A RELATED FIXED POINT THEOREM FOR THREE METRIC SPACES

Sarika Jain* and Brian Fisher ${ }^{\dagger}$

Received 01.02. 2002

Abstract

A related fixed point theorem for set valued mappings on three complete metric spaces is obtained which generalizes a result of [4].

Key Words: Complete metric space, common fixed point.
Mathematics Subject Classification: 00000

1. Introduction and Preliminaries

Let (X, d) be a complete metric space and let $B(X)$ be the set of all non-empty subsets of X. The function $\delta(A, B)$ with A and B in $B(X)$ is defined by

$$
\delta(A, B)=\sup \{d(a, b): a \in A, b \in B\} .
$$

If A consists of a single point a, we write $\delta(A, B)=\delta(a, B)$ and if B also consists of a single point b, we write $\delta(A, B)=\delta(a, b)=d(a, b)$. It follows immediately from the definition that

$$
\begin{aligned}
& \delta(A, B)=\delta(B, A) \geq 0, \\
& \delta(A, B) \leq \delta(A, C)+\delta(C, B)
\end{aligned}
$$

for all A, B, C in $B(X)$. For some preliminary definitions such as the convergence of a sequence of sets in $B(X)$ and the continuity of a mapping F of X into $B(X)$, see [1] or [2]. We need the following lemma in the sequel.
1.1. Lemma. (Fisher [1]). If $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are sequences of bounded subsets of a complete metric space (X, d) which converge to the bounded subsets A and B respectively, then the sequence $\left\{\delta\left(A_{n}, B_{n}\right)\right\}$ converges to $\delta(A, B)$.

[^0]Generalizing a result of Fisher [3] from two metric spaces to three metric spaces, the following related fixed point theorem was proved in [4].
1.2. Theorem: Let $\left(X, d_{1}\right),\left(Y, d_{2}\right)$ and $\left(Z, d_{3}\right)$ be complete metric spaces. If T is a continuous mapping of X into Y, S is a continuous mapping of Y into Z and R is a mapping of Z into X satisfying the inequalities

$$
\begin{array}{r}
d_{1}\left(R S T x, R S T x^{\prime}\right) \leq c \max \left\{d_{1}\left(x, x^{\prime}\right), d_{1}(x, R S T x), d_{1}\left(x^{\prime}, R S T x^{\prime}\right)\right. \\
\left.d_{2}\left(T x, T x^{\prime}\right), d_{3}\left(S T x, S T x^{\prime}\right)\right\} \\
d_{2}\left(T R S y, T R S y^{\prime}\right) \leq c \max \left\{d_{2}\left(y, y^{\prime}\right), d_{2}(y, T R S y), d_{2}\left(y^{\prime}, T R S y^{\prime}\right)\right. \\
\left.d_{3}\left(S y, S y^{\prime}\right), d_{1}\left(R S y, R S y^{\prime}\right)\right\} \\
d_{3}\left(S T R z, S T R z^{\prime}\right) \leq c \max \left\{d_{3}\left(z, z^{\prime}\right), d_{3}(z, S T R z), d_{3}\left(z^{\prime}, S T R z^{\prime}\right)\right. \\
\left.d_{1}\left(R z, R z^{\prime}\right), d_{2}\left(T R z, T R z^{\prime}\right)\right\}
\end{array}
$$

for all x, x^{\prime} in X, y, y^{\prime} in Y and z, z^{\prime} in Z, where $0 \leq c<1$, then $R S T$ has a unique fixed point u in $X, T R S$ has a unique fixed point v in Y and $S T R$ has a unique fixed point w in Z. Further, $T u=v, S v=w$ and $R w=u$.

We now generalize Theorem 1.2 for set valued mappings.

