A NEW SUBCLASS OF HARMONIC MAPPINGS WITH POSITIVE REAL PART

Sibel Yalçın, Metin Öztürk* and Mümin Yamankaradeniz*

Received 11.01. 2002

Abstract

Complex-valued harmonic functions that are univalent and sense preserving in the unit disk U can be written in the form $f=h+\bar{g}$, where h and g are analytic in U. In this paper, we introduce a class $H P(\beta, \alpha)$, $(\alpha \geq 0,0 \leq \beta<1)$ of all functions $f=h+\bar{g}$ for which $\Re e\left\{\alpha z\left(h^{\prime}(z)+\right.\right.$ $\left.\left.g^{\prime}(z)\right)+h(z)+g(z)\right\}>\beta, f(0)=1$. We give sufficient coefficient conditions for normalized harmonic functions to be in $H P(\beta, \alpha)$. These conditions are also shown to be necessary when the coefficients are negative. This leads to distortion bounds and extreme points.

Key Words: Harmonic mappings, extreme points, distortion bounds.
Mathematics Subject Classification: 30 C 45

1. Introduction

A continuous function $f=u+i v$ is a complex-valued harmonic function in a domain $D \subset \mathbb{C}$ if both u and v are real harmonic in D. In any simply connected domain we can write $f=h+\bar{g}$, where h and g are analytic in D. See Clunie and Sheil-Small [1].

There has been interest [2] in studying the class P_{H} of all the functions of the form $f=h+\bar{g}$ that are harmonic in $U=\{z:|z|<1\}$ and such that for $z \in U, \Re e f(z)>0$, where

$$
\begin{equation*}
h(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n} \text { and } g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} \tag{1}
\end{equation*}
$$

are analytic in U.
The class $P_{H}(\beta)$ of all functions of the form (1) with $\Re e f(z)>\beta, 0 \leq \beta<1$ and $f(0)=1$ is studied in [4]. Obviously, $P_{H}(0)=P_{H}$ and $P_{H}(\beta) \subset P_{H}$.

[^0]We denote by $H P(\beta, \alpha)$ the class of all functions of the form (1) that satisfy the condition

$$
\begin{equation*}
\Re e\left\{\alpha z\left(h^{\prime}(z)+g^{\prime}(z)\right)+h(z)+g(z)\right\}>\beta, \alpha \geq 0,0 \leq \beta<1 \tag{2}
\end{equation*}
$$

Clearly, $H P(0,0)=P_{H}$ and $H P(\beta, 0)=P_{H}(\beta)$. Moreover, if $0 \leq \beta_{1} \leq \beta_{2}<1$, then $H P\left(\beta_{2}, \alpha\right) \subset H P\left(\beta_{1}, \alpha\right)$ and if $0 \leq \alpha_{1} \leq \alpha_{2}$, then $H P\left(\beta, \alpha_{2}\right) \subset H P\left(\beta, \alpha_{1}\right)$. We further denote by $H R(\beta, \alpha)$ the subclass of $H P(\beta, \alpha)$ such that the functions h and g in $f=h+\bar{g}$ are of the form

$$
\begin{equation*}
h(z)=1-\sum_{n=1}^{\infty} a_{n} z^{n} \text { and } g(z)=-\sum_{n=1}^{\infty} b_{n} z^{n} \tag{3}
\end{equation*}
$$

with $a_{n} \geq 0$ and $b_{n} \geq 0$ for all $n \geq 1$.

2. Main Result

2.1. Theorem : Let $f=h+\bar{g}$ be given by (1). Furthermore, let

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\alpha n+1}{1-\beta}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq 1 \tag{4}
\end{equation*}
$$

where $\alpha \geq 0$ and $0 \leq \beta<1$. Then $f \in H P(\beta, \alpha)$.
Proof. We show that the inequality (4) is a sufficient condition for f to be in $H P(\beta, \alpha)$. According to the condition (2) we only need to show that if (4) holds then

$$
\begin{align*}
\mid 1-\beta+\alpha z\left(h^{\prime}(z)\right. & \left.+g^{\prime}(z)\right)+h(z)+g(z) \mid \\
& -\left|1+\beta-\alpha z\left(h^{\prime}(z)+g^{\prime}(z)\right)-h(z)-g(z)\right|>0 \tag{5}
\end{align*}
$$

Substituting $h(z)$ and $g(z)$ in (5) yields by (4),

$$
\begin{aligned}
\mid 1 & -\beta+\alpha z\left(h^{\prime}(z)+g^{\prime}(z)\right)+h(z)+g(z) \mid \\
& -\left|1+\beta-\alpha z\left(h^{\prime}(z)+g^{\prime}(z)\right)-h(z)-g(z)\right|= \\
\quad & =\left|2-\beta+\sum_{n=1}^{\infty}(\alpha n+1)\left(a_{n}+b_{n}\right) z^{n}\right|-\left|\beta-\sum_{n=1}^{\infty}(\alpha n+1)\left(a_{n}+b_{n}\right) z^{n}\right| \\
& \geq 2(1-\beta)-2 \sum_{n=1}^{\infty}(\alpha n+1)\left(\left|a_{n}\right|+\left|b_{n}\right|\right)|z|^{n} \\
& >2(1-\beta)\left\{1-\sum_{n=1}^{\infty} \frac{\alpha n+1}{1-\beta}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)\right\} \geq 0 .
\end{aligned}
$$

