈ E with θ � c, there is an N such that for

all n > N, d(xn, x)� c for some fixed x ∈ X.

A cone metric space X is said to be complete if for every Cauchy sequence in X is
convergent in X. It is known that if P is normal, then {xn} converges to x ∈ X if and
only if d(xn, x) → θ as n → ∞. It is a Cauchy sequence if and only if d(xn, xm) →
θ(n,m→∞).

1.3. Remark ([24]). Let E be an ordered Banach (normed) space. Then c is an interior
point of P , if and only if [−c, c] is a neighborhood of θ.

1.4. Corollary ([19]). (1) If a ≤ b and b� c, then a� c.
Indeed, c− a = (c− b) + (b− a) ≥ c− b implies [−(c− a), c− a] ⊇ [−(c− b), c− b].
(2) If a� b and b� c, then a� c.
Indeed, c− a = (c− b) + (b− a) ≥ c− b implies [−(c− a), c− a] ⊇ [−(c− b), c− b].
(3) If θ ≤ u� c for each c ∈ intP then u = θ.

1.5. Remark ([18]). If c ∈ intP, θ ≤ an and an → θ, then there exists an n0 such that
for all n > n0 we have an � c.

1.6. Remark ([18]). If E is a real Banach space with cone P and if a ≤ ka where a ∈ P
and 0 < k < 1, then a = θ.

We find it convenient to introduce the following definition.

1.7. Definition ([18]). Let (X, d) be a complete cone metric space and C be a nonempty
closed subset of X, and f, g : C → X. Denote, forx, y ∈ C,

(1.1) Mf,g
1 = {d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy) + d(fy, gx)

2
}.

Then f is called a generalized gM1−contractive mapping of C into X if for some λ ∈
(0,
√
2− 1) there exists u(x, y) ∈Mf,g

1 such that for all x, y ∈ C
(1.2) d(fx, fy) ≤ λu(x, y).
1.8. Definition ([2]). Let f and g be self maps of a set X (i.e., f, g : X → X). If
w = fx = gx for some x in X, then x is called a coincidence point of f and g, and w
is called a point of coincidence of f and g. Self maps f and g are said to be weakly
compatible if they commute at their coincidence point; i.e., if fx = gx for some x ∈ X,
then fgx = gfx.
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2. Main results
Recently, Jankovic et al.([18]) proved some fixed point theorems for a pair of non-self

mappings defined on a nonempty closed subset of complete metrically convex cone metric
spaces with new contractive conditions.

2.1. Theorem ([18]). Let (X, d) be a complete cone metric space, C a nonempty closed
subset of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C (the boundary
of C) such that

d(x, z) + d(z, y) = d(x, y).

Suppose that f, g : C → X are such that f is a generalized gM1−contractive mapping of
C into X, and

(i) ∂C ⊆ gC, fC ∩ C ⊆ gC,
(ii) gx ∈ ∂C implies that fx ∈ C,
(iii) gC is closed in X.
Then the pair (f, g) has a coincidence point. Moreover, if pair (f, g) is weakly com-

patible, then f and g have a unique common fixed point.

The purpose of this paper is to extend above theorem for two pairs of non-self mappings
in cone metric spaces. We begin with the following definition.

2.2. Definition. Let (X, d) be a complete cone metric space and C be a nonempty
closed subset of X, and F,G, S, T : C → X. Denote, for x, y ∈ C,

(2.1) MF,G,S,T
1 = {d(Tx, Sy), d(Tx, Fx), d(Sy,Gy), d(Tx,Gy) + d(Fx, Sy)

2
}.

Then (F,G) is called a generalized (T, S)M1−contractive mappings pair of C into X if
for some λ ∈ (0, 1) there exists u(x, y) ∈MF,G,S,T

1 such that for all x, y ∈ C

(2.2) d(Fx,Gy) ≤ λu(x, y).

Notice that by setting G = F = f and T = S = g in (2.1), one deduces a slightly
generalized form of (1.1).

We state and prove our main result as follows.

2.3. Theorem. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that F,G, S, T : C → X are such that (F,G) is a generalized (T, S)M1− contrac-
tive mappings pair of C into X, and

(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,
(I) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.
Then
(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.
Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a

unique common fixed point.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the following
way.