2. Main Result

2.1. Theorem: Let $\left(X, d_{1}\right),\left(Y, d_{2}\right)$ and $\left(Z, d_{3}\right)$ be complete metric spaces. If F is a continuous mapping of X into $B(Y), G$ is a continuous mapping of Y into $B(Z)$ and H is a mapping of Z into $B(X)$ satisfying the inequalities

$$
\begin{array}{r}
\delta_{1}\left(H G F x, H G F x^{\prime}\right) \leq c \max \left\{d_{1}\left(x, x^{\prime}\right), \delta_{1}(x, H G F x), \delta_{1}\left(x^{\prime}, H G F x^{\prime}\right)\right. \\
\left.\delta_{2}\left(F x, F x^{\prime}\right), \delta_{3}\left(G F x, G F x^{\prime}\right)\right\} \\
\delta_{2}\left(F H G y, F H G y^{\prime}\right) \leq c \max \left\{d_{2}\left(y, y^{\prime}\right), \delta_{2}(y, F H G y), \delta_{2}\left(y^{\prime}, F H G y^{\prime}\right)\right. \\
\left.\delta_{3}\left(G y, G y^{\prime}\right), \delta_{1}\left(H G y, H G y^{\prime}\right)\right\} \\
\delta_{3}\left(G F H z, G F H z^{\prime}\right) \leq c \max \left\{d_{3}\left(z, z^{\prime}\right), \delta_{3}(z, G F H z), \delta_{3}\left(z^{\prime}, G F H z^{\prime}\right)\right. \\
\left.\delta_{1}\left(H z, H z^{\prime}\right), \delta_{2}\left(F H z, F H z^{\prime}\right)\right\} \tag{3}
\end{array}
$$

for all x, x^{\prime} in X, y, y^{\prime} in Y and z, z^{\prime} in Z, where $0 \leq c<1$, then $H G F$ has a unique fixed point u in $X, F H G$ has a unique fixed point v in Y and $G F H$ has a unique fixed point w in Z. Further, $F u=\{v\}, G v=\{w\}$ and $H w=\{u\}$.

Proof. Let $x=x_{1}$ be an arbitrary point in X. We define the sequences $\left\{x_{n}\right\}$ in X, $\left\{y_{n}\right\}$ in Y and $\left\{z_{n}\right\}$ in Z inductively as follows. Choose a point y_{1} in $F x_{1}$, then a point z_{1} in $G y_{1}$ and then a point x_{2} in $H z_{1}$. In general, having chosen x_{n} in X, y_{n} in Y and z_{n} in Z, choose a point x_{n+1} in $H z_{n}$, then a point y_{n+1} in $F x_{n+1}$ and then a point z_{n+1} in $G y_{n+1}$ for $n=1,2, \ldots$. Applying inequality (1), we get

$$
\begin{aligned}
d_{1}\left(x_{n+1}, x_{n+2}\right) \leq & \delta_{1}\left(H G F x_{n}, H G F x_{n+1}\right) \\
\leq & c \max \left\{d_{1}\left(x_{n}, x_{n+1}\right), \delta_{1}\left(x_{n}, H G F x_{n}\right),\right. \\
& \left.\delta_{1}\left(x_{n+1}, H G F x_{n+1}\right), \delta_{2}\left(F x_{n}, F x_{n+1}\right), \delta_{3}\left(G F x_{n}, G F x_{n+1}\right)\right\}
\end{aligned}
$$

$$
\begin{array}{r}
\leq c \max \left\{\delta_{1}\left(H G F x_{n-1}, H G F x_{n}\right), \delta_{1}\left(H G F x_{n}, H G F x_{n+1}\right),\right. \\
\left.\delta_{2}\left(F H G y_{n-1}, F H G y_{n}\right), \delta_{3}\left(G F H z_{n-1}, G F H z_{n}\right)\right\} \\
\leq c \max \left\{\delta_{1}\left(H G F x_{n-1}, H G F x_{n}\right), \delta_{2}\left(F H G y_{n-1}, F H G y_{n}\right),\right. \\
\left.\delta_{3}\left(G F H z_{n-1}, G F H z_{n}\right)\right\} . \tag{4}
\end{array}
$$

