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Abstract

In this work a hierarchical method is given for analyzing three-way data
tables using classical factorial methods.
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1. Introduction

Classical factorial analysis methods as applied to two-way data tables are insuf-
ficient for three-way data tables. Therefore different techniques should be used.
The first formal work on this subject was carried out in 1982 by J. P. Benzecri [4].
The main principle of this method is based on transforming three-way compari-
son tables to logic tables. As it is known, the most important problem in three
dimensional data analysis is to express the data in terms of principle components,
namely the factors. The problem was solved in 1982 by a formula that completely
defines the three dimensional data in terms of principle components, including
third order interactions [6]. A sufficient approach can be obtained even if only
second order interactions are taken [2]. The expression of this formula, known as
the reconstruction formula, in terms of relative frequencies is as follows

fijt = fi · fj · ft
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where the first three sums are second order and the last sum a third order inter-
action, besides ϕα, ϕβ , ϕγ and ψδ are functions with zero mean and unit variance
defined on the sets I, J and T respectively [1].

We cannot examine three-way data tables directly using classical factorial anal-
ysis methods or obtain a good classification of these tables by applying hierarchical
methods directly. The grouping between individuals as well as variables in plain
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representations obtained by an application of suitable methods will usually be dif-
ferent from the grouping obtained by classical methods. Therefore the hierarchical
classifications available from such tables should be appropriate to these groupings
[3].

As is well known hierarchical methods, usually factorial analysis, can either
be applied to the distances between individuals obtained from correspondence
tables, or directly to logic tables. So a good classification can be obtained by
the application of known hierarchical methods to logic tables obtained from such
tables.

On the other hand, since the expression (reconstruction formula) connecting
three dimensional data to principle components is known, a classification can be
obtained by applying known hierarchical methods to principle components instead
of distance tables.

One may ask which of these two methods should be used to classify three-way
tables. In the first case, the classification can be done using hierarchical methods
after transforming to a logic table, without using factorial analysis. However,
this method may be expensive since logic tables are very high dimensional. In
the second case, factorial analysis methods must be used to obtain the principle
components [5].

In fact, for the selection of the method, a sufficient criteria will be to consider
the purpose of the study. To apply a method a metric must be chosen. This will
be either the Euclid or the χ2 metric.

2. Metric Classification

In hierarchy analysis, the data is usually given as a two-way table, as in the case
of factorial analysis techniques:

xji , i = 1, 2, . . . , n, j = 1, 2, . . . , p.

Such a table can be considered as a system of values taken on the set of individuals
using p variables. If each individual xi of the set is assigned the mass mi > 0,
then the total mass becomes m =

∑

{mi | i ∈ [1, n]}. In addition, defining the
relative mass for each individual as pi = mi/m, the total mass becomes

∑

pi = 1.
For each individual, the corresponding point in Rp is given as follows:

∀ i ∈ [1, n], xi = [x
1

i , x
2

i , . . . , x
p
i ] ∈ Rp.

Define the cloud N of individuals by N = {(xi, pi) | i ∈ [1, n], pi > 0}. Assume
that a symmetric and positive definite bilinear form M and scalar product with
respect to M is defined by the following.

∀ i, j, 〈xi, xj〉M =M(xi, xj) = x′iMxj =‖ xi − xj ‖
2

M .

The center of mass (or gravity) of the cloud, denoted by gN (or briefly by g) is
given by g =

∑

pixi, where

g = [g1, g2, . . . , gp] ∈ Rp, gj =
∑

pix
j
i .
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The total mass, total gravity and the center of gravity of a part a of the cloud are
denoted by ma, pa and ga, respectively, where:

ma =
∑

{

mi | xi ∈ a
}

, ga =
∑

{

mi

ma
xi | xi ∈ a

}

pa =
ma

m
=
∑

{

pi | xi ∈ a
}

and ga =
1

pa

∑

{

pixi | xi ∈ a
}

.

3. Moments of Inertia

3.1. Definition. The second central moments, variance and inertia according to
any point y in the space Rp of a cloud N with center of gravity g, are denoted by
M2(N), V (N) and Iy(N), and defined by

M2(N) =
∑

{

mi‖xi − g‖
2

M | xi ∈ N
}

,

V (N) =
∑

{

pi‖xi − g‖
2

M | xi ∈ N
}

,

Iy(N) =
∑

{

pi‖xi − y‖
2

M | xi ∈ N
}

,

respectively. It is obvious that the moment of the cloud according to its center of
gravity is equal to its variance, the value of Ig = V (N) expresses the prevalence
around y of the cloud N .

