UNIFICATION OF SOME SEPARATION AXIOMS

T. Hatice Yalvaç*
Dedicated to the memory of Professor Doğan Çoker

Received 29.07. 2002

Abstract

Kandil, Kerre and Nouh unified some concepts in fuzzy topological spaces by using operations. By adapting the definition of an operation and some definitions given by these authors to topological spaces, and by giving some new definitions, we have achieved some unifications related to compactness, continuity, openness and closedness of functions. Here, we will study unifications related to separation axioms, such as $T_{i}(i=0,1,2)$ and R_{2}.

Key Words: Operation, Separation axiom, Continuity, Supratopology.
Mathematics Subject Classification: 54 D 10,54 C 08, 54 A 05

1. Introduction

In [4,5], some unifications for fuzzy topological spaces were studied. Many of these definitions and results were applied to topological spaces in [7-11]. Now an attempt will be made to unify concepts related to separation.

In a topological space, (X, τ), int $, \mathrm{cl}, \mathrm{scl}, \mathrm{pcl}$, etc., will stand for the interior, closure, semi-closure, pre-closure operations, etc. Also, for a subset A of X, A^{o} and \bar{A} will stand for the interior of A and the closure of A, respectively.
1.1. Definition. Let (X, τ) be a topological space. A mapping $\varphi: P(X) \rightarrow P(X)$ is called an operation on (X, τ) if $A^{\circ} \subseteq \varphi(A)$ for all $A \in P(X)$ and $\varphi(\emptyset)=\emptyset$.

The class of all operations on a topological space (X, τ) will be denoted by $O(X, \tau)$.
The operations $\varphi, \tilde{\varphi} \in O(X, \tau)$ are said to be dual if $\varphi(A)=X \backslash(\tilde{\varphi}(X \backslash A))$ (equivalently, $\tilde{\varphi}(A)=X \backslash(\varphi(X \backslash A))$) for each $A \in P(X)$.

A partial order " \leq " on $O(X, \tau)$ is defined by $\varphi_{1} \leq \varphi_{2} \Leftrightarrow \varphi_{1}(A) \subseteq \varphi_{2}(A)$ for each $A \in P(X)$.

An operation $\varphi \in O(X, \tau)$ is called monotonous if $\varphi(A) \subseteq \varphi(B)$ whenever $A \subseteq B,(A, B \in P(X))$.

[^0]1.2. Definition. Let $\varphi \in O(X, \tau), \mathcal{U} \subseteq P(X), x \in X$ and $\mathcal{U}(x)=\{U: x \in U \in$ $\mathcal{U}\}$. Then φ is called:
a) Regular with respect to \mathcal{U} if for $x \in X$ and $U, V \in \mathcal{U}(x)$, there exists $W \in \mathcal{U}(x)$ such that $\varphi(W) \subseteq \varphi(U) \cap \varphi(V)$.
b) Weakly finite intersection preserving (W.F.I.P) with respect to \mathcal{U} if $U \cap$ $\varphi(A) \subseteq \varphi(U \cap A)$ for each $U \in \mathcal{U}$ and for each $A \in P(X)$.
1.3. Definition. Let $\varphi \in O(X, \tau)$ and $A, B \subseteq X$. A is called φ-open if $A \subseteq \varphi(A)$. Likewise B is called φ-closed if $X \backslash B$ is φ-open.

For any operation $\varphi \in O(X, \tau), \tau \subseteq \varphi O(X)$, and X, \emptyset are both φ-open and φ-closed.

If φ is monotonous, then the family of all φ-open sets is a supratopology $(\mathcal{U} \subseteq \mathcal{P}(X)$ is a supratopology on X means that $\emptyset \in \mathcal{U}, X \in \mathcal{U}$ and \mathcal{U} is closed under arbitrary unions [1]).

Let (X, τ) be a topological space, $\varphi \in O(X, \tau), x \in X$. We will use the following notation.

$$
\begin{aligned}
\varphi O(X) & =\{U: U \subseteq X, U \text { is } \varphi \text {-open }\} \\
\varphi C(X) & =\{K: K \subseteq X, K \text { is } \varphi \text {-closed }\} \\
\varphi O(X, x) & =\{U: U \in \varphi O(X), x \in U\}
\end{aligned}
$$

1.4. Definition. Let $\varphi_{1}, \varphi_{2} \in O(X, \tau), A \subseteq X$.
a) $x \in \varphi_{1,2} \operatorname{int} A \Leftrightarrow$ there exists a $U \in \varphi_{1} O(X, x)$ such that $\varphi_{2}(U) \subseteq A$.
b) $x \in \varphi_{1,2} \mathrm{cl} A \Leftrightarrow$ for each $U \in \varphi_{1} O(X, x), \varphi_{2}(U) \cap A \neq \emptyset$.
c) A is $\varphi_{1,2}$-open $\Leftrightarrow A \subseteq \varphi_{1,2} \operatorname{int} A$.
d) A is $\varphi_{1,2}$-closed $\Leftrightarrow \varphi_{1,2} \mathrm{cl} A \subseteq A$.

If $A \subseteq B$ then $\varphi_{1,2} \operatorname{int} A \subseteq \varphi_{1,2} \operatorname{int} B$ and $\varphi_{1,2} \operatorname{cl} A \subseteq \varphi_{1,2} \mathrm{cl} B$. Clearly for any set $A, X \backslash \varphi_{1,2} \operatorname{int} A=\varphi_{1,2} \operatorname{cl}(X \backslash A)$ and A is $\varphi_{1,2^{-}}$open iff $X \backslash A$ is $\varphi_{1,2}$-closed.