Using inequality (2), we get

$$
\begin{align*}
& d_{2}\left(y_{n+1}, y_{n+2}\right) \leq \delta_{2}\left(F H G y_{n}, F H G y_{n+1}\right) \\
& \leq c \max \left\{d_{2}\left(y_{n}, y_{n+1}\right), \delta_{2}\left(y_{n}, F H G y_{n}\right), \delta_{2}\left(y_{n+1}, F H G y_{n+1}\right),\right. \\
&\left.\delta_{3}\left(G y_{n}, G y_{n+1}\right), \delta_{1}\left(H G y_{n}, H G y_{n+1}\right)\right\} \\
& \leq c \max \left\{\delta_{2}\left(F H G y_{n-1}, F H G y_{n}\right), \delta_{2}\left(F H G y_{n}, F H G y_{n+1}\right)\right. \\
&\left.\delta_{3}\left(G F H z_{n-1}, G F H z_{n}\right), \delta_{1}\left(H G F x_{n}, H G F x_{n+1}\right)\right\} \\
& \leq c \max \left\{\delta_{2}\left(F H G y_{n-1}, F H G y_{n}\right), \delta_{3}\left(G F H z_{n-1}, G F H z_{n}\right)\right. \\
&\left.\delta_{1}\left(H G F x_{n}, H G F x_{n+1}\right)\right\} \\
& \leq c \max \left\{\delta_{2}\left(F H G y_{n-1}, F H G y_{n}\right), \delta_{3}\left(G F H z_{n-1}, G F H z_{n}\right)\right. \\
&\left.\delta_{1}\left(H G F x_{n-1}, H G F x_{n}\right)\right\} \tag{5}
\end{align*}
$$

on using inequality (4). Further, on using inequality (3), we have

$$
\begin{align*}
& d_{3}\left(z_{n+1}, z_{n+2}\right) \leq \delta_{3}\left(G F H z_{n}, G F H z_{n+1}\right) \\
& \leq c \max \left\{d_{3}\left(z_{n}, z_{n+1}\right), \delta_{3}\left(z_{n}, G F H z_{n}\right), \delta_{3}\left(z_{n+1}, G F H z_{n+1}\right),\right. \\
&\left.\delta_{1}\left(H z_{n}, H z_{n+1}\right), \delta_{2}\left(F H z_{n}, F H z_{n+1}\right)\right\} \\
& \leq c \max \left\{\delta_{3}\left(G F H z_{n-1}, G F H z_{n}\right), \delta_{3}\left(G F H z_{n}, G F H z_{n+1}\right),\right. \\
&\left.\delta_{1}\left(H G F x_{n}, H G F x_{n+1}\right), \delta_{2}\left(F H G y_{n}, F H G y_{n+1}\right)\right\} \\
& \leq c \max \left\{\delta_{3}\left(G F H z_{n-1}, G F H z_{n}\right), \delta_{1}\left(H G F x_{n-1}, H G F x_{n}\right),\right. \\
&\left.\delta_{2}\left(F H G y_{n-1}, F H G y_{n}\right)\right\} \tag{6}
\end{align*}
$$

on using inequalities (4) and (5). It now follows easily by induction on using inequalities (4), (5) and (6) that

$$
\begin{array}{r}
d_{1}\left(x_{n+1}, x_{n+2}\right) \leq c^{n-1} \max \left\{\delta_{1}\left(H G F x_{1}, H G F x_{2}\right), \delta_{2}\left(F H G y_{1}, F H G y_{2}\right)\right. \\
\left.\delta_{3}\left(G F H z_{1}, G F H z_{2}\right)\right\} \\
d_{2}\left(y_{n+1}, y_{n+2}\right) \leq c^{n-1} \max \left\{\delta_{1}\left(H G F x_{1}, H G F x_{2}\right), \delta_{2}\left(F H G y_{1}, F H G y_{2}\right)\right. \\
\left.\delta_{3}\left(G F H z_{1}, G F H z_{2}\right)\right\} \\
d_{3}\left(z_{n+1}, z_{n+2}\right) \leq c^{n-1} \max \left\{\delta_{1}\left(H G F x_{1}, H G F x_{2}\right), \delta_{2}\left(F H G y_{1}, F H G y_{2}\right)\right. \\
\left.\delta_{3}\left(G F H z_{1}, G F H z_{2}\right)\right\}
\end{array}
$$