Let x ∈ ∂C be arbitrary. Then (due to ∂C ⊆ TC) there exists a point x0 ∈ C such
that x = Tx0. Since Tx ∈ ∂C ⇒ Fx ∈ C, one concludes that Fx0 ∈ FC ∩ C ⊆ SC.
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Thus, there exist x1 ∈ C such that y1 = Sx1 = Fx0 ∈ C. Since y1 = Fx0 there exists a
point y2 = Gx1 such that

d(y1, y2) = d(Fx0, Gx1).

Suppose y2 ∈ C. Then y2 ∈ GC ∩ C ⊆ TC which implies that there exists a point
x2 ∈ C such that y2 = Tx2. otherwise, if y2 6∈ C, then there exists a point p ∈ ∂C such
that

d(Sx1, p) + d(p, y2) = d(Sx1, y2).

Since p ∈ ∂C ⊆ TC there exists a point x2 ∈ C with p = Tx2 so that

d(Sx1, Tx2) + d(Tx2, y2) = d(Sx1, y2).

Let y3 = Fx2 be such that d(y2, y3) = d(Gx1, Fx2). Thus, repeating the foregoing
arguments, one obtains two sequences {xn} and {yn} such that

(a) y2n = Gx2n−1, y2n+1 = Fx2n,
(b) y2n ∈ C ⇒ y2n = Tx2n or y2n 6∈ C ⇒ Tx2n ∈ ∂C and

d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n).

(c) y2n+1 ∈ C ⇒ y2n+1 = Sx2n+1 or y2n+1 6∈ C ⇒ Sx2n+1 ∈ ∂C and

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1).

We denote
P0 = {Tx2i ∈ {Tx2n} : Tx2i = y2i},
P1 = {Tx2i ∈ {Tx2n} : Tx2i 6= y2i},
Q0 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1},
Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 6= y2i+1}.

Note that (Tx2n, Sx2n+1) 6∈ P1×Q1, as if Tx2n ∈ P1, then y2n 6= Tx2n and one infers
that Tx2n ∈ ∂C which implies that y2n+1 = Fx2n ∈ C. Hence y2n+1 = Sx2n+1 ∈ Q0.
Similarly, one can argue that (Sx2n−1, Tx2n) 6∈ Q1 × P1.

Now, we distinguish the following three cases.
Case 1. If (Tx2n, Sx2n+1) ∈ P0 ×Q0, then from (2.2)

d(Tx2n, Sx2n+1) = d(Fx2n, Gx2n−1) ≤ λu2n−1,

where

u2n−1 ∈ {d(Sx2n−1, Tx2n), d(Sx2n−1, Gx2n−1), d(Tx2n, Fx2n),

d(Tx2n, Gx2n−1) + d(Sx2n−1, Fx2n)

2
}

= {d(y2n−1, y2n), d(y2n, y2n+1),
d(y2n−1, y2n+1)

2
}.

Clearly, there are infinitely many n such that at least one of the following three cases
holds:

(1) d(Tx2n, Sx2n+1) ≤ λd(y2n−1, y2n) = λd(Sx2n−1, Tx2n);
(2) d(Tx2n, Sx2n+1) ≤ λd(y2n, y2n+1)⇒ d(Tx2n, Sx2n+1) = θ ≤ λd(Sx2n−1, Tx2n);
(3) d(Tx2n, Sx2n+1) ≤ λ d(y2n−1,y2n+1)

2
≤ λ

2
d(y2n−1, y2n)+

1
2
d(y2n, y2n+1)⇒ d(Tx2n, Sx2n+1) ≤

λd(Sx2n−1, Tx2n).
From (1), (2), (3) it follows that

(2.3) d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n).

Similarly, if (Sx2n+1, Tx2n+2) ∈ Q0 × P0, we have

(2.4) d(Sx2n+1, Tx2n+2) = d(Fx2n, Gx2n+1) ≤ λd(Tx2n, Sx2n+1).
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If (Sx2n−1, Tx2n) ∈ Q0 × P0, we have

(2.5) d(Sx2n−1, Tx2n) = d(Fx2n−2, Gx2n−1) ≤ λd(Tx2n−2, Sx2n−1).