We will use $\varphi_{1,2} O(X)\left(\varphi_{1,2} C(X)\right)$ to denote the family of all $\varphi_{1,2}$-open subsets ($\varphi_{1,2}$-closed subsets) of X.
1.5. Theorem: $[10,11]$. Let $\varphi_{1}, \varphi_{2} \in O(X, \tau)$.
a) $\varphi_{1,2} O(X)$ is a supratopology on X.
b) If φ_{2} is regular w.r.t. $\varphi_{1} O(X)$, then $\varphi_{1,2} O(X)$ is a topology on X and a subset K of X is closed w.r.t. this topology iff $\varphi_{1,2} \mathrm{cl} K \subseteq K$. Let $\tau_{\varphi_{1,2}}$ stand for this topology $\varphi_{1,2} O(X)$.
c) If φ_{2} is regular w.r.t. $\varphi_{1} O(X)$ and $\left(\varphi_{2} \geq \imath\right.$ or $\left.\varphi_{2} \geq \varphi_{1}\right)$, then $\varphi_{1,2} O(X)$ is a topology on X and a set K is closed w.r.t. this topology iff $\varphi_{1,2} \mathrm{cl} K=K$ (here \imath is the identity operation).
d) If φ_{2} is regular w.r.t. $\varphi_{1} O(X),\left(\varphi_{2} \geq \imath\right.$ or $\left.\varphi_{2} \geq \varphi_{1}\right)$, and $\varphi_{2}(U) \in \varphi_{1} O(X)$, $\varphi_{2}\left(\varphi_{2}(U)\right) \subseteq \varphi_{2}(U)$ for each $U \in \varphi_{1} O(X)$, then $\varphi_{1,2}-c l$ is a Kuratowski closure operator and $\varphi_{1,2} \mathrm{cl} A=\tau_{\varphi_{1,2}} \mathrm{cl} A$ for any $A \subseteq P(X)$.
1.6. Example. Let the following operations be defined on a topological space (X, τ).
$\varphi_{1}=$ int,$\quad \varphi_{2}=\mathrm{cl} \circ$ int $, \quad \varphi_{3}=\mathrm{cl}, \quad \varphi_{4}=\mathrm{scl}$,
$\varphi_{5}=\imath(\imath$ is the idendity operation $), \varphi_{6}=\operatorname{int} \circ \mathrm{cl}, \varphi_{7}=$ int $\circ \mathrm{cl} \circ$ int.
Clearly,

$$
\varphi_{1} \leq \varphi_{7} \leq \varphi_{2} \leq \varphi_{3}, \quad \varphi_{1} \leq \varphi_{5} \leq \varphi_{4} \leq \varphi_{3} \quad \text { and } \quad \varphi_{1} \leq \varphi_{7} \leq \varphi_{6} \leq \varphi_{4}
$$

Now we have:
$\varphi_{1} O(X)=\tau$,
$\varphi_{2} O(X)=S O(X)=$ the family of all semi-open sets.
$\varphi_{3} O(X)=\varphi_{5} O(X)=\varphi_{4} O(X)=\mathcal{P}(X)=$ power set of X.
$\varphi_{6} O(X)=P O(X)=$ the family of all pre-open sets.
$\varphi_{7} O(X)=\tau^{\alpha}=$ the topology of all $\alpha-$ open sets in (X, τ).
$\varphi_{1,3} O(X)=\tau_{\theta}=$ the topology of all θ-open sets.
$\varphi_{2,4} O(X)=S \theta O(X)=$ the family of all semi- θ-open sets.
$\varphi_{1,6} O(X)=\tau_{s}=$ the semi regularization topology of X . It is the topology with base $R O(X)$ which consisting of regular open sets $=$ the family of all δ-open sets.
$\varphi_{2,3} O(X)=\theta S O(X)=$ the family of all θ-semi-open sets.
Note that φ_{1} and $\varphi_{3}\left(\varphi_{2}\right.$ and $\left.\varphi_{6}\right)$ are pairs of dual operations. All operations in this example are regular w.r.t. $\varphi_{1} O(X)$, w.r.t. $\varphi_{7} O(X)$ and w.r.t. $\varphi_{5} O(X)$.

It will be accepted that $\varphi_{1}, \varphi_{2} \in O(X, \tau), \psi_{1}, \psi_{2} \in O(Y, \vartheta)$ and $f:(X, \tau) \rightarrow$ (Y, ϑ) whenever they are used. $G_{f}=\{(x, f(x)): x \in X\}$ will stand for the graph of f.

1.7. Definition.

a) f is called $\varphi_{1,2} \psi_{1,2}$ - continuous if for each $x \in X$ and for each $V \in \psi_{1} O(Y, f(x))$, there exists a $U \in \varphi_{1} O(X, x)$ such that $f\left(\varphi_{2}(U)\right) \subseteq \psi_{2}(V)[4,7]$.
b) f is called $\varphi_{1,2} \psi_{1,2}$-open if for each $A \subseteq X$ and for each $x \in \varphi_{1,2} \operatorname{int} A$, $f(x) \in \psi_{1,2} \operatorname{int} f(A)([4,8])$.
c) G_{f} is called $\varphi_{1,2} \psi_{1,2}$-closed if for each $(x, y) \in X \times Y \backslash G_{f}$, there exist $U \in \varphi_{1} O(X, x)$ and $V \in \psi_{1} O(Y, y)$ such that $f\left(\varphi_{2}(U)\right) \cap \psi_{2}(V)=\emptyset[9]$.
1.8. Note. For any supratopological space (Z, \mathcal{U}), the separation axioms T_{0}, T_{1} and T_{2} will be defined as for topological spaces, and for any subset A of Z, \mathcal{U}-int A and $\mathcal{U}-\mathrm{cl} A$ will stand for the closure and the interior of A in this supratopological space (Z, \mathcal{U}). i.e. with a similar meaning as in topological spaces.

Let (X, τ) be a topological space and \mathcal{U} a supratopology containing τ. Then the mappings $\varphi: P(X) \rightarrow P(X), \tilde{\varphi}: P(X) \rightarrow P(X)$ defined by $\varphi(A)=\mathcal{U}-$ $\operatorname{int} A=\{x$: there exists a $U \in \mathcal{U}$ s.t. $x \in U \subseteq A\}=\bigcup\{U: U \subseteq A, U \in \mathcal{U}\}$ and $\tilde{\varphi}(A)=\mathcal{U}-\mathrm{cl} A=\{x: x \in U \in \mathcal{U} \Rightarrow U \cap A \neq \emptyset\}=\bigcap\{K: A \subseteq K, X \backslash K \in \mathcal{U}\}$ are operations on (X, τ) and they are dual operations to each other.

2. Separation Axioms

2.1. Definition. Let $\varphi_{1}, \varphi_{2} \in O(X, \tau)$.
a) (X, τ) is called $\varphi_{1,2}-R_{2}$ if for each $x \in X$ and for each $U \in \varphi_{1} O(X, x)$, there exists $V \in \varphi_{1} O(X, x)$ such that $\varphi_{2}(V) \subseteq U,[5,9]$.
b) (X, τ) is called $\varphi_{1,2}-T_{2}$ if $x, y \in X$ and $x \neq y$, then there exist $U \in \varphi_{1} O(X, x)$ and $V \in \varphi_{1} O(X, y)$ such that $\varphi_{2}(U) \cap \varphi_{2}(V)=\emptyset,[5,9]$.
c) (X, τ) is called $\varphi_{1,2}-T_{1}$ if $x, y \in X$ and $x \neq y$, then there exist $U \in \varphi_{1} O(X, x)$ and $V \in \varphi_{1} O(X, y)$ such that $x \notin \varphi_{2}(V)$ and $y \notin \varphi_{2}(U)$ (given for fuzzy topological spaces in [5]).
d) (X, τ) is called $\varphi_{1,2}-T_{0}$ if $x, y \in X$ and $x \neq y$, then there exists a φ_{1}-open set U such that $x \in U, y \notin \varphi_{2}(U)$ or $y \in U, x \notin \varphi_{2}(U)$.

