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Abstract

In the present investigation, we consider certain subclasses of starlike
and convex functions of complex order, giving necessary and sufficient
conditions for functions to belong to these classes.
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1. Introduction

Let A be the class of all analytic functions

(1) f(z) = z + a2z
2 + a3z

3 + · · ·

in the open unit disk ∆ = {z ∈ C; |z| < 1}. A function f ∈ A is subordinate to an
univalent function g ∈ A, written f(z) ≺ g(z), if f(0) = g(0) and f(∆) ⊆ g(∆).

Let Ω be the family of analytic functions ω(z) in the unit disc ∆ satisfying the con-
ditions ω(0) = 0, |ω(z)| < 1 for z ∈ ∆. Note that f(z) ≺ g(z) if there is a function
w(z) ∈ Ω such that f(z) = g(ω(z)).

Let S be the subclass of A consisting of univalent functions. The class S∗(φ), intro-
duced and studied by Ma and Minda [5], consists of functions in f ∈ S for which

zf ′(z)

f(z)
≺ φ(z), (z ∈ ∆).
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The functions hφn (n = 2, 3, . . .) are defined by

zh′φn(z)

hφn(z)
= φ(zn−1), hφn(0) = 0 = h′φn(0)− 1.

The functions hφn are all functions in S∗(φ). We write hφ2 simply as hφ. Clearly,

(2) hφ(z) = z exp

(
∫ z

0

φ(x)− 1

x
dx

)

.

Following Ma and Minda [5], we define a more general class related to the class of
starlike functions of complex order as follows.

1.1. Definition. Let b 6= 0 be a complex number. Let φ(z) be an analytic function with
positive real part on ∆, which satisfies φ(0) = 1, φ′(0) > 0, and which maps the unit
disk ∆ onto a region starlike with respect to 1 and symmetric with respect to the real
axis. Then the class S∗

b (φ) consists of all analytic functions f ∈ A satisfying

1 +
1

b

(

zf ′(z)

f(z)
− 1

)

≺ φ(z).

The class Cb(φ) consists of the functions f ∈ A satisfying

1 +
1

b

zf ′′(z)

f ′(z)
≺ φ(z).

Moreover, we let S∗(A,B, b) and C(A,B, b) (b 6= 0, complex) denote the classes S∗
b (φ)

and Cb(φ) respectively, where

φ(z) =
1 +Az

1 +Bz
, (−1 ≤ B < A ≤ 1).

The class S∗(A,B, b), and therefore the class S∗
b (φ), specialize to several well-known

classes of univalent functions for suitable choices of A, B and b.

The class S∗(A,B, 1) is denoted by S∗(A,B). Some of these classes are listed below:

(1) S∗(1,−1, 1) is the class S∗ of starlike functions [1, 2, 7].

(2) S∗(1,−1, b) is the class of starlike functions of complex order introduced by
Wiatrowski [12].

(3) S∗(1,−1, 1 − β), 0 ≤ β < 1, is the class S∗(β) of starlike functions of order β.
This class was introduced by Robertson [8].

(4) S∗(1,−1, e−iλ cosλ), |λ| < π
2
is the class of λ-spirallike functions introduced by

Spacek [11].

(5) S∗(1,−1, (1 − β)e−iλ cosλ), 0 ≤ β < 1, |λ| < π
2
, is the class of λ-spirallike

functions of order β. This class was introduced by Libera [4].

Let ST (b) denote 1 + 1
b

(

zf ′(z)
f(z)

− 1
)

. Then we have the following:

(6) S∗(1, 0, b) is the set defined by |ST (b)− 1| < 1.

(7) S∗(β, 0, b) is the set defined by |ST (b)− 1| < β, 0 ≤ β < 1.

(8) S∗(β,−β, b) is the set defined by
∣

∣

∣

ST (b)−1
(ST (b)+1)

∣

∣

∣
< β, 0 ≤ β < 1.

(9) S∗(1, (−1 + 1
M
), b) is the set defined by |ST (b)−M | < M .

(10) S∗(1− 2β,−1, b) is the set defined by ReST (b) > β, 0 ≤ β < 1.