The harmonic mappings

$$
\begin{equation*}
f(z)=1+\sum_{n=1}^{\infty} \frac{1-\beta}{\alpha n+1}\left(x_{n} z^{n}+\overline{y_{n} z^{n}}\right) \tag{6}
\end{equation*}
$$

where

$$
\sum_{n=1}^{\infty}\left(\left|x_{n}\right|+\left|y_{n}\right|\right)=1
$$

show that the coefficient bound given by (4) is sharp.
The functions of the form (6) are in $H P(\beta, \alpha)$ because

$$
\sum_{n=1}^{\infty} \frac{\alpha n+1}{1-\beta}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)=\sum_{n=1}^{\infty}\left(\left|x_{n}\right|+\left|y_{n}\right|\right)=1
$$

The restriction imposed in Theorem 2.1 on the moduli of the coefficients of $f=$ $h+\bar{g}$ enables us to conclude for arbitrary rotation of the coefficients of f that the resulting functions would still be harmonic and $f \in H P(\beta, \alpha)$. Our next theorem establishes that such coefficient bounds cannot be improved.
2.2. Theorem : Let $f=h+\bar{g}$ be given by (3). Then $f \in H R(\beta, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\alpha n+1}{1-\beta}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq 1 \tag{7}
\end{equation*}
$$

where $\alpha \geq 0$ and $0 \leq \beta<1$.
Proof. The if part follows from Theorem 2.1 upon nothing that if $f=h+\bar{g} \in$ $H P(\beta, \alpha)$ are of the form (3) then $f \in H R(\beta, \alpha)$.

Suppose that $f \in H R(\beta, \alpha)$. Then we find from (2) that

$$
\Re e\left\{1-\sum_{n=1}^{\infty}(\alpha n+1)\left(a_{n}+b_{n}\right) z^{n}\right\}>\beta, z \in U, \alpha \geq 0,0 \leq \beta<1
$$

If we choose z to be real and let $z \rightarrow 1^{-}$, we get

$$
1-\sum_{n=1}^{\infty}(\alpha n+1)\left(a_{n}+b_{n}\right) \geq \beta
$$

or equivalently,

$$
\sum_{n=1}^{\infty}(\alpha n+1)\left(a_{n}+b_{n}\right) \leq 1-\beta,
$$

which is precisely the assertion (7) of Theorem 2.2.
2.3. Theorem : If $f \in H R(\beta, \alpha)$, then

$$
|f(z)| \leq 1+\frac{1-\beta}{1+\alpha} r, \quad|z|<1
$$

and

$$
|f(z)| \geq 1-\frac{1-\beta}{1+\alpha} r, \quad|z|<1
$$

Proof. Let $f \in H R(\beta, \alpha)$. Taking the absolute value of f we obtain

$$
\begin{aligned}
|f(z)| & \leq 1+\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)|z|^{n} \\
& \leq 1+\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right) r \\
& \leq 1+\frac{1-\beta}{1+\alpha} \sum_{n=1}^{\infty} \frac{\alpha n+1}{1-\beta}\left(a_{n}+b_{n}\right) r \\
& \leq 1+\frac{1-\beta}{1+\alpha} r
\end{aligned}
$$

and

$$
\begin{aligned}
|f(z)| & \geq 1-\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)|z|^{n} \\
& \geq 1-\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right) r \\
& \geq 1-\frac{1-\beta}{1+\alpha} \sum_{n=1}^{\infty} \frac{\alpha n+1}{1-\beta}\left(a_{n}+b_{n}\right) r \\
& \geq 1-\frac{1-\beta}{1+\alpha} r .
\end{aligned}
$$

The bounds given in Theorem 2.3 for the functions $f=h+\bar{g}$ of the form (3) also hold for functions of the form (1) if the coefficient condition (4) is satisfied. The functions

$$
f(z)=1-\frac{1-\beta}{1+\alpha} z \quad \text { and } \quad f(z)=1-\frac{1-\beta}{1+\alpha} \bar{z}
$$

for $0 \leq \beta<1$ and $\alpha \geq 0$ show that the bounds given in Theorem 2.3 are sharp.
The following covering result follows from the second inequality in Theorem 2.3.
2.4. Corollary. If $f \in H R(\beta, \alpha)$, then

$$
\left\{w:|w|<\frac{\alpha+\beta}{1+\alpha}\right\} \subset f(U)
$$

As $H R(\beta, \alpha)$ is a convex family, $H R(\beta, \alpha)$ has a non-empty set of extreme points.
2.5. Theorem : Set

$$
h_{n}(z)=1-\frac{1-\beta}{\alpha n+1} z^{n} \text { and } g_{n}(z)=1-\frac{1-\beta}{\alpha n+1} \bar{z}^{n}, \text { for } n=1,2, \ldots
$$