Clearly each $\varphi_{1,2}-T_{1}$ space is $\varphi_{1,2}-T_{0}$ and if ($\varphi_{2} \geq \varphi_{1}$ or $\varphi_{2} \geq \imath$) then each $\varphi_{1,2}-T_{2}$ space is $\varphi_{1,2}-T_{1} .(X, \tau)$ is $\varphi_{1,2}-R_{2}$ iff $\varphi_{1} O(X) \subseteq \varphi_{1,2} O(X)$.

The following definition was given for fuzzy topological spaces in [4] at the same time.
2.2. Definition. Let $A \subseteq X . A$ is said to be $\varphi_{1,2^{-}}$dense in (X, τ) if $\varphi_{1,2} \operatorname{cl} A=X$.

The following three theorems given for fuzzy topological spaces in [4] are valid in our case. Only the $\varphi_{1,2}-T_{0}$ separation axiom has been added.
2.3. Theorem: If $f, g: X \rightarrow Y \varphi_{1,2} \psi_{1,2}$ continuous, Y is $\psi_{1,2}-T_{2}, \varphi_{2}$ is regular w.r.t. $\varphi_{1} O(X)$, then $E=\{x: f(x)=g(x)\}$ is $\varphi_{1,2}$-closed and if E is $\varphi_{1,2}$-dense in X, then $f=g$.
2.4. Theorem: The axioms $\varphi_{1,2}-T_{i}(i=0,1,2)$ are inverse invariant under a $\varphi_{1,2} \psi_{1,2}$-continuous injective mapping.

Proof. As an example, we prove the inverse invariance of $\varphi_{1,2}-T_{0}$.
Let $x, x^{\prime} \in X, x \neq x^{\prime} . \quad f(x) \neq f\left(x^{\prime}\right)$. There exists a ψ_{1}-open set V s.t. $\left(f(x) \in V, f\left(x^{\prime}\right) \notin \psi_{2}(V)\right)$ or $\left(f\left(x^{\prime}\right) \in V, f(x) \notin \psi_{2}(V)\right)$.

Let $f(x) \in V, f\left(x^{\prime}\right) \notin \psi_{2}(V)$. Since f is $\varphi_{1,2} \psi_{1,2}$-continuous, there exists a φ_{1}-open set U such that $x \in U, f\left(\varphi_{2}(U)\right) \subseteq \psi_{2}(V)$. Since $f\left(x^{\prime}\right) \notin \psi_{2}(V)$, $x^{\prime} \notin \varphi_{2}(U)$.

If $f\left(x^{\prime}\right) \in V, f(x) \notin \psi_{2}(V)$, then the proof proceeds in the same way. So, (X, τ) is $\varphi_{1,2}-T_{0}$.
2.5. Theorem : (X, τ) is $\varphi_{1,2}-T_{1}$ iff each singleton set is $\varphi_{1,2}$-closed.
2.6. Theorem : If f is $\varphi_{1,2} \psi_{1,2}$-open bijection and X is $\varphi_{1,2}-T_{i}$, then Y is $\psi_{1,2^{-}}$ $T_{i},(i=0,1,2)$.

Proof. We give the proof for $i=2$. The other cases can be proved similarly.
Let $y, y^{\prime} \in Y$ and $y \neq y^{\prime}$. There exist $x, x^{\prime} \in X$ such that $f(x)=y, f\left(x^{\prime}\right)=$ y^{\prime}. Since $x \neq x^{\prime}$, there are $U \in \varphi_{1} O(X, x)$ and $U^{\prime} \in \varphi_{1} O\left(X, x^{\prime}\right)$ such that $\varphi_{2}(U) \cap \varphi_{2}\left(U^{\prime}\right)=\emptyset$. Since $U \subseteq \varphi_{1,2} \operatorname{int} \varphi_{2}(U), U^{\prime} \subseteq \psi_{1,2} \operatorname{int} \varphi_{2}\left(U^{\prime}\right)$ and f is $\varphi_{1,2}$-open we have $f(U) \subseteq f\left(\varphi_{1,2} \operatorname{int} \varphi_{2}(U)\right) \subseteq \psi_{1,2} \operatorname{int} f\left(\varphi_{2}(U)\right)$ and $f\left(U^{\prime}\right) \subseteq$ $f\left(\varphi_{1,2} \operatorname{int} \varphi_{2}\left(U^{\prime}\right)\right) \subseteq \psi_{1,2} \operatorname{int} f\left(\varphi_{2}\left(U^{\prime}\right)\right) . \quad y=f(x) \in \psi_{1,2} \operatorname{int} f\left(\varphi_{2}(U)\right)$ and $y^{\prime}=$ $f\left(x^{\prime}\right) \in \psi_{1,2} \operatorname{int} f\left(\varphi_{2}\left(U^{\prime}\right)\right)$. There are $V \in \psi_{1} O(Y, y)$ and $V^{\prime} \in \psi_{1} O\left(Y, y^{\prime}\right)$ such that $\psi_{2}(V) \subseteq f\left(\varphi_{2}(U)\right)$ and $\psi_{2}\left(V^{\prime}\right) \subseteq f\left(\varphi_{2}\left(U^{\prime}\right)\right)$. Since $f\left(\varphi_{2}(U) \cap \varphi_{2}\left(U^{\prime}\right)\right)=$ $f\left(\varphi_{2}(U) \cap f\left(\varphi_{2}\left(U^{\prime}\right)\right)=\emptyset\right.$, we have $\psi_{2}(V) \cap \psi_{2}\left(V^{\prime}\right)=\emptyset$.
2.7. Theorem: If f is an injection with $\varphi_{1,2} \psi_{1,2}$-closed graph and ($\psi_{2} \geq \psi_{1}$ or $\psi_{2} \geq \imath$), then X is $\varphi_{1,2}-T_{1}$.

