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Abstract

Bayesian networks are used to illustrate how the probability of hav-
ing a disease can be updated given the results from clinical tests. The
problem of diagnosis, that is of determining whether a certain disease
is present, D, or absent, D′, based on the result of a medical test, is
discussed. Using statistical methods for medical diagnosis, informa-
tion about the disease and symptoms are collected and the databases
are used to diagnose new patients. How can we evaluate the diagnos-
tic probability represented by Pr(D \ evidence), where evidence is the
result of a clinical test or tests on a new patient? The object of this ar-
ticle is to answer this question. Using the HUGIN software, diagnostic
probabilities are analyzed using the Bayesian approach.
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1. Introduction

Bayesian networks were introduced in the 1980’s as a formalism for representing and
reasoning with models of problems involving uncertainty, adopting probability theory as
a basic framework [12]. Over the last decade, the Bayesian network has become a popular
representation for encoding uncertain expert knowledge in expert systems [7]. The field
of Bayesian networks has grown enormously over the last few years, with theoretical and
computational developments in many areas. Bayesian networks are also known as belief
networks, causal probabilistic networks, causal nets, graphical probability networks, and
probabilistic influence diagrams.

Bayesian networks have proved useful in practical applications, such as medical diag-
nosis and diagnostic systems. The probability based expert systems for medical diagnosis
that emerged during the 60’s and 70’s could be characterized by the following points: The
sets of possible diseases a system could diagnose were mutually exclusive and collectively
exhaustive, the evidence was assumed conditionally independent given any hypothesis,
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and only one disease was assumed to exist in any patient. These assumptions were
made in order to keep to a manageable size the problem of acquiring and calculating
probabilities [10].

A Bayesian network is used to model a domain containing uncertainty in some man-
ner. It is a graphical model for probabilistic relationships among a set of variables and
is composed of directed acyclic graphs (DAGs) in which the nodes represent the ran-
dom variables of interest, and the links represent informational or causal dependencies
among the variables [16]. Here, each node contains the states of the random variable
and it represents a conditional probability table. The conditional probability table of a
node contains probabilities of the node being in a specific state given the states of its
parents [2, 5, 9, 11, 13, 15, 20, 21]. Furthermore, edges reflect cause-effect relations within
the domain. These effects are normally not completely deterministic (e.g. disease →
symptom). The strength of an effect is modelled as a probability.

Bayesian networks help us answer questions such as: What is the probability that a
random variable will be in a given state if we have observed the values of some other
random variables. They can also suggest what could be the best choice for acquiring new
evidence. Conditional probabilities are important for building Bayesian networks. But
Bayesian networks are also built to facilitate the calculation of conditional probabilities,
namely the conditional probabilities for variables of interest given the data (also called
evidence) at hand [5].

The quantities of interest in a medical diagnostic procedure are the probabilities of
having or not having a disease, i.e. the diagnostic probabilities [17, 18]. These quantities
may change their values according to the diagnostic value of the observed evidence.
Evidence is produced by responses (called indicants) to clinical questions (tests, signs
or symptoms). The data structure is complicated by a number of factors. Studies of
acquisition for this problem occur in the literature [6, 12].

The implementation of a Bayesian network is an excellent approach to creating a
medical diagnostic system that realistically models the multiple symptoms and indicators
(rather than just one particular test) that affect the conditional probability that a person
has a particular disease which may be causing the symptoms and positive test results.
Because each node in a Bayesian network can have multiple parent and child nodes,
and thus multiple ancestor and descendant nodes, evaluating Bayesian networks is more
complex than performing a single calculation with Bayes’ theorem.

Inference in a Bayesian network means computing the conditional probability for some
variables, given information (evidence) concerning other variables. This is easy when all
available evidence is for variables that are ancestors of the variable(s) of interest. But
when evidence is available on a descendant of the variable(s) of interest, we have to
perform inference against the direction of the edges. To this end, we employ Bayes’
Theorem:

Pr(A\B) =
Pr(B\A) Pr(A)

Pr(B)
.

2. The HUGIN System

During the early stages of the development of probabilistic expert system, several
obstacles were encountered due to difficulties in defining the joint probability distribution
of the variables. With the introduction of probabilistic network models, these obstacles
have largely been overcome, and probabilistic expert systems have made a spectacular
comeback during the last two decades or so. These network models, which include Markov
and Bayesian networks, are based on a graphical representation of the relationships among
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the variables. This representation leads to efficient propagation algorithms that are
used to draw conclusions. An Example of such an expert system shell is the HUGIN
expert system [4]. The HUGIN system is a tool enabling the construction of model-based
decision support systems in domains characterized by inherent uncertainty. The models
supported are DAGs and their extension, influence diagrams. The HUGIN system allows
us to define both discrete nodes and to some extent continuous nodes in our models [8].
The HUGIN system can be used to construct models as components in an application in
the area of decision support and expert systems. When we have constructed a network,
we can use it for entering evidence in some of the nodes where the state is known, and
then retrieve the new probabilities corresponding to this evidence calculated in other
nodes.