Case 2. If (Tx2n, Sx2n+1) ∈ P0 ×Q1, then Sx2n+1 ∈ Q1 and

(2.6) d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1)

which in turn yields

(2.7) d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1)

and hence

(2.8) d(Tx2n, Sx2n+1) ≤ d(y2n, y2n+1) = d(Fx2n, Gx2n−1).

Now, proceeding as in Case 1, we have that (2.3) holds.
If (Sx2n+1, Tx2n+2) ∈ Q1 × P0, then Tx2n ∈ P0. We show that

(2.9) d(Sx2n+1, Tx2n+2) ≤ λd(Tx2n, Sx2n−1).

Using (2.6), we get

(2.10) d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+1) + d(y2n+1, Tx2n+2)

= d(Tx2n, y2n+1)−d(Tx2n, Sx2n+1)+d(y2n+1, Tx2n+2).

By noting that Tx2n+2, Tx2n ∈ P0, one can conclude that

(2.11) d(y2n+1, Tx2n+2) = d(y2n+1, y2n+2) = d(Fx2n, Gx2n+1) ≤ λd(Tx2n, Sx2n+1),

and

(2.12) d(Tx2n, y2n+1) = d(y2n, y2n+1) = d(Fx2n, Gx2n−1) ≤ λd(Sx2n−1, Tx2n),

in view of Case 1.
Thus,

d(Sx2n+1, Tx2n+2) ≤ λd(Sx2n−1, Tx2n)− (1− λ)d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n),

and we proved (2.9).
Case 3. If (Tx2n, Sx2n+1) ∈ P1 ×Q0, then Sx2n−1 ∈ Q0. We show that

(2.13) d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n−2).

Since Tx2n ∈ P1, then

(2.14) d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n).

From this, we get

(2.15) d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n) + d(y2n, Sx2n+1)

= d(Sx2n−1, y2n)− d(Sx2n−1, Tx2n) + d(y2n, Sx2n+1).

By noting that Sx2n+1, Sx2n−1 ∈ Q0, one can conclude that

(2.16) d(y2n, Sx2n+1) = d(y2n, y2n+1) = d(Fx2n, Gx2n−1) ≤ λd(Sx2n−1, Tx2n),

and

(2.17) d(Sx2n−1, y2n) = d(y2n−1, y2n) = d(Fx2n−2, Gx2n−1) ≤ λd(Sx2n−1, Tx2n−2),

in view of Case 1.
Thus,

d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n−2)−(1−λ)d(Sx2n−1, Tx2n) ≤ λd(Sx2n−1, Tx2n−2),

and we proved (2.13).
Similarly, If (Sx2n+1, Tx2n+2) ∈ Q0 × P1, then Tx2n+2 ∈ P1, and

d(Sx2n+1, Tx2n+2) + d(Tx2n+2, y2n+2) = d(Sx2n+1, y2n+2).
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From this, we have

d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2)+d(y2n+2, Tx2n+2)

≤ d(Sx2n+1, y2n+2) + d(Sx2n+1, y2n+2)− d(Sx2n+1, Tx2n+2)

= 2d(Sx2n+1, y2n+2)− d(Sx2n+1, Tx2n+2)

⇒ d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2).

By noting that Sx2n+1 ∈ Q0, one can conclude that

(2.18) d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2) = d(Fx2n, Gx2n+1) ≤ λd(Tx2n, Sx2n+1),

in view of Case 1.
Thus, in all the cases 1-3, there exists w2n ∈ {d(Sx2n−1, Tx2n), d(Tx2n−2, Sx2n−1)}

such that
d(Tx2n, Sx2n+1) ≤ λw2n

and exists w2n+1 ∈ {d(Sx2n−1, Tx2n), d(Tx2n, Sx2n+1)} such that

d(Sx2n+1, Tx2n+2) ≤ λw2n+1.