3.2. Definition. The second moment, variance and inertia with respect to any
point y in Rp of a part a in P (N), with center of gravity at ga, are given by

M2(a) =
∑

{

mi‖xi − g‖
2

M | xi ∈ a
}

,

V (a) =
∑

{mi

m
‖xi − g‖

2

M | xi ∈ a
}

,

Iy(a) =
1

pa

∑

{

pi‖xi − g‖
2

M | xi ∈ a
}

,

respectively.

It is clear that one may obtain the relations

M2(a) = maIg(a) = mV (a)

among M2(a), V (a) and Ig(a).

Now consider a partition Q of N , that is N =
⋃

{a | a ∈ Q} where a, a′ ∈ Q,
a 6= a′ =⇒ a ∩ a′ = ∅. For each class a define the inertia of the class to be its
moment of inertia Iga

(a) with respect to the center of gravity ga. That is,

Iga
(a) =

1

pa

∑

{pi‖xi − g‖
2

M | xi ∈ a}.

Let G denote the set of centers of gravity of the classes, i.e. G = {ga | a ∈ Q}. If
a gravity pa is assigned to each ga then the moment of inertia of the set G with
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respect to the center of gravity g of the cloud is said to be the inertia within the
class and is given by

Ig(G) =
∑

{

pa‖ga − g‖
2

M | a ∈ Q
}

4. The Method of Metric Classification

We need to give criteria measuring the proximity among parts for use in algorithms
giving an application of methods related to metric classification. Here we will give
two such criteria. Given a metric in the space Rp including the cloud N , a distance
function may be defined as

∀xi, xj ∈ Rp, d(xi, xj) = dij = [M(xi − xj , xi − xj)]
1/2 = ‖xi − xj‖M .

The main purpose of a metric classification is to separate a cloud N consisting
of n individuals into k classes so that individuals in the same class have similar
properties, while it is possible to distinguish among classes. Such a grouping is only
possible by giving a criterion that measures the proximity of individuals belonging
to the same class, so giving the quality of splitting. In fact, if such a criterion is
given it is possible to choose the best splitting by examining all possible splittings.
But to carry out this takes too much time. As an example, the number of 4-class
splittings of a class consisting of 14 individuals, is more than 10 million.

Because of this, instead of trying to obtain the best solution, we have to set
up algorithms that give approximate solutions.

1) Each class has to have maximum homogeneity in terms of the quality p that
the individuals have,

2) The classes have to be as different from each other as possible.

Achieving this end depends on the difference between the classes as well as on the
best measurement of homogeneity in the same class. Hence it is necessary to define
a suitable proximity criterion in the cloud N , and we try to set up algorithms
which ensure that the metric classification has the two proximity criteria given
above. Efficiency of the algorithms depends on the transition formula, which give
proximity criteria while passing from the hierarchy Pk−1 to the hierarchy Pk [7].
Given classes a, b and c, the main step is to relate ‖ga − gb∪c‖ with ‖ga − gb‖,
‖ga − gc‖ and ‖gc − gb‖. Clearly

pbgb + pcgc = (pb + pc)gb∪c

and so

(pb + pc)(ga − gb∪c) = pb(ga − gb) + pc(ga − gc).

Hence we have

(pb + pc)
2‖ga − gb∪c‖

2 = p2

b‖ga − gb‖
2 + p2

c‖ga − gc‖
2

+2pbpcM(ga − gb, ga − g − c).
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On the other hand, since gc − gb = (ga − gb)− (ga − gc), we have

‖gc − gb‖
2 = ‖ga − gb‖

2 − 2M(ga − gb, ga − gc) + ‖ga − gc‖
2

and so

(pb + pc)
2‖ga − gb∪c‖

2 = pb(pb + pc)‖ga − gb‖
2

+pc(pb + pc)‖ga − gc‖
2 − pbpc‖gc − gb‖

2.

Finally we obtain

(pb + pc)‖ga − gb∪c‖
2 = pb‖ga − gb‖

2 + pc‖ga − gc‖
2

−
pbpc
pb + pc

‖gb − gc‖
2, (1)

as required.

5. Indexing the Hierarchy

To index a hierarchy i.e. to compute the values of the indexing function ∆, we
will use an appropriate distance δ between the parts.

One advantage of indexing a hierarchy is that the proximity of splittings on
the classification tree can be measured in terms of the proximity index between
previously given parts [8].

