
Hacettepe Journal of Mathematics and Statistics
Volume 31 (2002), 19–24

A RELATED FIXED POINT THEOREM FOR

THREE METRIC SPACES

Sarika Jain∗ and Brian Fisher †

Received 01. 02. 2002

Abstract

A related fixed point theorem for set valued mappings on three complete
metric spaces is obtained which generalizes a result of [4].
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1. Introduction and Preliminaries

Let (X, d) be a complete metric space and let B(X) be the set of all non-empty
subsets of X. The function δ(A,B) with A and B in B(X) is defined by

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.

If A consists of a single point a, we write δ(A,B) = δ(a,B) and if B also consists
of a single point b, we write δ(A,B) = δ(a, b) = d(a, b). It follows immediately
from the definition that

δ(A,B) = δ(B,A) ≥ 0,

δ(A,B) ≤ δ(A,C) + δ(C,B)

for all A,B,C in B(X). For some preliminary definitions such as the convergence
of a sequence of sets in B(X) and the continuity of a mapping F of X into B(X),
see [1] or [2]. We need the following lemma in the sequel.

1.1. Lemma. (Fisher [1]). If {An} and {Bn} are sequences of bounded subsets

of a complete metric space (X, d) which converge to the bounded subsets A and

B respectively, then the sequence {δ(An, Bn)} converges to δ(A,B).
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Generalizing a result of Fisher [3] from two metric spaces to three metric spaces,
the following related fixed point theorem was proved in [4].

1.2. Theorem : Let (X, d1), (Y, d2) and (Z, d3) be complete metric spaces. If T
is a continuous mapping of X into Y , S is a continuous mapping of Y into Z and

R is a mapping of Z into X satisfying the inequalities

d1(RSTx,RSTx′) ≤ cmax{d1(x, x
′), d1(x,RSTx), d1(x

′, RSTx′),

d2(Tx, Tx′), d3(STx, STx′)}

d2(TRSy, TRSy′) ≤ cmax{d2(y, y
′), d2(y, TRSy), d2(y

′, TRSy′),

d3(Sy, Sy′), d1(RSy,RSy′)}

d3(STRz, STRz′) ≤ cmax{d3(z, z
′), d3(z, STRz), d3(z

′, STRz′),

d1(Rz,Rz′), d2(TRz, TRz′)}

for all x, x′ in X, y, y′ in Y and z, z′ in Z, where 0 ≤ c < 1, then RST has a

unique fixed point u in X, TRS has a unique fixed point v in Y and STR has a

unique fixed point w in Z. Further, Tu = v,, Sv = w and Rw = u.

We now generalize Theorem 1.2 for set valued mappings.

2. Main Result

2.1. Theorem : Let (X, d1), (Y, d2) and (Z, d3) be complete metric spaces. If F
is a continuous mapping of X into B(Y ), G is a continuous mapping of Y into

B(Z) and H is a mapping of Z into B(X) satisfying the inequalities

δ1(HGFx,HGFx′) ≤ cmax{d1(x, x
′), δ1(x,HGFx), δ1(x

′, HGFx′),

δ2(Fx, Fx′), δ3(GFx,GFx′)} (1)

δ2(FHGy, FHGy′) ≤ cmax{d2(y, y
′), δ2(y, FHGy), δ2(y

′, FHGy′),

δ3(Gy,Gy′), δ1(HGy,HGy′)} (2)

δ3(GFHz,GFHz′) ≤ cmax{d3(z, z
′), δ3(z,GFHz), δ3(z

′, GFHz′),

δ1(Hz,Hz′), δ2(FHz, FHz′)} (3)

for all x, x′ in X, y, y′ in Y and z, z′ in Z, where 0 ≤ c < 1, then HGF has a

unique fixed point u in X, FHG has a unique fixed point v in Y and GFH has a

unique fixed point w in Z. Further, Fu = {v}, Gv = {w} and Hw = {u}.