Following the procedure of Assad and Kirk ([6]), it can easily be shown by induction
that, for n ≥ 1, there exists w2 ∈ {d(Tx0, Sx1), d(Sx1, Tx2)} such that

(2.19) d(Tx2n, Sx2n+1) ≤ λn−
1
2w2 and d(Sx2n+1, Tx2n+2) ≤ λnw2.

From (2.19) and by the triangle inequality, for n > m we have

d(Tx2n, Sx2m+1) ≤ d(Tx2n, Sx2n−1) + d(Sx2n−1, Tx2n−2) + · · ·+ d(Tx2m+2, Sx2m+1)

≤ (λm + λm+ 1
2 + · · ·+ λn−1)w2 ≤

λm

1−
√
λ
w2 → θ, as m→∞.

From Remark 1.3 and Corollary 1.4 (1) d(Tx2n, Sx2m+1)� c.
Thus, the sequence {Tx0, Sx1, Tx2, Sx3, · · · , Sx2n−1, Tx2n, Sx2n−1, · · · } is a Cauchy

sequence. Then, as noted in [13], there exists at least one subsequence {Tx2nk} or
{Sx2nk+1} which is contained in P0 or Q0 respectively and finds its limit z ∈ C. Fur-
thermore, subsequences {Tx2nk} and {Sx2nk+1} both converge to z ∈ C as C is a closed
subset of complete cone metric space (X, d). We assume that there exists a subsequence
{Tx2nk} ⊆ P0 for each k ∈ N , then Tx2nk = y2nk = Gx2nk−1 ∈ C ∩GC ⊆ TC Since TC
as well as SC are closed in X and {Tx2nk} is Cauchy sequence in TC, it converges to a
point z ∈ TC. Let w ∈ T−1z, then Tw = z. Similarly, {Sx2nk+1} being a subsequence
of Cauchy sequence {Tx0, Sx1, Tx2, Sx3, · · · , Sx2n−1, Tx2n, Sx2n−1, · · · } also converges
to z as SC is closed. Using (2.2), one can write

d(Fw, z) ≤ d(Fw,Gx2nk−1) + d(Gx2nk−1, z) ≤ λu2nk−1 + d(Gx2nk−1, z),

where

u2nk−1 ∈ {d(Tw, Sx2nk−1), d(Tw, Fw), d(Sx2nk−1, Gx2nk−1),

d(Tw,Gx2nk−1) + d(Fw, Sx2nk−1)

2
}

= {d(z, Sx2nk−1), d(z, Fw), d(Sx2nk−1, Gx2nk−1),

d(z,Gx2nk−1) + d(Fw, Sx2nk−1)

2
}.

Let θ � c. Clearly at least one of the following four cases holds for infinitely many n.
(1) d(Fw, z) ≤ λd(z, Sx2nk−1) + d(Gx2nk−1, z)� λ c

2λ
+ c

2
= c;

(2) d(Fw, z) ≤ λd(z, Fw)+d(Gx2nk−1, z)⇒ d(Fw, z) ≤ 1
1−λd(Gx2nk−1, z)� 1

1−λ (1−
λ)c = c;
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(3) d(Fw, z) ≤ λd(Sx2nk−1, Gx2nk−1)+d(Gx2nk−1, z) ≤ λ(d(Sx2nk−1, z)+d(z,Gx2nk−1))+
d(Gx2nk−1, z)
≤ (λ+ 1)d(Gx2nk−1, z) + λd(Sx2nk−1, z)� (λ+ 1) c

2(λ+1)
+ λ c

2λ
= c;

(4) d(Fw, z) ≤ λ d(z,Gx2nk−1)+d(Fw,Sx2nk−1)

2
+ d(Gx2nk−1, z)

≤ λ d(z,Gx2nk−1)+d(z,Sx2nk−1)

2
+ 1

2
d(Fw, z) + d(Gx2nk−1, z)

⇒ d(Fw, z) ≤ (2 + λ)d(Gx2nk−1, z) + λd(z, Sx2nk−1)� (2 + λ) c
2(2+λ)

+ λ c
2λ

= c

In all the cases we obtain d(Fw, z) � c for each c ∈ intP , using Corollary 1.4 (3) it
follows that d(Fw, z) = θ or Fw = z. Thus, Fw = z = Tw, that is z is a coincidence
point of F, T .