Proof. Let $x, x^{\prime} \in X, x \neq x^{\prime} . f(x) \neq f\left(x^{\prime}\right)$. Then $\left(x, f\left(x^{\prime}\right)\right) \notin G_{f}$ and $\left(x^{\prime}, f(x)\right) \notin$ G_{f}. There exist $U \in \varphi_{1} O(X, x)$ and $V \in \psi_{1} O\left(Y, f\left(x^{\prime}\right)\right)$ such that $f\left(\varphi_{2}(U)\right) \cap$ $\psi_{2}(V)=\emptyset$. Hence, $f\left(x^{\prime}\right) \in V \subseteq \psi_{2}(V)$ and $x^{\prime} \notin \varphi_{2}(U)$. There exist $U^{\prime} \in$ $\varphi_{1} O\left(X, x^{\prime}\right)$ and $V^{\prime} \in \psi_{1} O(Y, f(x))$ such that $f\left(\varphi_{2}\left(U^{\prime}\right)\right) \cap \psi_{2}\left(V^{\prime}\right)=\emptyset . \quad f(x) \in$ $V^{\prime} \subseteq \psi_{2}\left(V^{\prime}\right), x \notin \varphi_{2}\left(U^{\prime}\right)$, so, X is $\varphi_{1,2}-T_{1}$.

Let ψ_{0} be the identity operation \imath on (Y, ϑ).

2.8. Theorem :

a) If ($\psi_{2} \geq \psi_{1}$ or $\psi_{2} \geq \imath$) then each $\varphi_{1,2} \psi_{1,0^{-}}$continuous function is $\varphi_{1,2} \psi_{1,2^{-}}$ continuous.
b) If (Y, ϑ) is a $\psi_{1,2}-R_{2}$ space, then each $\varphi_{1,2} \psi_{1,2}$-continuous function is $\varphi_{1,2} \psi_{1,0^{-}}$ continuous.

Proof. b). Let $x \in X$ and $V \in \psi_{1} O(Y, f(x))$. Since (Y, ϑ) is $\psi_{1,2}-R_{2}$, there exists a $W \in \psi_{1} O(Y, f(x))$ such that $\psi_{2}(W) \subseteq V$. Since f is $\varphi_{1,2} \psi_{1,2}$-continuous, there exists a $U \in \varphi_{1} O(X, x)$ such that $f\left(\varphi_{2}(U)\right) \subseteq \psi_{2}(W)$. We have $f\left(\varphi_{2}(U)\right) \subseteq V=$ $\psi_{0}(V)$, so, f is $\varphi_{1,2} \psi_{1,0^{-} \text {continuous. }}^{\text {c }}$
2.9. Corollary. If (Y, ϑ) is $\psi_{1,2}-R_{2}$ and $\left(\psi_{2} \geq \psi_{1}\right.$ or $\left.\psi_{2} \geq \imath\right)$, then the following are equivalent:
a) f is $\varphi_{1,2} \psi_{1,0}-$ continuous,
b) f is $\varphi_{1,2} \psi_{1,2}$-continuous,
c) $f^{-1}(V) \in \varphi_{1,2} O(X)$ for each $V \in \psi_{1} O(Y)$.

Proof. $(b \Rightarrow c)$. Since Y is $\psi_{1,2}-R_{2}$, each ψ_{1}-open set is $\psi_{1,2}$ open. Since f is $\varphi_{1,2} \psi_{1,2^{-}}$continuous, the inverse image of each $\psi_{1,2^{-}}$open set under f is $\varphi_{1,2^{-}}$open [7].
$(c \Rightarrow a)$. Let $x \in X$ and $V \in \psi_{1} O(Y, f(x)) . x \in f^{-1}(V) \in \varphi_{1,2} O(X)$. There exists a φ_{1}-open set U such that $x \in U$ and $\varphi_{2}(U) \subseteq f^{-1}(V) . f\left(\varphi_{2}(U)\right) \subseteq V=$ $\psi_{0}(V)=\imath(V)$.
2.10. Lemma. If ($\varphi_{2} \geq \varphi_{1}$ or $\varphi_{2} \geq \imath$) and φ_{1} is monotonous, then (X, τ) is $\varphi_{1,2}-R_{2}$ iff $\varphi_{1} O(X)=\varphi_{1,2} O(X)$.

Proof. One part is clear from the definitions of $\varphi_{1,2^{-}} R_{2}$ space and $\varphi_{1,2}$ open set. Let $U \in \varphi_{1,2} O(X)$. Then $U \subseteq \varphi_{1,2} \operatorname{int} U$. For each $x \in U$, there exists an $W \in$ $\varphi_{1} O(X, x)$ such that $\varphi_{2}(W) \subseteq U$. Since $\varphi_{1} O(X) \subseteq \varphi_{2} O(X), W \subseteq \varphi_{2}(W) \subseteq U$. U can be written as a union of φ_{1}-open sets. Since φ_{1} is monotonous, U will be a φ_{1}-open set.
2.11. Example. Let $\varphi_{1}=$ int $\circ \mathrm{cl} \circ$ int, $\varphi_{2}=\mathrm{cl}, \varphi_{3}=\tau_{s}-\mathrm{cl}, \varphi_{4}=\tau^{\alpha}-\mathrm{cl}$ be operations on (X, τ). Let $\psi_{1}=\operatorname{int}, \psi_{2}=\operatorname{cl}, \psi_{3}=\Theta-\mathrm{cl}, \psi_{4}=v_{s}-\mathrm{cl}, \psi_{5}=v^{\alpha}-\mathrm{cl}$, $\psi_{6}=\mathrm{pcl}$ be operations on (Y, ϑ). Then:
$\varphi_{1} O(X)=\tau^{\alpha}, \psi_{1} O(Y)=\vartheta$.
In [7], by using operations the following equalities were shown. For each $U \in$ $\tau^{\alpha}=\varphi_{1} O(X), \varphi_{2}(U)=\varphi_{3}(U)=\varphi_{4}(U)$. For each $V \in \vartheta=\psi_{1} O(Y), \psi_{2}(V)=$ $\psi_{3}(V)=\psi_{4}(V)=\psi_{5}(V)=\psi_{6}(V)$.

$$
\varphi_{1,2} O(X)=\varphi_{1,3} O(X)=\varphi_{1,4} O(X)=\tau_{\Theta}=\tau_{\Theta}^{\alpha}
$$

$$
\psi_{1,2} O(X)=\psi_{1,3} O(X)=\psi_{1,4} O(X)=\psi_{1,5} O(X)=\psi_{1,6} O(X)=\vartheta_{\Theta}
$$

(Y, ϑ) is $\psi_{1,2}-R_{2}$ iff $\psi_{1,2} O(X)=\psi_{1} O(X)$ iff (Y, ϑ) is regular.
Now in case (Y, ϑ) is regular, and $f: X \rightarrow Y$, the following are equivalent:
a) For each $V \in \vartheta, f^{-1}(V)$ is Θ-open.
b) For each Θ-open set $V, f^{-1}(V)$ is Θ-open.
c) f is $\varphi_{1, i} \psi_{1, j}$-continuous. Here $i=2,3,4, j=2,3,4,5,6$.