In recent years, diagnostic assistants have been built around Bayesian networks. These
networks are a form of graphical probabilistic model that explicates independencies be-
tween system components and diagnostic observations in a directed graph. The structure
of the graph allows the joint probability distribution over the system components and
diagnostic observations to be expressed in a compact form [19]. The use of such a model
along with graph-theoretic algorithms for probabilistic inference makes it possible to
compute the probability of a component defect given the outcomes of diagnostic observa-
tions. There are several commercial and research tools designed for BN model authoring
and testing. Among the most popular of these tools is the HUGIN package.

After constructing a Bayesian network that models, as in the example presented in
the figure, the states of affairs and their probabilistic causal relationships, one would
want to be able to determine, given observed values for any number of nodes in the
network, the conditional probabilities of the remaining, unknown nodes. The utility of
Bayesian networks lies in being able to make this calculation, which is called evaluating

or solving the network. An algorithm for evaluating Bayesian networks can determine
probabilities of causes given observed effects (e.g., the probability that a dam has failed
given the observation that there is flooding) or probabilities of effects given observed
causes (e.g., the probability that there is flooding given a low barometer reading). In order
to maximize efficiency and minimize execution time, algorithms that give exact solutions
of Bayesian networks must first simplify the network itself before proceeding with the
evaluation process. There is no one algorithm for obtaining exact solutions that is efficient
for all Bayesian networks; the choice of an exact algorithm depends on the topological
characteristics of the particular Bayesian network that is to be evaluated. There are,
however, several approximation schemes which yield reasonably accurate solutions and
require less execution time than the exact algorithms. HUGIN is a software package that
implements algorithms for evaluating Bayesian networks [3]. Algorithms that achieve
exact solutions are derived from Bayes’s theorem. Bayes’s theorem can be used to make
a simple calculation of the conditional probability of a hypothesis given its evidence.

3. A Menopause Example

In this example, the patients who applied to Gazi University Gynecology and Ob-
stetrics Menopause Clinic during the period August–October 1998 are studied [1]. A
patient consults with a specialist who is going to start a search to discover whether the
patient has the postmenopausal condition, D, or its absence, D′. The physician observes
an indicant (E+= normal bone density or E−= abnormal bone density), which is new
evidence associated with the patient. In a search for information about this new indicant
of the postmenopausal condition D, doctors in a certain clinic select 100 patients known
to be in postmenopause and another 100 patients known to be in premenopause. Here
D is the event that a patient has the postmenopausal condition, while D′ is the event
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that a patient has the premenopausal condition D′. To each patient they applied a bone
mineral densitometry (BMD) test, obtaining a response E+ for evidence of normal bone
density, or E− for evidence of abnormal bone density [14, 17, 18].

In constructing the graph for the Bayesian network, human experts mostly use “causal”
relationships between variables as a guideline. The situation can be modelled by the
Bayesian network in Figure 1. In Figure 1, we have the graphical representation of the
Bayesian network. However, this is only what we call the qualitative representation of the
Bayesian network. We need to specify the quantitative representation. The quantitative
representation of a Bayesian network is the set of conditional probability tables of the
nodes.

Figure 1. Bayesian network for the menopause example.
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The Bayesian network consist of four nodes: x, y, t and δ which can all be in one of two
states. Node x can be is the state corresponding to “normal bone density” or “abnormal
bone density” as a result of a BMD test among all former patients with D and node y

can be in the state corresponding to “normal bone density” or “abnormal bone density”
as a result of a BMD test among all former patients with D′. The state of a new patient
is

δ =

{

1 if the patient has postmenopausal condition D

0 if the patient has the premenopausal condition D′.

The result of the test for a new patient is

t =

{

1 if the BMD test gives normal bone density, i.e. E+

0 if the BMD test gives abnormal bone density, i.e. E−.

Here, the conditional probabilities are Pr(x),Pr(y),Pr(t\x, y, δ) and Pr(δ \x, y). Note
that all four tables show the probability of a node being in a specific state depending on
the states of its parent nodes, but x and y do not have any parent nodes.

The Bayesian network diagram that permits us to evaluate the diagnostic probabilities
for all possible values of δ, x, y is presented in Figure 1.

The diagnostic probabilities, the object of the analysis, are Pr{δ = 1\t = 1} and
Pr{δ = 1\t = 2}. If a new woman patient’s BMD test response is known to be “normal
bone density” or “abnormal bone density”, what is the probability that this woman is in
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a postmenopausal or premenopausal condition? The answer to our problem is given by
the probability functions attached to node t.

In this example, the model is defined using binary variables. In the following fig-
ures, empty boxes show observable variables whereas the values shown by full boxes are
probability values. Also, the value “100” in the figures indicate that the selected level
of variable is known. In the figures “1” indicates “normal bone density”, whereas “2”
indicates “abnormal bone density”.

The menopause Bayesian network has been constructed using the HUGIN software.
Here the probability that δ = 1 is the prior probability. This prior probability was taken
as 0.15 using expert belief. In other words, Pr(δ = 1) = 0.15.