Further, since Cauchy sequence {Tx0, Sx1, Tx2, Sx3, · · · , Sx2n−1, Tx2n, Sx2n−1, · · · }
converges to z ∈ C and z = Fw, z ∈ FC ∩C ⊆ SC, there exists v ∈ C such that Sv = z.
Again using (2.2), we get

d(Sv,Gv) = d(z,Gv) = d(Fw,Gv) ≤ λu,
where

u ∈ {d(Tw, Sv), d(Tw, Fw), d(Sv,Gv), d(Tw,Gv) + d(Fw, Sv)

2
}

= {θ, θ, d(Sv,Gv), d(z,Gv) + θ

2
} = {θ, d(Sv,Gv), d(Sv,Gv)

2
}.

Hence, we get the following cases:

d(Sv,Gv) ≤ λθ = θ, d(Sv,Gv) ≤ λd(Sv,Gv)
and

d(Sv,Gv) ≤ λ

2
d(Sv,Gv) ≤ λd(Sv,Gv).

Using Remark 1.3 and Corollary 1.4 (3), it follows that Sv = Gv, therefore, Sv = z =
Gv, that is z is a coincidence point of (G,S).

In case FC and GC are closed in X, then z ∈ FC∩C ⊆ SC or z ∈ GC∩C ⊆ TC. The
analogous arguments establish (IV) and (V). If we assume that there exists a subsequence
{Sx2nk+1} ⊆ Q0 with TC as well SC are closed in X, then noting that {Sx2nk+1} is a
Cauchy sequence in SC, foregoing arguments establish (IV) and (V).

Suppose now that (F, T ) and (G,S) are weakly compatible pairs, then

z = Fw = Tw ⇒ Fz = FTw = TFw = Tz

and
z = Gv = Sv ⇒ Gz = GSv = SGv = Sz.

Then, from (2.2),
d(Fz, z) = d(Fz,Gv) ≤ λu,

where
u ∈ {d(Sv, Tz), d(Tz, Fz), d(Sv,Gv), d(Tz,Gv) + d(Sv, Fz)

2
}

= {d(z, Fz), d(z, z), d(Fz, z) + d(z, Fz)

2
}

= {d(z, Fz), θ}.
Hence, we get the following cases:

d(Fz, z) ≤ λd(z, Fz)⇒ d(Fz, z) = 0,

d(Fz, z) ≤ λθ = θ ⇒ d(Fz, z) = 0.

Using Remark 1.3 and Corollary 1.1 (3), it follows that Fz = z. Thus, Fz = z = Tz
Similarly, we can prove Gz = z = Sz. Therefore z = Fz = Gz = Sz = Tz, that is, z

is a common fixed point of F,G, S and T .
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Uniqueness of the common fixed point follows easily from (2.2). �

2.4. Remark. 1. Theorem 2.2 in [18] is a special case of Theorem 2.3 with G = F =

f, T = S = g and λ ∈ (0,
√
2− 1).

2. Setting G = F = f and T = S = IX (the identity mapping on X) in Theorem 2.3,
we obtain the following result:

2.5. Corollary. Let (X, d) be a complete cone metric space, and C a nonempty closed
subset of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that f : C → X satisfying the condition

d(fx, fy) ≤ λu(x, y),

where

u(x, y) ∈ {d(x, y), d(x, fx), d(y, fy), d(x, fy) + d(y, fx)

2
}

for all x, y ∈ C, 0 < λ < 1 and f has the additional property that for each x ∈ ∂C, fx ∈
C. Then f has a unique fixed point.

2.6. Remark. The following definition is a special case of Definition 2.2 when (X, d) is a
metric space. But when (X, d) is a cone metric space, which is not a metric space, this is
not true. Indeed, there may exist x, y ∈ X such that the vectors d(Tx, Fx), d(Sy,Gy) and
d(Tx,Fx)+d(Sy,Gy)

2
are incomparable. For the same reason Theorems 2.3 and 2.8 (given

below) are incomparable.

