CERTAIN SUBCLASSES OF STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER

V Ravichandran*, Yasar Polatoglu ${ }^{\dagger}$, Metin Bolcal ${ }^{\dagger}$, and Arzu Sen ${ }^{\dagger}$

Received $24: 12: 2004$: Accepted $05: 12: 2005$

Abstract

In the present investigation, we consider certain subclasses of starlike and convex functions of complex order, giving necessary and sufficient conditions for functions to belong to these classes.

Keywords: Starlike functions, Convex functions, Starlike functions of complex order, Convex functions of complex order.

2000 AMS Classification: 30 C 45

1. Introduction

Let \mathcal{A} be the class of all analytic functions
(1) $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$
in the open unit disk $\Delta=\{z \in \mathbb{C} ;|z|<1\}$. A function $f \in \mathcal{A}$ is subordinate to an univalent function $g \in \mathcal{A}$, written $f(z) \prec g(z)$, if $f(0)=g(0)$ and $f(\Delta) \subseteq g(\Delta)$.

Let Ω be the family of analytic functions $\omega(z)$ in the unit disc Δ satisfying the conditions $\omega(0)=0,|\omega(z)|<1$ for $z \in \Delta$. Note that $f(z) \prec g(z)$ if there is a function $w(z) \in \Omega$ such that $f(z)=g(\omega(z))$.

Let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions. The class $S^{*}(\phi)$, introduced and studied by Ma and Minda [5], consists of functions in $f \in \mathcal{S}$ for which

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), \quad(z \in \Delta) .
$$

[^0]The functions $h_{\phi n}(n=2,3, \ldots)$ are defined by

$$
\frac{z h_{\phi n}^{\prime}(z)}{h_{\phi n}(z)}=\phi\left(z^{n-1}\right), h_{\phi n}(0)=0=h_{\phi n}^{\prime}(0)-1 .
$$

The functions $h_{\phi n}$ are all functions in $S^{*}(\phi)$. We write $h_{\phi 2}$ simply as h_{ϕ}. Clearly,

$$
\begin{equation*}
h_{\phi}(z)=z \exp \left(\int_{0}^{z} \frac{\phi(x)-1}{x} d x\right) . \tag{2}
\end{equation*}
$$

Following Ma and Minda [5], we define a more general class related to the class of starlike functions of complex order as follows.
1.1. Definition. Let $b \neq 0$ be a complex number. Let $\phi(z)$ be an analytic function with positive real part on Δ, which satisfies $\phi(0)=1, \phi^{\prime}(0)>0$, and which maps the unit disk Δ onto a region starlike with respect to 1 and symmetric with respect to the real axis. Then the class $S_{b}^{*}(\phi)$ consists of all analytic functions $f \in \mathcal{A}$ satisfying

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \phi(z) .
$$

The class $C_{b}(\phi)$ consists of the functions $f \in \mathcal{A}$ satisfying

$$
1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z)
$$

Moreover, we let $S^{*}(A, B, b)$ and $C(A, B, b)\left(b \neq 0\right.$, complex) denote the classes $S_{b}^{*}(\phi)$ and $C_{b}(\phi)$ respectively, where

$$
\phi(z)=\frac{1+A z}{1+B z},(-1 \leq B<A \leq 1)
$$

The class $S^{*}(A, B, b)$, and therefore the class $S_{b}^{*}(\phi)$, specialize to several well-known classes of univalent functions for suitable choices of A, B and b.

The class $S^{*}(A, B, 1)$ is denoted by $S^{*}(A, B)$. Some of these classes are listed below:
(1) $S^{*}(1,-1,1)$ is the class S^{*} of starlike functions $[1,2,7]$.
(2) $S^{*}(1,-1, b)$ is the class of starlike functions of complex order introduced by Wiatrowski [12].
(3) $S^{*}(1,-1,1-\beta), 0 \leq \beta<1$, is the class $S^{*}(\beta)$ of starlike functions of order β. This class was introduced by Robertson [8].
(4) $S^{*}\left(1,-1, e^{-i \lambda} \cos \lambda\right),|\lambda|<\frac{\pi}{2}$ is the class of λ-spirallike functions introduced by Spacek [11].
(5) $S^{*}\left(1,-1,(1-\beta) e^{-i \lambda} \cos \lambda\right), 0 \leq \beta<1,|\lambda|<\frac{\pi}{2}$, is the class of λ-spirallike functions of order β. This class was introduced by Libera [4].
Let $S T(b)$ denote $1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)$. Then we have the following:
(6) $S^{*}(1,0, b)$ is the set defined by $|S T(b)-1|<1$.
(7) $S^{*}(\beta, 0, b)$ is the set defined by $|S T(b)-1|<\beta, 0 \leq \beta<1$.
(8) $S^{*}(\beta,-\beta, b)$ is the set defined by $\left|\frac{S T(b)-1}{(S T(b)+1)}\right|<\beta, 0 \leq \beta<1$.
(9) $S^{*}\left(1,\left(-1+\frac{1}{M}\right), b\right)$ is the set defined by $|S T(b)-M|<M$.
(10) $S^{*}(1-2 \beta,-1, b)$ is the set defined by $\operatorname{Re} S T(b)>\beta, 0 \leq \beta<1$.