Then, for $r=1,2, \ldots$ and arbitrary $\epsilon>0$, we have

$$
\begin{aligned}
& d_{1}\left(x_{n+1}, x_{n+r+1}\right) \leq \delta_{1}\left(H G F x_{n}, H G F x_{n+r}\right) \\
& \quad \leq \delta_{1}\left(H G F x_{n}, H G F x_{n+1}\right)+\cdots+\delta_{1}\left(H G F x_{n+r-1}, H G F x_{n+r}\right) \\
& \quad \leq\left(c^{n-1}+c^{n}+\ldots+c^{n+r-2}\right) \times \\
& \quad \max \left\{\delta_{1}\left(H G F x_{1}, H G F x_{2}\right), \delta_{2}\left(F H G y_{1}, F H G y_{2}\right), \delta_{3}\left(G F H z_{1}, G F H z_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{equation*}
<\epsilon \tag{7}
\end{equation*}
$$

for n greater than some N, since $c<1$. The sequence $\left\{x_{n}\right\}$ is therefore a Cauchy sequence in the complete metric space X and so has a limit u in X. Similarly, the sequences $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are also Cauchy sequences with limits v and w in the complete metric spaces Y and Z respectively. Further, inequality (7) gives

$$
\begin{aligned}
\delta_{1}\left(u, H G F x_{n}\right) & \leq d_{1}\left(u, x_{m+1}\right)+\delta_{1}\left(x_{m+1}, H G F x_{n}\right) \\
& \leq d_{1}\left(u, x_{m+1}\right)+\delta_{1}\left(H G F x_{m}, H G F x_{n}\right) \\
& \leq d_{1}\left(u, x_{m+1}\right)+\epsilon
\end{aligned}
$$

for $m, n \geq N$. Letting m tend to infinity, it follows that

$$
\delta_{1}\left(u, H G F x_{n}\right) \leq \epsilon,
$$

for $n>N$ and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty} H G F x_{n}=\{u\}=\lim _{n \rightarrow \infty} H G y_{n} \tag{8}
\end{equation*}
$$

since ϵ is arbitrary. Similarly,

$$
\begin{align*}
\lim _{n \rightarrow \infty} F H G y_{n} & =\{v\}=\lim _{n \rightarrow \infty} F H z_{n} \tag{9}\\
\lim _{n \rightarrow \infty} G F H z_{n} & =\{w\}=\lim _{n \rightarrow \infty} G F x_{n} \tag{10}
\end{align*}
$$

Using the continuity of F and G, we obtain

$$
\begin{align*}
& \lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} F x_{n}=F u=\{v\}, \tag{11}\\
& \lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} G y_{n}=G v=\{w\} \tag{12}
\end{align*}
$$

and then we see that

$$
\begin{equation*}
G F u=\{w\} \tag{13}
\end{equation*}
$$

We now show that u is a fixed point of $H G F$. Applying inequality (1), we have

$$
\begin{aligned}
\delta_{1}\left(H G F u, x_{n}\right) & \leq \delta_{1}\left(H G F u, H G F x_{n-1}\right) \\
& \leq c \max \left\{d_{1}\left(u, x_{n-1}\right), \delta_{1}(u, H G F u), \delta_{1}\left(x_{n-1}, H G F x_{n-1}\right)\right. \\
& \left.\delta_{2}\left(F u, F x_{n-1}\right), \delta_{3}\left(G F u, G F x_{n-1}\right)\right\}
\end{aligned}
$$