By referring to [7], we may obtain other statements equivalent to the above.

2.12. Theorem:

a) If $\left(X, \varphi_{1,2} O(X)\right)$ is T_{i}, then (X, τ) is $\varphi_{1,2}-T_{i}, i=0,1,2$.
b) If ($\varphi_{2} \geq \varphi_{1}$ or $\varphi_{2} \geq \imath$), φ_{1} is monotonous and (X, τ) is $\varphi_{1,2}-R_{2}$, then $\left(X, \varphi_{1} O(X)\right)$ is $T_{i} \operatorname{iff}\left(X, \varphi_{1,2} O(X)\right)$ is $T_{i}, i=0,1,2$.
c) If $\tilde{\varphi}_{2}$ is the dual operation of φ_{2}, then (X, τ) is $\varphi_{1,2}-T_{2}$ iff for distinct points x and y in X, there exist a $U \in \varphi_{1} O(X)$ and a $K \in \varphi_{1} C(X)$ such that $x \in U, y \notin K$ and $\varphi_{2}(U) \subseteq \tilde{\varphi}_{2}(K)$.

Proof. a). We give the proof for $i=1$. Let $x, y \in X, x \neq y$. There are $\varphi_{1,2^{-}}$open sets U and V such that $x \in U, y \in V$ and $x \notin V, y \notin U$. Since $x \in \varphi_{1,2}-\operatorname{int} U$ and $y \in \varphi_{1,2}-\operatorname{int} V$, there are $U_{x} \in \varphi_{1} O(X, x)$ and $V_{y} \in \varphi_{1} O(X, y)$ such that $\varphi_{2}\left(U_{x}\right) \subseteq U, \varphi_{2}\left(V_{y}\right) \subseteq V$. We have $y \notin \varphi_{2}\left(U_{x}\right)$ and $x \notin \varphi_{2}\left(V_{y}\right)$. Hence (X, τ) is $\varphi_{1,2}-T_{1}$.
b). From Lemma 2.10, we have $\varphi_{1} O(X)=\varphi_{1,2} O(X)$. The proofs are now clear.
c). Let (X, τ) be $\varphi_{1,2}-T_{2}, x, y \in X$ and $x \neq y$. There are φ_{1}-open sets U and V such that $x \in U, y \in V$ and $\varphi_{2}(U) \cap \varphi_{2}(V)=\emptyset$. Now $\varphi_{2}(U) \subseteq X \backslash \varphi_{2}(V)=$ $\tilde{\varphi}_{2}(X \backslash V)$. Let $K=X \backslash V$. Then $K \in \varphi_{1} C(X)$ and $y \notin K$.

Conversely, let $x, y \in X$ and $x \neq y$. There is a φ_{1}-open set U and φ_{1}-closed set K such that $x \in U, y \notin K$ and $\varphi_{2}(U) \subseteq \tilde{\varphi}_{2}(K)$. Let $V=X \backslash K$. Then $V \in \varphi_{1} O(X), y \in V$ and $\tilde{\varphi}_{2}(K)=X \backslash \varphi_{2}(X \backslash K)=X \backslash \varphi_{2}(V)$. We now have $\varphi_{2}(U) \subseteq X \backslash \varphi_{2}(V)$ and $\varphi_{2}(U) \cap \varphi_{2}(V)=\emptyset$.
2.13. Theorem: Let $\mathcal{B}=\left\{\varphi_{2}(U): U \in \varphi_{1} O(X)\right\}$. If $\left(\varphi_{2} \geq \varphi_{1}\right.$ or $\left.\varphi_{2} \geq \imath\right)$ and $\varphi_{2}(U) \in \varphi_{1} O(X), \varphi_{2}\left(\varphi_{2}(U)\right) \subseteq \varphi_{2}(U)$ for each $U \in \varphi_{1} O(X)$, then the following are valid:
a) (X, τ) is $\varphi_{1,2}-T_{i}$ iff $\left(X, \varphi_{1,2} O(X)\right)$ is $T_{i}, i=0,1,2$.
b) $\left(X, \varphi_{1,2} O(X)\right)$ is T_{2} iff for $x, y \in X$ and $x \neq y$, there are $\mathcal{B}_{x}, \mathcal{B}_{y} \in \mathcal{B}$ such that $x \in \mathcal{B}_{x}, y \in \mathcal{B}_{y}$ and $\mathcal{B}_{x} \cap \mathcal{B}_{y}=\emptyset$.
c) $\left(X, \varphi_{1,2} O(X)\right)$ is T_{1} iff for $x, y \in X$ and $x \neq y$, there are $\mathcal{B}_{x}, \mathcal{B}_{y} \in \mathcal{B}$ such that $x \in \mathcal{B}_{x}, y \in \mathcal{B}_{y}$ and $x \notin \mathcal{B}_{y}, y \notin \mathcal{B}_{x}$.
d) $\left(X, \varphi_{1,2} O(X)\right)$ is T_{0} iff for $x, y \in X$ and $x \neq y$, there is a $B \in \mathcal{B}$ such that $(x \in B, y \notin B)$ or $(y \in B, x \notin B)$.

Proof. Under the given conditions, \mathcal{B} is a base for the supratopology $\varphi_{1,2} O(X)$, $\mathcal{B} \subseteq \varphi_{1,2} O(X) \cap \varphi_{1} O(X)$ and $U \subseteq \varphi_{2}(U)$ for each $U \in \varphi_{1} O(X),[10]$.
a). One part of the proof is clear from Theorem 2.12.(a). For the remaining parts, we give the proof only for $i=2$.

Let (X, τ) be $\varphi_{1,2}-T_{2}, x, y \in X$ and $x \neq y$. There are φ_{1}-open sets U and V such that $x \in U, y \in V$ and $\varphi_{2}(U) \cap \varphi_{2}(V)=\emptyset . \quad x \in U \subseteq \varphi_{2}(U) \in \varphi_{1,2} O(X)$, $y \in V \subseteq \varphi_{2}(V) \in \varphi_{1,2} O(X), \varphi_{2}(U) \cap \varphi_{2}(V)=\emptyset$. Hence $\left(\mathrm{X}, \varphi_{1,2} O(X)\right)$ is T_{2}.
b) -d$)$. Straightforward.