To prove our main result, we need the following Lemma due to Miller and Mocanu:
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1.2. Lemma. [6, Corollary 3.4h.1, p.135] Let q(z) be univalent in ∆ and let ϕ(z) be
analytic in a domain containing q(∆). If zq′(z)/ϕ(q(z)) is starlike, then

zp′(z)ϕ(p(z)) ≺ zq′(z)ϕ(q(z))

implies that p(z) ≺ q(z), and q(z) is the best dominant.

Let C be the class of convex analytic functions in ∆. We will also need the following
result:

1.3. Lemma. [10, Theorem 2.36, p. 86] For f, h ∈ C and g ≺ h, we have f ∗ g ≺ f ∗ h.

2. A necessary and Sufficient Condition

We begin with the following:

2.1. Lemma. Let φ be a convex function defined on ∆ and satisfying φ(0) = 1. As in

Equation (1) let hφ(z) = z exp
(

∫ z

0

φ(x)−1
x

dx
)

, and let q(z) = 1+ c1z+ · · · be analytic in

∆. Then

(3) 1 +
zq′(z)

q(z)
≺ φ(z)

if and only if for all |s| ≤ 1 and |t| ≤ 1, we have

(4)
q(tz)

q(sz)
≺
shφ(tz)

thφ(sz)
.

Proof. Our result and its proof are motivated by a similar result of Ruscheweyh [rus] for
functions in the class S∗(φ). Also see Ruscheweyh [10, Theorem 2.37, pages 86-88].

Let q(z) satisfy (3). Since the function

p(z) =

∫ z

0

(

s

1− sx
−

t

1− tx

)

dx

is convex and univalent in ∆ for s, t ∈ ∆ := ∆ ∪ {z ∈ C : |z| = 1}, s 6= t, by Lemma 1.2
we have:

(5)

(

zq′(z)

q(z)

)

∗ p(z) ≺ (φ(z)− 1) ∗ p(z).

For an analytic function h(z) with h(0) = 0, we have

(6) (h ∗ p)(z) =

∫ tz

sz

h(x)
dx

x
,

and using (6), we see that (5) is equivalent to
∫ tz

sz

(

q′(x)

q(x)

)

dx ≺

∫ tz

sz

(

φ(x)− 1

x

)

dx,

which gives the desired assertion (4) upon exponentiation.

To prove the converse, let us assume that (4) holds. By taking t = 1 in (4), we have

(7)
q(z)

q(sz)
≺
shφ(z)

hφ(sz)
,

and therefore we have

(8)
q(z)

q(sz)
=
shφ(φs(z))

hφ(sφs(z))
,
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where φs(z) are analytic in ∆ and satisfy |φs(z)| ≤ |z|. Thus we can find a sequence
sk → 1 such that φsk

→ φ∗ locally uniformly in ∆, where |φ∗(z)| ≤ |z| (z ∈ ∆).
Therefore, by making use of (8), we have for any fixed z ∈ ∆,

1 +
zq′(z)

q(z)
= lim

k→∞

[

skq(skz)− q(z)

(sk − 1)q(z)

]

= lim
k→∞

φsk
(z)

hφ(φsk
(z))

[

hφ(skφsk
(z))− hφ(φsk

(z))

skφsk
(z)− φsk

(z)

]

=
φ∗(z)h′φ(φ

∗(z))

hφ(φ∗(z))
.

This shows that

1 +
zq′(z)

q(z)
∈

(

zh′φ
hφ

)

(∆) = φ(∆), (z ∈ ∆),

which completes the proof of our Lemma 2.1. ¤

By making use of Lemma 2.1, we now have the following:

2.2. Theorem. Let φ be a convex function defined on ∆ which satisfies φ(0) = 1, and

hφ(z) = z exp
(

∫ z

0

φ(x)−1
x

dx
)

be as in Equation‘(1). The the function f belongs to S∗
b (φ)

if and only if for all |s| ≤ 1 and |t| ≤ 1, we have

(9)

(

sf(tz)

tf(sz)

) 1
b

≺
shφ(tz)

thφ(sz)
.

Proof. Define the function q(z) by

(10) q(z) :=

(

f(z)

z

)1/b

.

Then a computation show that

1 +
zq′(z)

q(z)
= 1 +

1

b

(

zf ′(z)

f(z)
− 1

)

.

The result now follows from Lemma 2.1. ¤

As an immediate consequence of Theorem 2.2, we have:

2.3. Corollary. Let φ(z) and hφ(z) be as in Theorem 2.2. If f ∈ S∗
b (φ), then we have

(11)

(

f(z)

z

) 1
b

≺
hφ(z)

z
.

