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Abstract

In this study, the geometric representation of an Orthogonal Array is
obtained using finite analytic projective geometry of the Galois field GF(s)
of t-dimensions, which can be denoted by PG(t, s), where s is a prime or
a power of a prime number. We give relations between the parameters of
Orthogonal Arrays and properties of the projective geometry and of related
geometries. We offer some geometrical examples.
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1. Introduction

Orthogonal arrays, first introduced by Rao [7, 8] have been used extensively in
factorial designs. Specifically, an orthogonal array of size N , k constraints, s levels
and strength t, denoted by OA(N, k, s, t), is a k ×N matrix X of s symbols such
that all the ordered t-tuples of the symbols occur equally often as column vectors
of any t × N submatrix of X. It is clear that N must be of the form λst, where
λ is usually called the index of the orthogonal array. In applications to factorial
designs, each row corresponds to a factor, the symbols are factor levels and each
column represents a combination of the factor levels. Thus every OA(N, k, s, t)
defines an N -run factorial design for k factors each having s levels [6], where
λ = 1, and we refer to such arrays as “orthogonal arrays of index unity” [5].

A connection between orthogonal arrays and the theory of confounding in sym-
metrical factorial designs (based on the use of finite projective geometries) was first
established by Bose and Kishen [3], and this was later amplified by Bose [1, 2].

Bose [1] proved that the maximum number of factors, which can be accom-
modated in symmetrical problems of the design of experiments, could be attacked
fruitfully by interpreting the statistical terms involved in terms of finite geometries
[10].
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The reader may refer to Raghavarao [9] for the definition of an orthogonal ar-
ray, various construction methods and the maximum the number of constraints.
Further, Raghavarao shows that projective geometries are related to orthogonal ar-
rays, discusses the product of orthogonal arrays and gives the relationship between
orthogonal arrays and partially balanced arrays.

2. The use of Projective Geometry in the Construction of

Orthogonal Arrays

There is a GF(s = pn) of order pn for every prime number p and every positive
integer n. A point in the t-dimensional finite projective geometry PG(t, s) is an
ordered set of t+1 elements of GF(s), not all of which are equal to zero. If we delete
any line of PG(t, s), together with the points on it, we obtain a finite Euclidean
Geometry EG(t, s), constructed on GF(s). The idea of deleting a line can be
considered as grouping s varieties according to a treatment or combination of
treatments, which are the points of the deleted line. The geometric representation
of an Orthogonal Array can be obtained using a finite analytic projective geometry
over the Galois field GF(s) of t-dimensions. Rao [7] considered constructions of
hypercubes from PG(t, s). The orthogonal array OA(st, (st − 1)/(s − 1), s, 2) of
index λ = st−2, which is the same as the hypercube [(st − 1)/(s − 1), s, t, 2] of
strength 2, can be constructed from PG(t, s) in the following manner: in PG(t, s)
the equation

x0 = 0 (1)

represents the (t− 1)-flat at infinity, and any other (t− 1)-flat can be represented
by an equation of the from

a0x0 + a1x1 + · · ·+ atxt = 0, (2)

so a (t− 2)-flat at infinity can be represented by

x0 = 0; a1x1 + a2x2 + · · ·+ atxt = 0, ai ∈ GF (s), i = 1, 2, . . . , t. (3)

We observe that there are (st−1)/(s−1), (t−2)-flats at infinity. From the (t−2)-
flat given by (3), there originates a pencil of s, (t− 1)-flats given by the following
equation:

αix0 + a1x1 + a2x2 + · · ·+ atxt = 0, αi ∈ GF(s) (4)

The (t − 2)-flat (3) is called the vertex of the pencil (4), and corresponds to a
factor identified by (a1, a2, . . . , at). The (t− 1)-flat (4), with αi as the coefficient
of x0, may be identified with αi, which may be taken to correspond to the i

th level
(i = 0, 1, . . . , s − 1) of a factor, identified by (a1, a2, . . . , at), defining the vertex
(3) of the pencil (4). Thus there are m = (st − 1)/(s− 1) factors, each at s levels.