2.14. Theorem:

a) If φ_{2} is W.F.I.P. w.r.t. $\varphi_{1} O(X)$, then $U \cap \varphi_{2}(A)=\emptyset$ whenever $U \in \varphi_{1} O(X)$, $A \in P(X)$ and $U \cap A=\emptyset$.
b) If φ_{2} is W.F.I.P. w.r.t. $\varphi_{1} O(X)$ and $\varphi_{2}(U) \in \varphi_{1} O(X)$ for each $U \in \varphi_{1} O(X)$, then $\varphi_{2}(U) \cap \varphi_{2}(V)=\emptyset$ whenever $U, V \in \varphi_{1} O(X)$ and $U \cap V=\emptyset$.

Proof. a). Since φ_{2} is W.F.I.P. w.r.t. $\varphi_{1} O(X)$, for $U \in \varphi_{1} O(X)$ and $A \in P(X)$ we have $U \cap \varphi_{2}(A) \subseteq \varphi_{2}(U \cap A)$. If $U \cap A=\emptyset$, then $\varphi_{2}(U \cap A)=\emptyset$ and $U \cap \varphi_{2}(A)=\emptyset$.
b). Let $U, V \in \varphi_{1} O(X)$ and $U \cap V=\emptyset$. From (a), $U \cap \varphi_{2}(V)=\emptyset$. Since $\varphi_{2}(U) \in \varphi_{1} O(X)$, again from (a), $\varphi_{2}(U) \cap \varphi_{2}(V)=\emptyset$.
2.15. Theorem : Let φ_{1} be monotonous, $i=0,1,2$.
a) If (X, τ) is T_{i}, then $\left(X, \varphi_{1} O(X)\right)$ is T_{i}.
b) If $\left(\varphi_{2} \geq \varphi_{1}\right.$ or $\left.\varphi_{2} \geq \imath\right)$, then $\left(X, \varphi_{1} O(X)\right)$ is T_{i} when (X, τ) is $\varphi_{1,2}-T_{i}$.
c) If $\varphi_{2} \leq \imath$, then (X, τ) is $\varphi_{1,2}-T_{i}$ when $\left(X, \varphi_{1} O(X)\right)$ is T_{i}.

Proof. a). Since $\varphi_{1} O(X)$ is a supratopology and $\tau \subseteq \varphi_{1} O(X)$, the proofs are clear.
b). For $U \in \varphi_{1} O(X)$ and $x \in U$, we have $x \in U \subseteq \varphi_{2}(U)$, whence the results follow.
c). Since $\varphi_{2}(U) \subseteq U$ for $U \in \varphi_{1} O(X)$, the proofs are clear.
2.16. Theorem: Let φ_{1} be monotonous.
a) If φ_{2} is W.F.I.P. w.r.t. $\varphi_{1} O(X)$, and $\varphi_{2}(U) \in \varphi_{1} O(X)$ for each $U \in \varphi_{1} O(X)$, then (X, τ) is $\varphi_{1,2}-T_{2}$ when $\left(X, \varphi_{1} O(X)\right)$ is T_{2}.
b) If φ_{2} is W.F.I.P. w.r.t. $\varphi_{1} O(X),\left(\varphi_{2} \geq \varphi_{1}\right.$ or $\left.\varphi_{2} \geq \imath\right)$, and $\varphi_{2}(U) \in \varphi_{1} O(X)$ for each $U \in \varphi_{1} O(X)$, then (X, τ) is $\varphi_{1,2}-T_{2}$ iff $\left(X, \varphi_{1} O(X)\right)$ is T_{2}.
c) If φ_{2} is W.F.I.P. w.r.t. $\varphi_{1} O(X),\left(\varphi_{2} \geq \varphi_{1}\right.$ or $\left.\varphi_{2} \geq \imath\right)$, and $\varphi_{2}(U) \in$ $\varphi_{1} O(X), \varphi_{2}\left(\varphi_{2}(U)\right) \subseteq \varphi_{2}(U)$ for each $U \in \varphi_{1} O(X)$, then (X, τ) is $\varphi_{1,2^{-}}$ T_{2} iff $\left(X, \varphi_{1} O(X)\right)$ is T_{2} iff $\left(X, \varphi_{1,2} O(X)\right)$ is T_{2}.

Proof. a). Let $x, y \in X, x \neq y$. There are φ_{1}-open sets U and V such that $x \in U, y \in V$ and $U \cap V=\emptyset$. From Theorem $2.14(\mathrm{~b}) ., \varphi_{2}(U) \cap \varphi_{2}(V)=\emptyset$. Hence (X, τ) is $\varphi_{1,2}-T_{2}$.
b). This follows from (a) and Theorem 2.15 (b).
c). This follows from (b) and Theorem 2.13 (a).

2.17. Theorem :

a) (X, τ) is $\varphi_{1,2}-T_{0}$ iff for $x, y \in X, x \neq y, x \notin \varphi_{1,2} c l\{y\}$ or $y \notin \varphi_{1,2} c l\{x\}$.
b) If $\varphi_{2}(U) \in \varphi_{1} O(X), \varphi_{2}\left(\varphi_{2}(U)\right) \subseteq \varphi_{2}(U)$ for each $U \in \varphi_{1} O(X)$, and $\left(\varphi_{2} \geq\right.$ φ_{1} or $\varphi_{2} \geq$ ı) then, (X, τ) is $\varphi_{1,2}-T_{0}$ iff for $x, y \in X, x \neq y, \varphi_{1,2} \operatorname{cl}\{x\} \neq$ $\varphi_{1,2} \mathrm{cl}\{y\}$.
c) (X, τ) is $\varphi_{1,2}-T_{1}$ iff for $x, y \in X, x \neq y, x \notin \varphi_{1,2} \operatorname{cl}\{y\}$ and $y \notin \varphi_{1,2} \operatorname{cl}\{x\}$.

Proof. a). Let (X, τ) be $\varphi_{1,2}-T_{0}, x, y \in X$ and $x \neq y$. There is a φ_{1}-open set U such that $\left(x \in U, y \notin \varphi_{2}(U)\right)$ or $\left(y \in U, x \notin \varphi_{2}(U)\right)$. Hence $\left(x \in U, \varphi_{2}(U) \cap\{y\}=\right.$ $\emptyset)$ or $\left(y \in U, \varphi_{2}(U) \cap\{x\}=\emptyset\right)$. Thus, $x \notin \varphi_{1,2} \mathrm{cl}\{y\}$ or $y \notin \varphi_{1,2} \mathrm{cl}\{x\}$. The other part may be proved in a similar way.
b). Under the given conditions, $\varphi_{1} O(X) \subseteq \varphi_{2} O(X)$, and if $U \in \varphi_{1} O(X, x)$, then $x \in \varphi_{2}(U)$. So, for each $x \in X,\{x\} \subseteq \varphi_{1,2} \mathrm{cl}\{x\}$. Now, if (X, τ) is $\varphi_{1,2}-T_{0}$, the proof is clear from (a).