If for c = a ∪ b we define ∆(c) = max{∆(a),∆(b), δ(a, b)} then we obtain a
hierarchy index consistent with these criteria.

6. An Algorithm related to the Inertia

The prevalence of a class is measured using the inertia of that class. The smaller
the inertia of a class the higher the homogeneity. Now consider the following
formula that relates the inertia between classes to the inertia within classes.

Ig(N) = Ig(G) +
∑

{

Iga(a) | a ∈ Q
}

Since the total inertia Ig(N) is constant, to minimize the total inertia within
classes is equivalent to maximizing the inertia between classes. So, if we take
inertia within a class as a measure of homogeneity and inertia between classes
as a measure of difference, investigating different classes will be equivalent to
investigating homogeneous classes.

This criterion will choose the best splitting having a fixed number of classes in
the cloud N , but is not useful for comparing splittings having different numbers
of classes because it favours small classes.

In fact, the total within-class inertia of the best k-class splitting is always
greater than the total within-class inertia of the best k + 1 class splitting. So the
k+1 class splitting will be better. Therefore, the best possible splitting according
to this view will occur when each class has one element. In this case, we will have
∑

{Iga(a) | a ∈ Q
}

= 0 since each class coincides with its center of gravity.
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We therefore see that, while investigating the best splitting of the set, we must
examine how to determine the number k of classes. We can express the quality of
a splitting using between-class and within-class inertia. A good splitting occurs
when between-class inertia is large and, consequently, within-class inertia is small.
When one passes from a k+1 class splitting to a k class splitting by combining two
classes, between-class inertia will decrease. Given that this is so (see Theorem 6.1
below), our criterion should therefore be to group two classes for which the loss of
between-class inertia will be least. This means that if the distance between two
classes is chosen to represent the loss of inertia after they are combined, then we
should combine classes which are close together. In other words, a pair of classes
for which the loss of inertia will be least will be the closest together, and should
therefore be combined. The following theorem is important in this respect:

6.1. Theorem : Let Qk be a k-class splitting of the individuals of the cloud

N , N =
⋃

{a | a ∈ Qk}, where a ∩ a′ = ∅ for a 6= a′. The within-class inertia

Ig(Gk) =
∑

{pa‖ga − g‖2M | a ∈ Qk} corresponding to this splitting is a non-

increasing function of k. Here pa, ga and Gk are as before

Now let a and b belong toQk, and define the k−1 class splittingQk−1 by combining
the classes a and b. According to Theorem 6.1 the number Ig(Gk) − Ig(Gk−1) is
non-negative, and as explained above it is appropriate to take this as a measure
of the distance between the classes a and b. Hence we define

δ(a, b) = Ig(Gk)− Ig(Gk−1)

and call this the distance between the classes a and b. Using the equality (1) it
may be proved that

δ(a, b) =
papb
pa + pb

‖ga − gb‖
2

M .

Now let us try to give a transition formula. Suppose that the hierarchy Hk is
obtained by grouping any two elements b and c of the hierarchy Hk−1. Then if a
is any part in Hk the distance δ(a, b ∪ c) is given by

δ(a, b ∪ c) =
pa(pb + pc)

pa + pb + pc
‖ga − gb∪c‖

2

=
pa(pb + pc)

pa + pb + pc

[

pb
pb + pc

‖ga − gb‖
2 +

pc
pb + pc

‖ga − gc‖
2

−
pbpc
pb + pc

‖gc − gb‖
2

=
pa + pb

pa + pb + pc
δ(a, b) +

pa + pc
pa + pb + pc

δ(a, c)−
pa(pb + pc)

pa + pb + pc
δ(c, b).

7. The selection of the number of classes and the quality of
splitting

Let us consider again the formula that relates between-class inertia to within-class

inertia, namely Ig(N) = Ig(G)+
∑

{

Iga(a) | a ∈ Q
}

. This formula may be written
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briefly as IT = I1+I2. Hence, we have I1/IT +I2/IT = 1. The within-class inertia
I1 belonging to the splitting can always be computed whatever method is used to
obtain a k class hierarchy. So given any k the ratio τ = I2/IT , called the quality

of splitting, can be computed. It is clear that 0 ≤ τ ≤ 1. When k = 1 then τ = 0
and when k = n then t = 1. We can determine the most convenient value of k by
obtaining several solutions for different values of k between the smallest and the
largest and examining the corresponding τ values.
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