There are st finite points (1, x1, x2, . . . , xt), and through each of the finite
points there passes exactly one (t−1)-flat from each of the (st−1)/(s−1) pencils
of (t − 1)-flats. We now identify the st finite points and the factors with the
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columns and rows of an array, and fill its (i, j)th position by k if the αth
k flat

of the ith pencil passes through the jth finite point (k = 0, 1, . . . , s − 1; i =
1, 2, . . . , (st − 1)/(s − 1); j = 1, 2, . . . , st). The array thus constructed can easily
be verified to be the orthogonal array OA(st, (st−1)/(s−1), s, 2) of index λ = st−2

[9].

2.1. Illustration. We illustrate this method of construction by constructing
the orthogonal array OA(8, 7, 2, 2) of index 2. This orthogonal array can be con-
structed from PG(3, 2). In PG(3, 2) each of the 15 points can be represented
by (x0, x1, x2, x3), where xi = 0 or 1 (i = 0, 1, 2, 3), and not all the xi coordi-
nates are equal to zero. The vertices corresponding to the pencil (4) are (1,0,0),
(0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1) and (1,1,1), and we call them the factors
A,B,C,D,E, F and G, respectively. The eight finite points are (1,0,0,0), (1,1,0,0),
(1,0,1,0), (1,0,0,1), (1,1,1,0), (1,1,0,1), (1,0,1,1) and (1,1,1,1), numbered in the se-
rial order 1, 2, . . . , 8. Let us form an array of seven rows and eight columns, the
rows corresponding to the seven factors, and the columns corresponding to the
eight finite points, and fill the (i, j)th entry by the flat number of the ith pen-
cil passing through the jth finite point (i = A,B, . . . , G; j = 1, 2, . . . , 8). For
example, the second point lies on the flat number 1 passing through the vertex
D, and hence the entry in the second column under row D is 1. The completed
arrangement constituting the orthogonal array OA(8, 7, 2, 2) of index 2 will then
be as follows:

Table 1. Orthogonal Array OA(8,7,2,2) of index 2

Finite Points
Factor 1 2 3 4 5 6 7 8
A 0 1 0 0 1 1 0 1
B 0 0 1 0 1 0 1 1
C 0 0 0 1 0 1 1 1
D 0 1 1 0 0 1 1 0
E 0 1 0 1 1 0 1 0
F 0 0 1 1 1 1 0 0
G 0 1 1 1 0 0 0 1

To construct a hypercube of strength 3, or equivalently an orthogonal array of
index λ = st−3 from PG(t, s), we need to select the factors suitably. To get the
orthogonal array of index λ = st−3, it is necessary that three (t−1)-flats belonging
to three different pencils from the set of (st − 1)/(s− 1) pencils intersect at st−3

finite points. Any two vertices corresponding to two pencils intersect at a (t− 3)-
flat at infinity. A third vertex has to be chosen so that it does not pass through
the intersection of the previous two vertices; a fourth vertex has to be chosen so
that it does not pass through the intersection of any two vertices already chosen;
and so on. It is now easy to see that the conditions for an orthogonal array of
index λ = st−3 are satisfied if the selected vertices are identified with factors [9].

Thus, Table 1 defines the finite EG(3, 2).
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2.2. Illustration. Let us construct the orthogonal array OA(9, 4, 3, 2) of index
unity, where s = 3 and t = 2. This orthogonal array can be constructed from
PG(2, 3). In PG(2, 3) each of the 13 points can be represented by (x0, x1, x2),
where xi = 0, 1 or 2 (i = 0, 1) and not all the coordinates xi are equal to zero.
The lines and the points on those lines in PG(2, 3) are as follows:

Table 2. Lines and Points in PG(2,3)

Lines Points on Lines

[0, 0, 1] (1,0,0), (0,1,0), (1,1,0), (1,2,0)

[0, 1, 0] (1,0,0), (0,0,1), (1,0,1), (1,0,2)

[0, 2, 1] (1,0,0), (0,1,1), (1,1,1), (1,2,2)