Suppose that for $x, y \in X, x \neq y$, we have $\varphi_{1,2} \operatorname{cl}\{x\} \neq \varphi_{1,2} \mathrm{cl}\{y\}$. There is $z \in X$ such that $\left(z \in \varphi_{1,2} \operatorname{cl}\{x\}, z \notin \varphi_{1,2} \operatorname{cl}\{y\}\right)$ or $\left(z \in \varphi_{1,2} \operatorname{cl}\{y\}, z \notin \varphi_{1,2} \operatorname{cl}\{x\}\right)$. Let $z \in \varphi_{1,2} \operatorname{cl}\{x\}$ but $z \notin \varphi_{1,2} \mathrm{cl}\{y\}$. Now there is a $U \in \varphi_{1} O(X, z)$ such that $\varphi_{2}(U) \cap\{y\}=\emptyset$. But since $z \in \varphi_{1,2} \operatorname{cl}\{x\}$, we have $\varphi_{2}(U) \cap\{x\} \neq \emptyset$. Hence, $x \in \varphi_{2}(U), \varphi_{2}(U) \in \varphi_{1} O(X)$ and $\varphi_{2}\left(\varphi_{2}(U)\right) \subseteq \varphi_{2}(U)$. So, $y \notin \varphi_{2}\left(\varphi_{2}(U)\right)$.

In the case where $z \in \varphi_{1,2} \operatorname{cl}\{y\}, z \notin \varphi_{1,2} \operatorname{cl}\{x\}$, the proof proceeds in the same way. Hence (X, τ) is $\varphi_{1,2}-T_{0}$.
c). Let (X, τ) be a $\varphi_{1,2}-T_{1}$ space, $x, y \in X$ and $x \neq y$. Now, $\{x\}$ and $\{y\}$ are $\varphi_{1,2}$-closed sets, so $\varphi_{1,2} \operatorname{cl}\{x\} \subseteq\{x\}$ and $\varphi_{1,2} \operatorname{cl}\{y\} \subseteq\{y\}$. Hence $y \notin \varphi_{1,2} \operatorname{cl}\{x\}$ and $x \notin \varphi_{1,2} \operatorname{cl}\{y\}$.

Conversely, let $x \notin \varphi_{1,2} \operatorname{cl}\{y\}, y \notin \varphi_{1,2} \operatorname{cl}\{x\}$ for $x, y \in X, x \neq y$. There are φ_{1-} open sets U and V such that $x \in U, \varphi_{2}(U) \cap\{y\}=\emptyset$ and $y \in V, \varphi_{2}(V) \cap\{x\}=\emptyset$. Now, $x \in U, y \notin \varphi_{2}(U)$ and $y \in V, x \notin \varphi_{2}(V)$. Hence (X, τ) is $\varphi_{1,2}-T_{1}$.
2.18. Theorem: Let $\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in O(X, \tau)$.
a) If $\varphi_{1} \leq \varphi_{1}^{\prime}, \varphi_{2}^{\prime} \leq \varphi_{2}$ and (X, τ) is $\varphi_{1,2}-T_{i}$, then (X, τ) is $\varphi_{1,2}^{\prime}-T_{i},(i=0,1,2)$.
b) If $\varphi_{2}(U)=\varphi_{3}(U)$ for each $\varphi_{1} O(X)$, then (X, τ) is $\varphi_{1,2}-T_{i}$ iff (X, τ) is $\varphi_{1,3^{-}}$ $T_{i}, i=0,1,2$.
2.19. Theorem: Let φ_{1} be monotonous and $\varphi_{2}=\varphi_{1} O(X)-c l$.
a) $U \cap \varphi_{2}(V)=\emptyset$ if $U, V \in \varphi_{1} O(X)$ and $U \cap V=\emptyset$.
b) If $\varphi_{2}(U) \in \varphi_{1} O(X)$ for each $U \in \varphi_{1} O(X)$, then $\left(X, \varphi_{1} O(X)\right)$ is T_{2} iff (X, τ) is $\varphi_{1,2}-T_{2}$.

Proof. Note that $\varphi_{1} O(X)$ is a supratopology, $\tau \subseteq \varphi_{1} O(X), \varphi_{2} \in O(X, \tau)$ and $\varphi_{2} \geq$ 。
a). Let $U, V \in \varphi_{1} O(X), U \cap V=\emptyset$, but $U \cap \varphi_{2}(V) \neq \emptyset$. Then there is a point $x \in X$ such that $x \in U$ and $x \in \varphi_{2}(V)$. Now $x \in U \in \varphi_{1} O(X), x \in \varphi_{1} O(X)-\mathrm{cl} V$, so $U \cap V=\emptyset$. This contradiction completes the proof.
b). Let $\left(X, \varphi_{1} O(X)\right)$ be $T_{2}, x, y \in X, x \neq y$. There are φ_{1}-open sets U and V such that $x \in U, y \in V$ and $U \cap V=\emptyset$. Hence $U \cap \varphi_{2}(V)=\emptyset$ from (a). Since $U, \varphi_{2}(V) \in \varphi_{1} O(X)$, we have $\varphi_{2}(U) \cap \varphi_{2}(V)=\emptyset$.