Since F and G are continuous, it follows on letting n tend to infinity and using equation (8) that

$$
\delta_{1}(H G F u, u) \leq c \delta_{1}(u, H G F u)
$$

Since $c<1$, we have $H G F u=\{u\}$ and so u is a fixed point of $H G F$. We now have

$$
H G F u=H w=\{u\}
$$

on using equation (13) and then

$$
\begin{aligned}
F H G v & =F H G F u=F u=\{v\} \\
G F H w & =G F H G v=G v=\{w\}
\end{aligned}
$$

on using equations (11) and (12). Hence, v and w are fixed points of $F H G$ and $G F H$ respectively. Further, we see that

$$
H G v=\{u\}, \quad F H w=\{v\} .
$$

To prove the uniqueness of u, suppose that $H G F$ has a second fixed point u^{\prime}. Then, using inequality (1), we have

$$
\begin{align*}
\delta_{1}\left(u^{\prime}, H G F u^{\prime}\right) & \leq \delta_{1}\left(H G F u^{\prime}, H G F u^{\prime}\right) \\
& \leq c \max \left\{d_{1}\left(u^{\prime}, u^{\prime}\right), \delta_{1}\left(u^{\prime}, H G F u^{\prime}\right), \delta_{2}\left(F u^{\prime}, F u^{\prime}\right),\right. \\
& \left.\delta_{3}\left(G F u^{\prime}, G F u^{\prime}\right)\right\} \\
& \leq c \max \left\{\delta_{2}\left(F u^{\prime}, F u^{\prime}\right), \delta_{3}\left(G F u^{\prime}, G F u^{\prime}\right)\right\} . \tag{14}
\end{align*}
$$

Next, using inequality (2), we have

$$
\begin{align*}
\delta_{2}\left(F u^{\prime}, F u^{\prime}\right) \leq & \delta_{2}\left(F H G F u^{\prime}, F H G F u^{\prime}\right) \\
& \leq c \max \left\{d_{2}\left(F u^{\prime}, F u^{\prime}\right), \delta_{2}\left(F u^{\prime}, F H G F u^{\prime}\right),\right. \\
& \left.\delta_{3}\left(G F u^{\prime}, G F u^{\prime}\right), \delta_{1}\left(H G F u^{\prime}, H G F u^{\prime}\right)\right\} \\
& \leq c \max \left\{\delta_{3}\left(G F u^{\prime}, G F u^{\prime}\right), \delta_{1}\left(H F F u^{\prime}, H G F u^{\prime}\right)\right\} \tag{15}
\end{align*}
$$

and using inequality (3), we have

$$
\begin{align*}
\delta_{3}\left(G F u^{\prime}, G F u^{\prime}\right) & \leq \delta_{3}\left(G F H G F u^{\prime}, G F H G F u^{\prime}\right) \\
& \leq c \max \left\{d_{3}\left(G F u^{\prime}, G F u^{\prime}\right), \delta_{3}\left(G F u^{\prime}, G F H G F u^{\prime}\right),\right. \\
& \left.\delta_{1}\left(H G F u^{\prime}, H G F u^{\prime}\right), \delta_{2}\left(F H G F u^{\prime}, F H G F u^{\prime}\right)\right\} \\
& \leq c \max \left\{\delta_{1}\left(H G F u^{\prime}, H G F u^{\prime}\right), \delta_{2}\left(F H G F u^{\prime}, F H G F u^{\prime}\right)\right\} . \tag{16}
\end{align*}
$$

It now follows easily from inequalities (15) and (16) that

$$
\begin{equation*}
\delta_{2}\left(F H G F u^{\prime}, F H G F u^{\prime}\right) \leq c \delta_{1}\left(H G F u^{\prime}, H G F u^{\prime}\right) \tag{17}
\end{equation*}
$$

and then

$$
\begin{equation*}
\delta_{3}\left(G F u^{\prime}, G F u^{\prime}\right) \leq c \delta_{1}\left(H G F u^{\prime}, H G F u^{\prime}\right) . \tag{18}
\end{equation*}
$$