Proof. Let x = x1 be an arbitrary point in X. We define the sequences {xn} in X,
{yn} in Y and {zn} in Z inductively as follows. Choose a point y1 in Fx1, then a
point z1 in Gy1 and then a point x2 in Hz1. In general, having chosen xn in X, yn

in Y and zn in Z, choose a point xn+1 in Hzn, then a point yn+1 in Fxn+1 and
then a point zn+1 in Gyn+1 for n = 1, 2, . . . . Applying inequality (1), we get

d1(xn+1, xn+2) ≤ δ1(HGFxn, HGFxn+1)

≤ cmax{d1(xn, xn+1), δ1(xn, HGFxn),

δ1(xn+1, HGFxn+1), δ2(Fxn, Fxn+1), δ3(GFxn, GFxn+1)}
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≤ cmax{δ1(HGFxn−1, HGFxn), δ1(HGFxn, HGFxn+1),

δ2(FHGyn−1, FHGyn), δ3(GFHzn−1, GFHzn)}

≤ cmax{δ1(HGFxn−1, HGFxn), δ2(FHGyn−1, FHGyn),

δ3(GFHzn−1, GFHzn)}. (4)

Using inequality (2), we get

d2(yn+1, yn+2) ≤ δ2(FHGyn, FHGyn+1)

≤ cmax{d2(yn, yn+1), δ2(yn, FHGyn), δ2(yn+1, FHGyn+1),

δ3(Gyn, Gyn+1), δ1(HGyn, HGyn+1)}

≤ cmax{δ2(FHGyn−1, FHGyn), δ2(FHGyn, FHGyn+1),

δ3(GFHzn−1, GFHzn), δ1(HGFxn, HGFxn+1)}

≤ cmax{δ2(FHGyn−1, FHGyn), δ3(GFHzn−1, GFHzn),

δ1(HGFxn, HGFxn+1)}

≤ cmax{δ2(FHGyn−1, FHGyn), δ3(GFHzn−1, GFHzn),

δ1(HGFxn−1, HGFxn)} (5)

on using inequality (4). Further, on using inequality (3), we have

d3(zn+1, zn+2) ≤ δ3(GFHzn, GFHzn+1)

≤ cmax{d3(zn, zn+1), δ3(zn, GFHzn), δ3(zn+1, GFHzn+1),

δ1(Hzn, Hzn+1), δ2(FHzn, FHzn+1)}

≤ cmax{δ3(GFHzn−1, GFHzn), δ3(GFHzn, GFHzn+1),

δ1(HGFxn, HGFxn+1), δ2(FHGyn, FHGyn+1)}

≤ cmax{δ3(GFHzn−1, GFHzn), δ1(HGFxn−1, HGFxn),

δ2(FHGyn−1, FHGyn)} (6)

on using inequalities (4) and (5). It now follows easily by induction on using
inequalities (4), (5) and (6) that

d1(xn+1, xn+2) ≤ cn−1 max{δ1(HGFx1, HGFx2), δ2(FHGy1, FHGy2),

δ3(GFHz1, GFHz2)}

d2(yn+1, yn+2) ≤ cn−1 max{δ1(HGFx1, HGFx2), δ2(FHGy1, FHGy2),

δ3(GFHz1, GFHz2)}

d3(zn+1, zn+2) ≤ cn−1 max{δ1(HGFx1, HGFx2), δ2(FHGy1, FHGy2),

δ3(GFHz1, GFHz2)}.

Then, for r = 1, 2, . . . and arbitrary ε > 0, we have

d1(xn+1, xn+r+1) ≤ δ1(HGFxn, HGFxn+r)

≤ δ1(HGFxn, HGFxn+1) + · · ·+ δ1(HGFxn+r−1, HGFxn+r)

≤ (cn−1 + cn + . . .+ cn+r−2)×

max{δ1(HGFx1, HGFx2), δ2(FHGy1, FHGy2), δ3(GFHz1, GFHz2)}

< ε (7)
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for n greater than some N , since c < 1. The sequence {xn} is therefore a Cauchy
sequence in the complete metric space X and so has a limit u in X. Similarly, the
sequences {yn} and {zn} are also Cauchy sequences with limits v and w in the
complete metric spaces Y and Z respectively. Further, inequality (7) gives

δ1(u,HGFxn) ≤ d1(u, xm+1) + δ1(xm+1, HGFxn)

≤ d1(u, xm+1) + δ1(HGFxm, HGFxn)

≤ d1(u, xm+1) + ε

for m,n ≥ N. Letting m tend to infinity, it follows that

δ1(u,HGFxn) ≤ ε,

for n > N and so

lim
n→∞

HGFxn = {u} = lim
n→∞

HGyn, (8)

since ε is arbitrary. Similarly,

lim
n→∞

FHGyn = {v} = lim
n→∞

FHzn, (9)

lim
n→∞

GFHzn = {w} = lim
n→∞

GFxn. (10)

Using the continuity of F and G, we obtain

lim
n→∞

yn = lim
n→∞

Fxn = Fu = {v}, (11)

lim
n→∞

zn = lim
n→∞

Gyn = Gv = {w} (12)

and then we see that

GFu = {w}. (13)

We now show that u is a fixed point of HGF . Applying inequality (1), we have

δ1(HGFu, xn) ≤ δ1(HGFu,HGFxn−1)

≤ cmax{d1(u, xn−1), δ1(u,HGFu), δ1(xn−1, HGFxn−1),

δ2(Fu, Fxn−1), δ3(GFu,GFxn−1)}.