To prove our main result, we need the following Lemma due to Miller and Mocanu:
1.2. Lemma. [6, Corollary 3.4h.1, p.135] Let $q(z)$ be univalent in Δ and let $\varphi(z)$ be analytic in a domain containing $q(\Delta)$. If $z q^{\prime}(z) / \varphi(q(z))$ is starlike, then

$$
z p^{\prime}(z) \varphi(p(z)) \prec z q^{\prime}(z) \varphi(q(z))
$$

implies that $p(z) \prec q(z)$, and $q(z)$ is the best dominant.
Let C be the class of convex analytic functions in Δ. We will also need the following result:
1.3. Lemma. [10, Theorem 2.36, p. 86] For $f, h \in C$ and $g \prec h$, we have $f * g \prec f * h$.

2. A necessary and Sufficient Condition

We begin with the following:
2.1. Lemma. Let ϕ be a convex function defined on Δ and satisfying $\phi(0)=1$. As in Equation (1) let $h_{\phi}(z)=z \exp \left(\int_{0}^{z} \frac{\phi(x)-1}{x} d x\right)$, and let $q(z)=1+c_{1} z+\cdots$ be analytic in Δ. Then
(3) $1+\frac{z q^{\prime}(z)}{q(z)} \prec \phi(z)$
if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have
(4) $\frac{q(t z)}{q(s z)} \prec \frac{s h_{\phi}(t z)}{t h_{\phi}(s z)}$.

Proof. Our result and its proof are motivated by a similar result of Ruscheweyh [rus] for functions in the class $S^{*}(\phi)$. Also see Ruscheweyh [10, Theorem 2.37, pages 86-88].

Let $q(z)$ satisfy (3). Since the function

$$
p(z)=\int_{0}^{z}\left(\frac{s}{1-s x}-\frac{t}{1-t x}\right) d x
$$

is convex and univalent in Δ for $s, t \in \bar{\Delta}:=\Delta \cup\{z \in \mathbb{C}:|z|=1\}, s \neq t$, by Lemma 1.2 we have:

$$
\begin{equation*}
\left(\frac{z q^{\prime}(z)}{q(z)}\right) * p(z) \prec(\phi(z)-1) * p(z) \tag{5}
\end{equation*}
$$

For an analytic function $h(z)$ with $h(0)=0$, we have
(6) $\quad(h * p)(z)=\int_{s z}^{t z} h(x) \frac{d x}{x}$,
and using (6), we see that (5) is equivalent to

$$
\int_{s z}^{t z}\left(\frac{q^{\prime}(x)}{q(x)}\right) d x \prec \int_{s z}^{t z}\left(\frac{\phi(x)-1}{x}\right) d x
$$

which gives the desired assertion (4) upon exponentiation.
To prove the converse, let us assume that (4) holds. By taking $t=1$ in (4), we have

$$
\begin{equation*}
\frac{q(z)}{q(s z)} \prec \frac{s h_{\phi}(z)}{h_{\phi}(s z)} \tag{7}
\end{equation*}
$$

and therefore we have
(8) $\frac{q(z)}{q(s z)}=\frac{s h_{\phi}\left(\phi_{s}(z)\right)}{h_{\phi}\left(s \phi_{s}(z)\right)}$,
where $\phi_{s}(z)$ are analytic in Δ and satisfy $\left|\phi_{s}(z)\right| \leq|z|$. Thus we can find a sequence $s_{k} \rightarrow 1$ such that $\phi_{s_{k}} \rightarrow \phi^{*}$ locally uniformly in Δ, where $\left|\phi^{*}(z)\right| \leq|z|(z \in \Delta)$. Therefore, by making use of (8), we have for any fixed $z \in \Delta$,