[0, 1, 1] (1,0,0), (0,2,1), (1,1,2), (1,2,1)

[1, 0, 0] (0,1,0), (0,0,1), (0,1,1), (0,2,1)

[1, 0, 2] (0,1,0), (1,0,1), (1,1,1), (1,2,1)

[1, 0, 1] (0,1,0), (1,0,2), (1,1,2), (1,2,2)

[1, 2, 0] (1,1,0), (0,0,1), (1,1,1), (1,1,2)

[2, 1, 1] (1,1,0), (1,0,2), (0,1,1), (1,2,1)

[1, 2, 1] (1,2,0), (0,0,1), (1,2,1), (1,2,2)

[1, 1, 0] (1,1,0), (1,0,1), (0,2,1), (1,2,2)

[1, 1, 2] (1,2,0), (1,0,1), (0,1,1), (1,1,2)

[1, 1, 1] (1,2,0), (1,0,2), (0,2,1), (1,1,1)

We selected the finite points (1, x1, x2, . . . , xt) to correspond to s
t, those points

whose first coordinate is zero and the first line will be removed. The points and
corresponding factors and factor combinations are given as follows:

Table 3.

Lines Points on Lines Factor and Factor Combinations

[1, 0, 0] (0,1,0) (0,0,1) (0,1,1) (0,2,1) B C BC BC2

[0, 0, 1] (1,0,0) (0,1,0) (1,1,0) (1,2,0) A B AB AB2

[1, 0, 1] (0,1,0) (1,0,2) (1,1,2) (1,2,2) B AC2 ABC2 AB2C2

[1, 0, 2] (0,1,0) (1,0,1) (1,1,1) (1,2,1) B AC ABC AB2C

Lines Points on Lines Factor and Factor Combinations

[1, 0, 0] (0,1,0) (0,0,1) (0,1,1) (0,2,1) B C BC BC2

[0, 1, 0] (1,0,0) (0,0,1) (1,0,1) (1,0,2) A C AC AC2

[1, 1, 0] (0,0,1) (1,2,1) (2,1,1) (1,2,0) C AB2C AB2C2 AB2

[1, 2, 0] (1,1,0) (0,0,1) (1,1,1) (1,1,2) AB C ABC ABC2

Lines Points on Lines Factor and Factor Combinations

[1, 0, 0] (0,1,0) (0,0,1) (0,1,1) (0,2,1) B C BC BC2

[0, 2, 1] (1,0,0) (0,1,1) (1,1,1) (1,2,2) A BC ABC AB2C2

[1, 1, 2] (1,2,0) (1,0,1) (0,1,1) (1,1,2) AB2 AC BC ABC2

[1, 2, 2] (1,1,0) (1,0,2) (0,1,1) (1,2,1) AB AC2 BC AB2C
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Lines Points on Lines Factor and Factor Combinations

[1, 0, 0] (0,1,0) (0,0,1) (0,1,1) (0,2,1) B C BC BC2

[1, 1, 1] (1,1,1) (1,2,0) (1,0,2) (0,2,1) ABC AB2 AC2 BC2

[0, 1, 1] (1,0,0) (0,2,1) (1,2,1) (1,1,2) A BC2 AB2C ABC2

[2, 1, 1] (1,1,0) (1,0,1) (2,1,1) (0,2,1) AB AC AB2C2 BC2

Since the line [1, 0, 0] and points on that line are removed, we have 12 lines and
9 points. Using the above notation these 12 lines and points can be shown as
follows:

Table 4.