Since F and G are continuous, it follows on letting n tend to infinity and using
equation (8) that

δ1(HGFu, u) ≤ cδ1(u,HGFu).

Since c < 1, we have HGFu = {u} and so u is a fixed point of HGF. We now
have

HGFu = Hw = {u}

on using equation (13) and then

FHGv = FHGFu = Fu = {v},

GFHw = GFHGv = Gv = {w}
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on using equations (11) and (12). Hence, v and w are fixed points of FHG and
GFH respectively. Further, we see that

HGv = {u}, FHw = {v}.

To prove the uniqueness of u, suppose that HGF has a second fixed point u′.
Then, using inequality (1), we have

δ1(u
′, HGFu′) ≤ δ1(HGFu′, HGFu′)

≤ cmax{d1(u
′, u′), δ1(u

′, HGFu′), δ2(Fu′, Fu′),

δ3(GFu′, GFu′)}

≤ cmax{δ2(Fu′, Fu′), δ3(GFu′, GFu′)}. (14)

Next, using inequality (2), we have

δ2(Fu′, Fu′) ≤ δ2(FHGFu′, FHGFu′)

≤ cmax{d2(Fu′, Fu′), δ2(Fu′, FHGFu′),

δ3(GFu′, GFu′), δ1(HGFu′, HGFu′)}

≤ cmax{δ3(GFu′, GFu′), δ1(HGFu′, HGFu′)} (15)

and using inequality (3), we have

δ3(GFu′, GFu′) ≤ δ3(GFHGFu′, GFHGFu′)

≤ cmax{d3(GFu′, GFu′), δ3(GFu′, GFHGFu′),

δ1(HGFu′, HGFu′), δ2(FHGFu′, FHGFu′)}

≤ cmax{δ1(HGFu′, HGFu′), δ2(FHGFu′, FHGFu′)}. (16)

It now follows easily from inequalities (15) and (16) that

δ2(FHGFu′, FHGFu′) ≤ cδ1(HGFu′, HGFu′) (17)

and then

δ3(GFu′, GFu′) ≤ cδ1(HGFu′, HGFu′). (18)

Using inequalities (14), (17) and (18), we now have

δ1(u
′, HGFu′) ≤ δ1(HGFu′, HGFu′) ≤ c2δ1(HGFu′, HFGu′)

and so HGFu′ is a singleton and HGFu′ = {u′}, since c < 1. It then follows from
inequality (18) that GFu′ is a singleton and from inequality (17) that Fu′ is a
singleton. Using inequality (1) again, we have

d1(u, u
′) = δ1(HGFu,HGFu′)

≤ cmax{d1(u, u
′), d1(u, u), d1(u

′, u′), d2(Fu, Fu′),

d3(GFu,GFu′)}

= cmax{d2(Fu, Fu′), d3(GFu,GFu′)}. (19)
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Next, using inequality (2), we have

d2(Fu, Fu′) = δ2(FHGFu, FHGFu′)

≤ cmax{d2(Fu, Fu′), d2(Fu, FHGFu), d2(Fu′, FHGFu′),

d3(GFu,GFu′), d1(HGFu,HGFu′)}

= cmax{d3(GFu,GFu′), d1(u, u
′)} (20)

and using inequality (3), we have

d3(GFu,GFu′) = d3(GFHGFu,GFHGFu′)

≤ cmax{d3(GFu,GFu′), d3(GFu,GFHGFu),

d3(GFu′, GFHGFu′), d1(HGFu,HGFu′),

d2(FHGFu, FHGFu′)}

= cmax{d1(u, u
′), d2(Fu, Fu′)}. (21)

It now follows from inequalities (19), (20) and (21) that d1(u, u
′) = 0, proving the

uniqueness of u. The uniqueness of v and w follow similarly.

2.2. Remark. If we let F be a single valued mapping T of X into Y , G be a
single valued mapping S of Y into Z and H be a single valued mapping R of Z

into X, we obtain Theorem 1.2.
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