$$
\begin{aligned}
1+\frac{z q^{\prime}(z)}{q(z)} & =\lim _{k \rightarrow \infty}\left[\frac{s_{k} q\left(s_{k} z\right)-q(z)}{\left(s_{k}-1\right) q(z)}\right] \\
& =\lim _{k \rightarrow \infty} \frac{\phi_{s_{k}}(z)}{h_{\phi}\left(\phi_{s_{k}}(z)\right)}\left[\frac{h_{\phi}\left(s_{k} \phi_{s_{k}}(z)\right)-h_{\phi}\left(\phi_{s_{k}}(z)\right)}{s_{k} \phi_{s_{k}}(z)-\phi_{s_{k}}(z)}\right] \\
& =\frac{\phi^{*}(z) h_{\phi}^{\prime}\left(\phi^{*}(z)\right)}{h_{\phi}\left(\phi^{*}(z)\right)} .
\end{aligned}
$$

This shows that

$$
1+\frac{z q^{\prime}(z)}{q(z)} \in\left(\frac{z h_{\phi}^{\prime}}{h_{\phi}}\right)(\Delta)=\phi(\Delta),(z \in \Delta)
$$

which completes the proof of our Lemma 2.1.
By making use of Lemma 2.1, we now have the following:
2.2. Theorem. Let ϕ be a convex function defined on Δ which satisfies $\phi(0)=1$, and $h_{\phi}(z)=z \exp \left(\int_{0}^{z} \frac{\phi(x)-1}{x} d x\right)$ be as in Equation'(1). The the function f belongs to $S_{b}^{*}(\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have
(9) $\quad\left(\frac{s f(t z)}{t f(s z)}\right)^{\frac{1}{b}} \prec \frac{s h_{\phi}(t z)}{t h_{\phi}(s z)}$.

Proof. Define the function $q(z)$ by
(10) $\quad q(z):=\left(\frac{f(z)}{z}\right)^{1 / b}$.

Then a computation show that

$$
1+\frac{z q^{\prime}(z)}{q(z)}=1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)
$$

The result now follows from Lemma 2.1.
As an immediate consequence of Theorem 2.2, we have:
2.3. Corollary. Let $\phi(z)$ and $h_{\phi}(z)$ be as in Theorem 2.2. If $f \in S_{b}^{*}(\phi)$, then we have

$$
\begin{equation*}
\left(\frac{f(z)}{z}\right)^{\frac{1}{b}} \prec \frac{h_{\phi}(z)}{z} \tag{11}
\end{equation*}
$$

3. Another Subordination Result

In this section, we prove the following without the assumption that the function ϕ is convex. We only require that the function ϕ be starlike with respect to the origin.
3.1. Corollary. If $f \in S_{b}^{*}(\phi)$, then we have

$$
\begin{equation*}
\left(\frac{f(z)}{z}\right)^{\frac{1}{b}} \prec \frac{h_{\phi}(z)}{z} \tag{12}
\end{equation*}
$$

where $h_{\phi}(z)$ is given by (2).

Proof. Define the functions $p(z)$ and $q(z)$ by

$$
p(z):=\left(\frac{f(z)}{z}\right)^{1 / b}, \quad q(z):=\frac{h_{\phi}(z)}{z}
$$

Then a computation yields

$$
1+\frac{z p^{\prime}(z)}{p(z)}=1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)
$$

and

$$
\frac{z q^{\prime}(z)}{q(z)}=\frac{z h_{\phi}^{\prime}(z)}{h_{\phi}(z)}-1=\phi(z)-1
$$

Since $f \in S_{b}^{*}(\phi)$, we have

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \phi(z)-1=\frac{z q^{\prime}(z)}{q(z)}
$$

The result now follows by an application of Lemma 1.1.

4. The Fekete-Szegö inequality

In this section, we obtain the Fekete-Szegö inequality for functions in the class $S_{b}^{*}(\phi)$.
4.1. Theorem. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If $f(z)$ given by Equation (1) belongs to $S_{b}^{*}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 2 \max \left\{1 ;\left|\frac{B_{2}}{B_{1}}+(1-2 \mu) b B_{1}\right|\right\}
$$

The result is sharp.
Proof. If $f(z) \in S_{b}^{*}(\phi)$, then there is a Schwarz function $w(z)$, analytic in Δ, with $w(0)=0$ and $|w(z)|<1$ in Δ and such that

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)=\phi(w(z)) \tag{13}
\end{equation*}
$$

Define the function $p_{1}(z)$ by

$$
\begin{equation*}
p_{1}(z):=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\cdots \tag{14}
\end{equation*}
$$