Lines Points on Lines Factors and Combinations Deleted Line : Points

[0, 0, 1] (1,0,0) (1,1,0) (1,2,0) A AB AB2 [1, 0, 0] :

[1, 0, 1] (1,0,2) (1,1,2) (1,2,2) AC2 ABC2 AB2C2 (0,1,0) (0,0,1)

[1, 0, 2] (1,0,1) (1,1,1) (1,2,1) AC ABC AB2C (0,1,1) (0,2,1)

Lines Points on Lines Factors and Combinations Deleted Line : Points

[0, 1, 0] (1,0,0) (1,0,1) (1,0,2) A AC AC2 [1, 0, 0] :

[1, 1, 0] (1,2,1) (2,1,1) (1,2,0) AB2C AB2C2 AB2 (0,1,0) (0,0,1)

[1, 2, 0] (1,1,0) (1,1,1) (1,1,2) AB ABC ABC2 (0,1,1) (0,2,1)

Lines Points on Lines Factors and Combinations Deleted Line : Points

[0, 1, 2] (1,0,0) (1,1,1) (1,2,2) A ABC AB2C2 [1, 0, 0] :

[1, 1, 2] (1,2,0) (1,0,1) (1,1,2) AB2 AC ABC2 (0,1,0) (0,0,1)

[1, 2, 2] (1,1,0) (1,0,2) (1,2,1) AB AC2 AB2C (0,1,1) (0,2,1)

Lines Points on Lines Factors and Combinations Deleted Line : Points

[1, 1, 1] (1,1,1) (1,2,0) (1,0,2) ABC AB2 AB2C2 [1, 0, 0] :

[0, 1, 1] (1,0,0) (1,2,1) (1,1,2) AB2 AC ABC2 (0,1,0) (0,0,1)

[2, 1, 1] (1,1,0) (1,0,1) (2,1,1) AB AC2 AB2C (0,1,1) (0,2,1)

The vertices corresponding to the pencil (4) are (0,1,0), (0,0,1), (0,1,1) and (0,2,1),
and we call them the factors B, C, BC and BC2, respectively. The nine fi-
nite points are (1,0,0), (1,0,1), (1,0,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1) and
(1,2,2), numbered in the serial order 1, 2, . . . , 9. Let us form an array of four rows
and nine columns, the rows corresponding to the four factors, and the columns
corresponding to the nine finite points, and fill the (i, j)th entry by the flat num-
ber of the ith pencil passing through the jth finite point (i = B,C,BC,BC2; j =
1, 2, . . . , 9). For example, the second point lies on flat number 1, passing through
the vertex B, and hence the entry in the second column under row B is 0. Deleted
points corresponding to vertices (factor and factor combinations) are multiplied by
the finite points, and the (i, j)th entry filled by the number obtained. For instance,
if the second point and vertex B are multiplied, the (1, 2)th entry will be 0, and so
on. The completed arrangement, constituting the orthogonal array OA(9, 4, 3, 2)
of unit index, will then be as follows:
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Table 5. Orthogonal Array OA(9,4,3,2) of unit index

Finite Points

Factor 1 2 3 4 5 6 7 8 9

B 0 0 0 1 1 1 2 2 2

C 0 1 2 0 1 2 0 1 2

BC 0 1 2 1 2 0 2 0 1

BC2 0 1 2 2 0 1 1 2 0

2.3. Definition. A k-net, N , is a system of undefined points and lines, together
with an incidence relation, subject to the following axioms:

(i) N has at least one point.

(ii) The lines of N are partitioned into k disjoint, nonempty, “parallel classes”
such that

(a) each point of N is incident with exactly one line of each class;

(b) for any two lines belonging to distinct classes, there corresponds exactly
one point of N which is incident with both lines.

If some line of N contains exactly n distinct points, the following statements are
true:

(I) Each line of N contains exactly n distinct points, where n ≥ 1.

(II) Each point of N lies in exactly k distinct classes, where k > 1.

(III) N has exactly kn distinct lines. These fall into k parallel classes of n lines
each. Distinct lines of the same parallel class have no common points. Two
lines of different classes have exactly one common point.

(IV) N has exactly n2 distinct points [4].

According to Definition 2.3, Table 3 defines a net. A finite net, N , of order n,
deficiency zero, is precisely an affine plane of order n. Thus the design above is an
affine plane.

3. Conclusion

The construction and analysis of orthogonal arrays needs special care. There
are several methods which can be used to construct orthogonal arrays. We have
tried to give relations between orthogonal arrays and properties of projective and
related geometries. We have offered some geometrical examples, some of which
can be considered original.
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