Then $f \in H R(\beta, \alpha)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty}\left(\lambda_{n} h_{n}+\gamma_{n} g_{n}\right) \tag{8}
\end{equation*}
$$

where $\lambda_{n} \geq 0, \gamma_{n} \geq 0$ and $\sum_{n=1}^{\infty}\left(\lambda_{n}+\gamma_{n}\right)=1$.
In particular, the extreme points of $H R(\beta, \alpha)$ are $\left\{h_{n}\right\}$ and $\left\{g_{n}\right\}$.
Proof. For functions f of the form (8) we have

$$
f(z)=\sum_{n=1}^{\infty}\left(\lambda_{n} h_{n}+\gamma_{n} g_{n}\right)=1-\sum_{n=1}^{\infty} \frac{1-\beta}{\alpha n+1}\left(\lambda_{n} z^{n}+\gamma_{n} \bar{z}^{n}\right) .
$$

Then

$$
\sum_{n=1}^{\infty} \frac{\alpha n+1}{1-\beta}\left[\frac{1-\beta}{\alpha n+1}\left(\lambda_{n}+\gamma_{n}\right)\right]=\sum_{n=1}^{\infty}\left(\lambda_{n}+\gamma_{n}\right)=1
$$

and so $f \in H R(\beta, \alpha)$.
Conversely, suppose that $f \in H R(\beta, \alpha)$. Set

$$
\lambda_{n}=\frac{\alpha n+1}{1-\beta} a_{n} \text { and } \gamma_{n}=\frac{\alpha n+1}{1-\beta} b_{n}, \text { for } n=1,2, \ldots
$$

Then by Theorem 2.2, $0 \leq \lambda_{n} \leq 1$ and $0 \leq \gamma_{n} \leq 1,(n=1,2, \ldots)$. Consequently, we obtain

$$
f(z)=\sum_{n=1}^{\infty}\left(\lambda_{n} h_{n}+\gamma_{n} g_{n}\right)
$$

as required.
Following Ruscheweyh [3], we call the set

$$
\begin{aligned}
& N_{\delta}(f)=\left\{F: F(z)=1-\sum_{n=1}^{\infty}\left(\left|A_{n}\right| z^{n}+\left|B_{n}\right| \bar{z}^{n}\right)\right. \text { and } \\
&\left.\sum_{n=1}^{\infty} n\left(\left|a_{n}-A_{n}\right|+\left|b_{n}-B_{n}\right|\right) \leq \delta\right\} .
\end{aligned}
$$

the δ-neighborhood of $f \in P_{H}$. In particular, for the constant function $I(z)=1$, we immediately have

$$
N_{\delta}(I)=\left\{f: f(z)=1-\sum_{n=1}^{\infty}\left(\left|a_{n}\right| z^{n}+\left|b_{n}\right| \bar{z}^{n}\right) \text { and } \sum_{n=1}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq \delta\right\} .
$$

2.6. Theorem : Let $\delta=(1-\beta) / \alpha$. Then $H R(\beta, \alpha) \subset N_{\delta}(I)$.

Proof. Let f belong to $H R(\beta, \alpha)$. We have

$$
\begin{aligned}
\sum_{n=1}^{\infty} n\left(a_{n}+b_{n}\right) & =\frac{1}{\alpha} \sum_{n=1}^{\infty} \alpha n\left(a_{n}+b_{n}\right) \\
& \leq \frac{1}{\alpha} \sum_{n=1}^{\infty}(\alpha n+1)\left(a_{n}+b_{n}\right) \\
& \leq \frac{1}{\alpha}(1-\beta)=\delta
\end{aligned}
$$

Hence $f(z) \in N_{\delta}(I)$.

References

[1] Clunie, J. and Sheil-Small, T. Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Series A.Ǐ. Math. 9, 3-25, 1984.
[2] Jakubowski, Z. J., Majchrzak, W. and Skalska, K. Harmonic Mappings with a Positive Real Part, Materialy XIV Konferencjiz Teorii Zagadnien Ekstremalnych, Lodz, 17-24, 1993.
[3] Ruscheweyh, St. Neighborhoods of Univalent Functions, Proc. Amer. Math. Soc. 81, 521-527, 1981.
[4] Yalçın, S., Öztürk, M. and Yamankaradeniz, M. On Some Subclasses of Harmonic Functions, Kluwer Acad. Publ., Mathematics and Its Applications, Functional Equations and Inequalities 518, 325-331, 2000.

[^0]: *Uludağ University, Faculty of Science, Department of Mathematics, Bursa, Turkey.