2.7. Definition. Let (X, d) be a complete cone metric space and C be a nonempty
closed subset of X, and F,G, S, T : C → X. Denote, forx, y ∈ C,

(2.20) MF,G,S,T
2 = {d(Tx, Sy), d(Tx, Fx) + d(Sy,Gy)

2
,
d(Tx,Gy) + d(Fx, Sy)

2
}.

Then (F,G) is called a generalized (T, S)M2−contractive mapping of C into X if for some
λ ∈ (0, 1) there exists u(x, y) ∈MF,G,S,T

2 such that for all x, y ∈ C

(2.21) d(Fx,Gy) ≤ λu(x, y).

Our next result is the following.

2.8. Theorem. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that F,G, S, T : C → X are such that (F,G) is a generalized (T, S)M2−contractive
mappings pair of C into X, and

(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,
(II) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.
Then
(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.
Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a

unique common fixed point.

The proof of this theorem is very similar to the proof of Theorem 2.3 and it is omitted.
We now list some corollaries of Theorems 2.3 and 2.8.



555

2.9. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let F,G, S, T : C → X be such that

(2.22) d(Fx,Gy) ≤ λd(Tx, Sy),

for some λ ∈ (0, 1) and for all x, y ∈ C.
Suppose, further, that F,G, S, T and C satisfy the following conditions:
(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,
(II) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.
Then
(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.
Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a

unique common fixed point.

2.10. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let F,G, S, T : C → X be such that

(2.23) d(Fx,Gy) ≤ λ(d(Tx, Fx) + d(Sy,Gy)),

for some λ ∈ (0, 1/2) and for all x, y ∈ C.
Suppose, further, that F,G, S, T and C satisfy the following conditions:
(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,
(II) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.
Then
(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.
Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a

unique common fixed point.

2.11. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let F,G, S, T : C → X be such that

(2.24) d(Fx,Gy) ≤ λ(d(Tx,Gy) + d(Fx, Sy)),

for some λ ∈ (0, 1/2) and for all x, y ∈ C.
Suppose, further, that F,G, S, T and C satisfy the following conditions:
(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,
(II) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.
Then
(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.
Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a

unique common fixed point.
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2.12. Remark. Setting G = F = f and T = S = g (the identity mapping on X) in
Corollary 2.9-2.11, we obtain the following result:

2.13. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let f, g : C → X be such that

(2.25) d(fx, fy) ≤ λd(gx, gy),
for some λ ∈ (0, 1) and for all x, y ∈ C. Suppose, further, that f, g and C satisfy the
following conditions:

(I) ∂C ⊆ gC, fC ∩ C ⊆ gC,
(II) gx ∈ ∂C implies that fx ∈ C,
(III) gC is closed in X.
Then there exists a coincidence point z of f, g in C. Moreover, if (f, g) are weakly

compatible, then z is the unique common fixed point of f and g.

2.14. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let f, g : C → X be such that

(2.26) d(fx, fy) ≤ λ(d(fx, gx) + d(fy, gy)),

for some λ ∈ (0, 1/2) and for all x, y ∈ C. Suppose, further, that f, g and C satisfy the
following conditions:

(I) ∂C ⊆ gC, fC ∩ C ⊆ gC,
(II) gx ∈ ∂C implies that fx ∈ C,
(III) gC is closed in X.
Then there exists a coincidence point z of f, g in C. Moreover, if (f, g) are weakly

compatible, then z is the unique common fixed point of f and g.

2.15. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let f, g : C → X be such that

(2.27) d(fx, fy) ≤ λ(d(fx, gy) + d(fy, gx)),

for some λ ∈ (0, 1/2) and for all x, y ∈ C. Suppose, further, that f, g and C satisfy the
following conditions:

(I) ∂C ⊆ gC, fC ∩ C ⊆ gC,
(II) gx ∈ ∂C implies that fx ∈ C,
(III) gC is closed in X.
Then there exists a coincidence point z of f, g in C. Moreover, if (f, g) are weakly

compatible, then z is the unique common fixed point of f and g.

2.16. Remark. Corollaries 2.13-2.15 are the corresponding theorems of Abbas and
Jungck from [2] in the case that f, g are non-self mappings.
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