Using inequalities (14), (17) and (18), we now have

$$
\delta_{1}\left(u^{\prime}, H G F u^{\prime}\right) \leq \delta_{1}\left(H G F u^{\prime}, H G F u^{\prime}\right) \leq c^{2} \delta_{1}\left(H G F u^{\prime}, H F G u^{\prime}\right)
$$

and so $H G F u^{\prime}$ is a singleton and $H G F u^{\prime}=\left\{u^{\prime}\right\}$, since $c<1$. It then follows from inequality (18) that $G F u^{\prime}$ is a singleton and from inequality (17) that $F u^{\prime}$ is a singleton. Using inequality (1) again, we have

$$
\begin{align*}
d_{1}\left(u, u^{\prime}\right) & =\delta_{1}\left(H G F u, H G F u^{\prime}\right) \\
\leq & c \max \left\{d_{1}\left(u, u^{\prime}\right), d_{1}(u, u), d_{1}\left(u^{\prime}, u^{\prime}\right), d_{2}\left(F u, F u^{\prime}\right),\right. \\
& \left.d_{3}\left(G F u, G F u^{\prime}\right)\right\} \\
& =c \max \left\{d_{2}\left(F u, F u^{\prime}\right), d_{3}\left(G F u, G F u^{\prime}\right)\right\} . \tag{19}
\end{align*}
$$

Next, using inequality (2), we have

$$
\begin{align*}
d_{2}\left(F u, F u^{\prime}\right)= & \delta_{2}\left(F H G F u, F H G F u^{\prime}\right) \\
\leq & c \max \left\{d_{2}\left(F u, F u^{\prime}\right), d_{2}(F u, F H G F u), d_{2}\left(F u^{\prime}, F H G F u^{\prime}\right),\right. \\
& \left.d_{3}\left(G F u, G F u^{\prime}\right), d_{1}\left(H G F u, H G F u^{\prime}\right)\right\} \\
= & c \max \left\{d_{3}\left(G F u, G F u^{\prime}\right), d_{1}\left(u, u^{\prime}\right)\right\} \tag{20}
\end{align*}
$$

and using inequality (3), we have

$$
\begin{align*}
d_{3}\left(G F u, G F u^{\prime}\right)= & d_{3}\left(G F H G F u, G F H G F u^{\prime}\right) \\
\leq & c \max \left\{d_{3}\left(G F u, G F u^{\prime}\right), d_{3}(G F u, G F H G F u),\right. \\
& d_{3}\left(G F u^{\prime}, G F H G F u^{\prime}\right), d_{1}\left(H G F u, H G F u^{\prime}\right), \\
& \left.d_{2}\left(F H G F u, F H G F u^{\prime}\right)\right\} \\
= & c \max \left\{d_{1}\left(u, u^{\prime}\right), d_{2}\left(F u, F u^{\prime}\right)\right\} . \tag{21}
\end{align*}
$$

It now follows from inequalities (19), (20) and (21) that $d_{1}\left(u, u^{\prime}\right)=0$, proving the uniqueness of u. The uniqueness of v and w follow similarly.
2.2. Remark. If we let F be a single valued mapping T of X into Y, G be a single valued mapping S of Y into Z and H be a single valued mapping R of Z into X, we obtain Theorem 1.2.

References

[1] Fisher, B. Common fixed points of mappings and set valued mappings, Rostock. Math. Kolloq. 18, 69-77, 1981.
[2] Fisher, B. Set valued mappings on metric spaces, Fund. Math., 112, 141-145, 1981.
[3] Fisher, B. Related fixed points on two metric spaces, Math. Sem. Notes, Kobe Univ., 10, 17-26, 1982.
[4] Jain, R. K., Sahu, H. K. and Fisher, B. Related fixed point theorems for three metric spaces, Novi Sad J. Math., 26, 11-17, 1996.

[^0]: *Department of Mathematics, Dr H. S. Gour University, Sagar, (M. P.), India.
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, University of Leicester, LE1 7RH and Institute of Simulation Sciences, SERC, De Montfort University, Leicester, LE1 9BH, U.K. Email: fbr@le.ac.uk