3. Another Subordination Result

In this section, we prove the following without the assumption that the function φ is
convex. We only require that the function φ be starlike with respect to the origin.

3.1. Corollary. If f ∈ S∗
b (φ), then we have

(12)

(

f(z)

z

) 1
b

≺
hφ(z)

z
,

where hφ(z) is given by (2).
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Proof. Define the functions p(z) and q(z) by

p(z) :=

(

f(z)

z

)1/b

, q(z) :=
hφ(z)

z
.

Then a computation yields

1 +
zp′(z)

p(z)
= 1 +

1

b

(

zf ′(z)

f(z)
− 1

)

and

zq′(z)

q(z)
=
zh′φ(z)

hφ(z)
− 1 = φ(z)− 1.

Since f ∈ S∗
b (φ), we have

zp′(z)

p(z)
=

1

b

(

zf ′(z)

f(z)
− 1

)

≺ φ(z)− 1 =
zq′(z)

q(z)
.

The result now follows by an application of Lemma 1.1. ¤

4. The Fekete-Szegö inequality

In this section, we obtain the Fekete-Szegö inequality for functions in the class S∗
b (φ).

4.1. Theorem. Let φ(z) = 1+B1z +B2z
2 +B3z

3 + · · · . If f(z) given by Equation (1)
belongs to S∗

b (φ), then

|a3 − µa2
2| ≤ 2max

{

1; |
B2

B1
+ (1− 2µ)bB1|

}

.

The result is sharp.

Proof. If f(z) ∈ S∗
b (φ), then there is a Schwarz function w(z), analytic in ∆, with

w(0) = 0 and |w(z)| < 1 in ∆ and such that

(13) 1 +
1

b

(

zf ′(z)

f(z)
− 1

)

= φ(w(z)).

Define the function p1(z) by

(14) p1(z) :=
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + · · · .

Since w(z) is a Schwarz function, we see that <p1(z) > 0 and p1(0) = 1. Define the
function p(z) by

(15) p(z) := 1 +
1

b

(

zf ′(z)

f(z)
− 1

)

= 1 + b1z + b2z
2 + · · · .

In view of the equations (13), (14) and (15), we have

(16) p(z) = φ

(

p1(z)− 1

p1(z) + 1

)

.

Since

p1(z)− 1

p1(z) + 1
=

1

2

[

c1z + (c2 −
c21
2
)z2 + (c3 +

c31
4
− c1c2)z

3 + · · ·

]

and therefore

φ

(

p1(z)− 1

p1(z) + 1

)

= 1 +
1

2
B1c1z +

[

1

2
B1(c2 −

1

2
c21) +

1

4
B2c

2
1

]

z2 + · · · ,
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from this equation and (16), we obtain

b1 =
1

2
B1c1

and

b2 =
1

2
B1(c2 −

1

2
c21) +

1

4
B2c

2
1.

Since

zf ′(z)

f(z)
= 1 + a2z + (2a3 − a2

2)z
2 + (3a4 + a3

2 − 3a3a2)z
3 + · · · ,

from Equation (15), we see that

bb1 = a2,(17)

bb2 = 2a3 − a2
2,(18)

or equivalently we have

a2 = bb1 =
bB1c1

2
,

a3 =
1

2

{

bb2 + b2b21
}

=
b

4
B1c1 +

c21
8

{

b2B2
1 − b(B1 −B2)

}

.

Therefore we have

(19) a3 − µa2
2 =

bB1

4

{

c2 − vc21
}

,

where

v :=
1

2

[

1−
B2

B1
+ (2µ− 1)bB1

]

.

We recall from [5] that if p(z) = 1+ c1z+ c2z
2 + · · · is a function with positive real part,

then

|c2 − µc21| ≤ 2max{1, |2µ− 1|},

the result being sharp for the functions given by

p(z) =
1 + z2

1− z2
, p(z) =

1 + z

1− z
.

Our result now follows from an application of the above inequality, and we see that he
result is sharp for the functions defined by

1 +
1

b

(

zf ′(z)

f(z)
− 1

)

= φ(z2)

and

1 +
1

b

(

zf ′(z)

f(z)
− 1

)

= φ(z).

This completes the proof of the theorem. ¤
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