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Abstract

By using the critical point method, some new criteria are obtained for
the existence and multiplicity of periodic and subharmonic solutions
to a 2nth-order nonlinear difference equation. The proof is based on
the Linking Theorem in combination with variational technique. Our
results generalize and improve some known ones.
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1. Introduction
Existence of periodic solutions of higher-order differential equations has been the subject
of many investigations [8,19-21,34,38,39]. By using various methods and techniques, such
as fixed point theory, the Kaplan-Yorke method, critical point theory, coincidence degree
theory, bifurcation theory and dynamical system theory etc., a series of existence results
for periodic solutions have been obtained in the literature. Difference equations, the
discrete analogs of differential equations, occur widely in numerous settings and forms,
both in mathematics itself and in its applications to statistics, computing, electrical
circuit analysis, dynamical systems, economics, biology and other fields. For the general
background of difference equations, one can refer to monographs [1,3,4,31]. Since the last
decade, there has been much progress on the qualitative properties of difference equations,
which included results on stability and attractivity [22,31,33,48] and results on oscillation
and other topics [1-4,7,11-15,17,18,28-30,32,44-47]. Only a few papers discuss the periodic
solutions of higher-order difference equations. Therefore, it is worthwhile to explore this
topic.

Let N, Z and R denote the sets of all natural numbers, integers and real numbers
respectively. For a, b ∈ Z, define Z(a) = {a, a+ 1, · · · }, Z(a, b) = {a, a+ 1, · · · , b} when
a ≤ b. * denotes the transpose of a vector.

In this paper, we consider the following forward and backward difference equation

(1.1) ∆n (rk−n∆nuk−n) = (−1)nf(k, uk+1, uk, uk−1), n ∈ Z(3), k ∈ Z,

where ∆ is the forward difference operator ∆uk = uk+1 − uk, ∆nuk = ∆(∆n−1uk), rk is
real valued for each k ∈ Z, f ∈ C(Z×R3,R), rk and f(k, v1, v2, v3) are T -periodic in k
for a given positive integer T .

We may think of (1.1) as a discrete analogue of the following 2nth-order functional
differential equation

(1.2)
dn

dtn

[
r(t)

dnu(t)

dtn

]
= (−1)nf(t, u(t+ 1), u(t), u(t− 1)), t ∈ R.

Equations similar in structure to (1.2) arise in the study of the existence of solitary waves
of lattice differential equations, see Smets and Willem [42].

The widely used tools for the existence of periodic solutions of difference equations
are the various fixed point theorems in cones [1,3,4,27]. It is well known that critical
point theory is a powerful tool that deals with the problems of differential equations
[8,10,16,25,26,43]. Only since 2003, critical point theory has been employed to estab-
lish sufficient conditions on the existence of periodic solutions of difference equations.
By using the critical point theory, Guo and Yu [28-30] and Shi et al.[41] established
sufficient conditions on the existence of periodic solutions of second-order nonlinear dif-
ference equations. Compared to first-order or second-order difference equations, the
study of higher-order equations has received considerably less attention (see, for exam-
ple, [1,5,6,11-15,17,18,23,31,35,37] and the references contained therein). Ahlbrandt and
Peterson [5] in 1994 studied the 2nth-order difference equation of the form,

(1.3)
n∑
i=0

∆i
(
ri(k − i)∆iu(k − i)

)
= 0

in the context of the discrete calculus of variations, and Peil and Peterson [37] studied
the asymptotic behavior of solutions of (1.3) with ri(k) ≡ 0 for 1 ≤ i ≤ n − 1. In 1998,
Anderson [6] considered (1.3) for k ∈ Z(a), and obtained a formulation of generalized
zeros and (n, n)-disconjugacy for (1.3). Migda [35] in 2004 studied an mth-order linear
difference equation. In 2007, Cai and Yu [9] have obtained some criteria for the existence



of periodic solutions of a 2nth-order difference equation

(1.4) ∆n (rk−n∆nuk−n) + f(k, uk) = 0, n ∈ Z(3), k ∈ Z,

for the case where f grows superlinearly at both 0 and ∞. However, to the best of our
knowledge, the results on periodic solutions of higher-order nonlinear difference equations
are very scarce in the literature. Furthermore, since (1.1) contains both advance and
retardation, there are very few manuscripts dealing with this subject. The main purpose
of this paper is to give some sufficient conditions for the existence and multiplicity of
periodic and subharmonic solutions to a 2nth-order nonlinear difference equation. The
main approach used in our paper is a variational technique and the Linking Theorem.
Particularly, our results not only generalize the results in the literature [9], but also
improve them. In fact, one can see the following Remarks 1.2 and 1.4 for details. The
motivation for the present work stems from the recent papers in [13,24].