In Figure 2, the model is shown with initial probabilities. For example, the “nor-
mal bone density” and “abnormal bone density” response probabilities for 100 post-
menopausal women were 0.4750 and 0.5250, respectively. In other words, Pr(x = 1) =
0.4750 and Pr(x = 2) = 0.5250. On the other hand the “normal bone density” and
“abnormal bone density” response probabilities for 100 premenopausal women were 0.40
and 0.60 respectively. In other words, Pr(y = 1) = 0.40 and Pr(y = 2) = 0.60. However,
the probability of a new woman patient being postmenopausal is 0.3967, the probability
of a woman not being postmenopausal is 0.6033. In other words, Pr(δ = 1) = 0.3967 and
Pr(δ = 2) = 0.6033. The “normal bone density” and “abnormal bone density” response
probability to the BMD test for a new patient are 0.4238 and 0.5762 respectively. In
other words, Pr(t = 1) = 0.4238 and Pr(t = 2) = 0.5762.

Figure 2. Marginal Probabilities
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Now, one might want to know the probability of any other combination of states under the
assumption that the evidence entered holds. Here, we want to calculate the probability
of any other combination of states given the evidence provided by the result of the test
for the new patient.

If the result of the test for the new patient is “normal bone density”, then the evidence
is entered and a sum-propagation is performed. In other words, this gives probabilities
Pr(δ = “1” \ t = “1”), Pr(δ = “2” \ t = “1‘”). The result is shown in Figure 3. For
example, if the response to the BMD test for new for woman patient is “normal bone
density”, the ”normal bone density” and ”abnormal bone density” response probabilities
are 0.5743 and 0.4257 for the 100 postmenopausal women respectively. In other words,
Pr(x = “1” \ t = “1”) = 0.5743 and Pr(x = “2” \ t = “1”) = 0.4257. Similarly if the
new woman patient’s BMD test response is known as to be “normal bone density”, the
“normal bone density” and “abnormal bone density” response probabilities are 0.6534
and 0.3466 for the 100 premenopausal women respectively. In other words, Pr(y =
“1” \ t = “1”) = 0.6534 and Pr(x = “2” \ t = “1”) = 0.3466. Conversely if the new
woman patient’s BMD test result is known to be negative, the probability of being
postmenopausal or premenopausal for this patient are 0.7309 and 0.2691 respectively. In
other words, Pr(δ = “1” \ t = “1”) = 0.2691 and Pr(δ = “2” \ t = “1”) = 0.7309.

Figure 3. The conditional probabilities of other nodes if the new patient is

known to have “normal bone density” as a result of the BMD test.
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If the result of the test for the new patient is “abnormal bone density”, then the evidence
is entered and sum-propagation is performed. The result is shown in Figure 4. In other
words, this produces the probabilities Pr(δ = “1” \ t = “2”) and Pr(δ = “2” \ t = “2”).
The result is shown in Figure 4.
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Figure 4. The conditional probabilities of other nodes if the new patient is

known to have “abnormal bone density” as a result of the BMD test.
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For example, if a new woman patient’s BMD test response is known to be “abnormal bone
density”, the ”normal bone density” and “abnormal bone density” response probabilities
are 0.4097 and 0.5903 for the 100 postmenopausal women respectively. In other words,
Pr(x = “1” \ t = “2”) = 0.4097 and Pr(x = “2” \ t = “2”) = 0.5903. Conversely if a
new woman patient’s BMD test response is known to be “abnormal bone density”, the
probability of being postmenopausal or premenopausal for this patient are 0.4756 and
0.5254 respectively. In other words, Pr(δ = “1” \ t = “1”) = 0.6846 and Pr(δ = “2” \ t =
“1”) = 0.3154.

4. Conclusion

Bayesian networks are becoming an increasingly important area in applications to
medical diagnosis. Here, the cause-effect relation among variables is explained and thus
the relations between the variables are modelled.

The analysis of this medical problem has several important applications, including
updating the probabilities for data in expert systems. In this study, depending on the
results of a clinical test, the probability of a new woman patient being in menopause or
not is examined. Also, the conditional probabilities of other nodes are obtained if the
new patient is known to have “normal bone density” or “abnormal bone density” as a
result of a BMD test.

In this application, the marginal probability of a new patient, who comes to the clinic,
being in menopause is 0.3967. If she is known to have “normal bone density”, an increase
is not observed in the probability of this woman being in menopause. But if she is known
to have “abnormal bone density”, an increase is observed in the probability of this woman
being in menopause.
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Osteoporosis is one at the diseases causing bone resorption after the menopause. But
it can be seen at an earlier age in young persons infected by the bone disease, and other
metabolic disfunctions beside osteoporosis and the menopause. Osteoporosis may not be
seen in every women during the menopause. As a conclusion of this study, menopause
probability was seen to be higher than normal for those who were diagnosed as having
bone resorption by the BMD test. However, it is not possible to correlate bone resorption
with the menopause alone. Bone resorption can result from pregnancy, smoking, using
alcohol, malnutrition and some hormonal and genetic disturbances. In this study, by
using the HUGIN software, the correlation between the menopause and osteoporosis was
evaluated by neglecting all other parameters.
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