Since $w(z)$ is a Schwarz function, we see that $\Re p_{1}(z)>0$ and $p_{1}(0)=1$. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)=1+b_{1} z+b_{2} z^{2}+\cdots \tag{15}
\end{equation*}
$$

In view of the equations $(13),(14)$ and (15), we have

$$
\begin{equation*}
p(z)=\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) \tag{16}
\end{equation*}
$$

Since

$$
\frac{p_{1}(z)-1}{p_{1}(z)+1}=\frac{1}{2}\left[c_{1} z+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\left(c_{3}+\frac{c_{1}^{3}}{4}-c_{1} c_{2}\right) z^{3}+\cdots\right]
$$

and therefore

$$
\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right)=1+\frac{1}{2} B_{1} c_{1} z+\left[\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2}\right] z^{2}+\cdots
$$

from this equation and (16), we obtain

$$
b_{1}=\frac{1}{2} B_{1} c_{1}
$$

and

$$
b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} .
$$

Since

$$
\frac{z f^{\prime}(z)}{f(z)}=1+a_{2} z+\left(2 a_{3}-a_{2}^{2}\right) z^{2}+\left(3 a_{4}+a_{2}^{3}-3 a_{3} a_{2}\right) z^{3}+\cdots,
$$

from Equation (15), we see that
(17) $\quad b b_{1}=a_{2}$,
(18) $\quad b b_{2}=2 a_{3}-a_{2}^{2}$,
or equivalently we have

$$
\begin{aligned}
a_{2} & =b b_{1}=\frac{b B_{1} c_{1}}{2}, \\
a_{3} & =\frac{1}{2}\left\{b b_{2}+b^{2} b_{1}^{2}\right\} \\
& =\frac{b}{4} B_{1} c_{1}+\frac{c_{1}^{2}}{8}\left\{b^{2} B_{1}^{2}-b\left(B_{1}-B_{2}\right)\right\} .
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{b B_{1}}{4}\left\{c_{2}-v c_{1}^{2}\right\}, \tag{19}
\end{equation*}
$$

where

$$
v:=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+(2 \mu-1) b B_{1}\right] .
$$

We recall from [5] that if $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is a function with positive real part, then

$$
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1,|2 \mu-1|\}
$$

the result being sharp for the functions given by

$$
p(z)=\frac{1+z^{2}}{1-z^{2}}, \quad p(z)=\frac{1+z}{1-z} .
$$

Our result now follows from an application of the above inequality, and we see that he result is sharp for the functions defined by

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)=\phi\left(z^{2}\right)
$$

and

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)=\phi(z)
$$

This completes the proof of the theorem.

References

1] Duren, P. L. Univalent Functions, (Springer-Verlag, 1983).
[2] Goodman, A. W. Univalent Functions, Vol I \& II, (Mariner publishing Company Inc., Tampa Florida, 1983).
[3] Keogh, F. R. and Merkes, E. P. A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8-12, 1969.
[4] Libera, R. J. Some radius of convexity problems, Duke Math. J. 31, 143-157, 1964.
[5] Ma, W. and Minda, D. A Unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, 157-169, 1994.
[6] Miller, S. S. and Mocanu, P. T. Differential Subordinations: Theory and Applications, (Series of Monographs and Textbooks in Pure and Applied Mathematics (No. 225), Marcel Dekker, New York and Basel, 2000).
[7] Pommerenke, Ch. R. Univalent functions, (Vandenhoeck, ruprecht in Göttingen, 1975).
[8] Robertson, M. S. On the theory of univalent functions, Ann. Math. 37, 374-408, 1936.
[9] Ruscheweyh, St. A subordination theorem for Φ-like functions, J. London Math. Soc. 13, 275-280, 1976.
[10] Ruscheweyh, St. Convolutions in Geometric Function Theory, (Seminaire de Mathematiques Superieures 83, Les Presses de l'Universite de Montreal, 1982).
[11] Spacek, L. Prispeek k teori funki prostych, Casopis pest Math. Fys. 62, 12-19, 1933.
[12] Wiatrowski, P. The coeffecient of a certain family of holomorphic functions, Zest. Nauk. Math. przyord. ser II. Zeszyt. 39, 57-85, 1971.

[^0]: *Department of Computer Applications, Sri Venkateswara College of Engineering, Sriperumbudur 602 105, India. E-mail: vravi@svce.ac.in
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Sciences and Arts, Kültür University, İstanbul. E-mail: (Y. Polatoglu) y.polatoglu@iku.edu.tr (M. Bolcal) m.bolcal@iku.edu.tr (A. Sen) a.sen@iku.edu.tr