Now, let (X, τ) be $\varphi_{1,2}-T_{2}, x, y \in X$ with $x \neq y$. There are φ_{1}-open sets U and V such that $x \in U, y \in V, \varphi_{2}(U) \cap \varphi_{2}(V)=\emptyset$. Now $x \in U \subseteq \varphi_{2}(U)$, $y \in V \subseteq \varphi_{2}(V)$, and $\varphi_{2}(U) \in \varphi_{1} O(X), \varphi_{2}(V) \in \varphi_{1} O(X)$. Hence $\left(X, \varphi_{1} O(X)\right)$ is T_{2}.
2.20. Example. Let $\varphi_{1}=\operatorname{int}, \varphi_{2}=\operatorname{int} \circ \mathrm{cl}$.
φ_{2} is W.F.I.P. w.r.t. $\varphi_{1} O(X)=\tau$. Also φ_{2} is regular w.r.t. $\varphi_{1} O(X)$ and $\varphi_{2} \geq \varphi_{1}$. For $U \in \varphi_{1} O(X)$, we have $\varphi_{2}(U) \in \varphi_{1} O(X)$ and $\varphi_{2}\left(\varphi_{2}(U)\right) \subseteq \varphi_{2}(U)$.
$\mathcal{B}=\left\{\varphi_{2}(U): U \in \varphi_{1} O(X)\right\}=R O(X) . \varphi_{1,2} O(X)=\tau_{s} .(X, \tau)$ is $\varphi_{1,2}-R_{2}$ iff $\tau=\varphi_{1} O(X)=\tau_{s}$ iff (X, τ) is semi-regular. From Theorem 2.13, we have, (X, τ) is $\varphi_{1,2}-T_{i}$ iff $\left(X, \tau_{s}\right)$ is $T_{i}, i=0,1,2$. From Theorem $2.16(\mathrm{c}),(X, \tau)$ is $\varphi_{1,2}-T_{2}$ iff (X, τ) is T_{2} iff $\left(X, \tau_{s}\right)$ is T_{2}.
2.21. Example. Let $\varphi_{1}=$ int $\circ \mathrm{cl} \circ$ int and $\varphi_{2}=\mathrm{scl}$. Then φ_{2} is W.F.I.P. w.r.t. $\varphi_{1} O(X)=\tau^{\alpha}[7] . \varphi_{2}$ is regular w.r.t. $\varphi_{1} O(X)$ and $\varphi_{2} \geq \imath$.

For each $U \in \varphi_{1} O(X)=\tau^{\alpha}$, we have $\varphi_{2}(U)=\operatorname{scl} U=U \cup \stackrel{\circ}{U}=U \cup \stackrel{\circ}{\stackrel{\circ}{O}}=$ $\stackrel{\circ}{O} U \in \varphi_{1} O(X)$ and $\varphi_{2}\left(\varphi_{2}(U)\right) \subseteq \varphi_{2}(U)$. Then $\varphi_{1,2} O(X)$ is a topology and $\mathcal{B}=$ $\left\{\varphi_{2}(U): U \in \varphi_{1} O(X)\right\}=\left\{\operatorname{scl} U: U \in \tau^{\alpha}\right\}=\left\{U: U \in \tau^{\alpha}\right\}=R O(X)$ is a base for $\varphi_{1,2} O(X)$. Also, $\varphi_{1,2} O(X)=\tau_{s}$. Hence (X, τ) is $\varphi_{1,2}-T_{2}$ iff $\left(X, \tau^{\alpha}\right)$ is T_{2} iff $\left(X, \tau_{s}\right)$ is T_{2}.
2.22. Example. Let $\varphi_{1}=\mathrm{cl} \circ$ int. Then φ_{1} is monotonous, $\varphi_{1} O(X)=S O(X)$ is a supratopology on X and $\varphi_{2}=\varphi_{1} O(X)-\mathrm{cl}=\mathrm{scl}$. For $U \in \varphi_{1} O(X)=S O(X)$, $\varphi_{2}(U)=\operatorname{scl} U \in S O(X)=\varphi_{1} O(X)$. So, (X, τ) is $\varphi_{1,2}-T_{2}$ iff $\left(X, \varphi_{1} O(X)\right)$ is T_{2} iff for $x, y \in X, x \neq y$, there are semi-open sets U and V such that $x \in U, y \in V$ and $U \cap V=\emptyset$ iff for $x, y \in X, x \neq y$, there are semi-open sets U and V such that $x \in U, y \in V$ and $\operatorname{scl} U \cap \operatorname{scl} V=\emptyset$.
2.23. Example. Let $\varphi_{1}=\operatorname{int} \circ \mathrm{cl}, \varphi_{2}=\operatorname{pcl}, \psi_{1}=\operatorname{int}, \psi_{2}=\imath$.
$f: X \rightarrow Y$ is $\varphi_{1,2} \psi_{1,2}$ continuous iff f is strongly Θ-pre-continuous. Also, G_{f} is $\varphi_{1,2} \psi_{1,2}$-closed iff G_{f} is strongly pre-closed [6]. Hence, (Y, ϑ) is $\psi_{1,2}-T_{2}$ iff (Y, ϑ) is Hausdorff. Finally, (X, τ) is $\varphi_{1,2}-T_{2}$ iff (X, τ) is pre-Urysohn [6]. Many of the results in [6] have been obtained in [7-11] and here.

It is now possible to obtain many known results, some of which can be seen in [$2,3,6]$, by choosing particular operations. In addition, by combining the unifications in [7-9] with those in the present paper, we may obtain many other results.

References

[1] Abd El-Monsef, M.E. and Lashien, E.F. Local discrete extensions of supratopologies. Tamkang J. Math. 21 (1), 1-6, 1990.
[2] Jafari, S. and Noiri T. Functions with strongly P-closed graphs, Univ. Bacāu Stu. Cer. Ştıntifice, Seria. Matematica, 9, 103-110, 1999.
[3] Jafari, S. and Noiri T. Some properties of almost s-continuous functions, Rendiconti Del Circolo Matematico Di Palermo, Series II, Tomo XLVIII, 571582, 1999.
[4] Kandil, A., Kerre, E. E. and Nouh, A. A. Operations and mappings on fuzzy topological spaces, Ann. Soc. Sci. Bruxelles 105 (4), 165-188, 1991.
[5] Kerre, E. E., Nouh, A.A. and Kandil, A. Operations on the class of fuzzy sets on a universe endowed with a fuzzy topology, J. Math. Anal. Appl. 180, 325-341, 1993.
[6] Noiri, T. Strongly Θ-precontinuous functions, Acta Math. Hungar. 90 (4), 307-316, 2001.
[7] Yalvaç, T. H. A unified theory for continuities, submitted.
[8] Yalvaç, T. H. A unified theory on openness and closedness of functions, submitted.
[9] Yalvaç, T. H. A unified approach to compactness and filters, Hacettepe Bull. Nat. Sci. Eng. Series B 29, 63-75, 2000.
[10] Yalvaç, T. H. On some unifications, The First Turkish International Conference on Topology and its Applications, August, 2000; Hacettepe Bull. Nat. Sci. Eng. Series B 30, 27-38, 2001.
[11] Yalvaç, T. H. Unification of some topological concepts, International Conference on Topology and its Applications, September, 2000, Macedonia.

[^0]: *Hacettepe University, Mathematics Department, Ankara, Turkey.