Let
r = min

k∈Z(1,T )
{rk}, r̄ = max

k∈Z(1,T )
{rk}.

Our main results are as follows.

Theorem 1.1. Assume that the following hypotheses are satisfied:
(r) rk > 0,∀k ∈ Z;

(F1) there exists a functional F (k, v1, v2) ∈ C1(Z ×R2,R) with F (k, v1, v2) ≥ 0 and it
satisfies

F (k + T, v1, v2) = F (k, v1, v2),

∂F (k − 1, v2, v3)

∂v2
+
∂F (k, v1, v2)

∂v2
= f(k, v1, v2, v3);

(F2) there exist constants δ1 > 0, α ∈
(
0, 1

4
rλnmin

)
such that

F (k, v1, v2) ≤ α
(
v2

1 + v2
2

)
, for k ∈ Z and v2

1 + v2
2 ≤ δ2

1;

(F3) there exist constants ρ1 > 0, ζ > 0, β ∈
(

1
4
r̄λnmax,+∞

)
such that

F (k, v1, v2) ≥ β
(
v2

1 + v2
2

)
− ζ, for k ∈ Z and v2

1 + v2
2 ≥ ρ2

1,
where λmin, λmax are constants which can be referred to (2.7).

Then for any given positive integer m > 0, (1.1) has at least three mT -periodic solutions.

Remark 1.1. By (F3) it is easy to see that there exists a constant ζ′ > 0 such that

(F ′3) F (k, v1, v2) ≥ β
(
v2

1 + v2
2

)
−ζ′, ∀(k, v1, v2) ∈ Z×R2.

As a matter of fact, let ζ1 = max
{∣∣F (k, v1, v2)− β

(
v2

1 + v2
2

)
+ ζ
∣∣ : k ∈ Z, v2

1 + v2
2 ≤ ρ2

1

}
,

ζ′ = ζ + ζ1, we can easily get the desired result.

Corollary 1.1. Assume that (r) and (F1)− (F3) are satisfied. Then for any given posi-
tive integer m > 0, (1.1) has at least two nontrivial mT -periodic solutions.

Remark 1.2. Corollary 1.1 reduces to Theorem 1.1 in [9].

Theorem 1.2. Assume that (r), (F1) and the following conditions are satisfied:

(F4) lim
ρ→0

F (k,v1,v2)

ρ2
= 0, ρ =

√
v2

1 + v2
2 , ∀(k, v1, v2) ∈ Z×R2;

(F5) there exist constants R1 > 0 and θ > 2 such that for k ∈ Z and v2
1 + v2

2 ≥ R2
1,

0 < θF (k, v1, v2) ≤ ∂F (k, v1, v2)

∂v1
v1 +

∂F (k, v1, v2)

∂v2
v2.



Then for any given positive integer m > 0, (1.1) has at least three mT -periodic solutions.

Remark 1.3. Assumption (F5) implies that there exist constants a1 > 0 and a2 > 0
such that

(F ′5) F (k, v1, v2) ≥ a1

(√
v2

1 + v2
2

)θ
− a2, ∀(k, v1, v2) ∈ Z×R2.

Corollary 1.2. Assume that (r) and (F1), (F4), (F5) are satisfied. Then for any given
positive integer m > 0, (1.1) has at least two nontrivial mT -periodic solutions.

If f(k, uk+1, uk, uk−1) = qkg (uk), (1.1) reduces to the following 2nth-order nonlinear
equation,

(1.5) ∆n (rk−n∆nuk−n) = (−1)nqkg (uk) , k ∈ Z,

where g ∈ C(R,R), qk+T = qk > 0, for all k ∈ Z. Then, we have the following results.

Theorem 1.3. Assume that (r) and the following hypotheses are satisfied:
(G1) there exists a functional G(v) ∈ C1(R,R) with G(v) ≥ 0 and it satisfies

G′(v) = g(v),

(G2) there exist constants δ2 > 0, α ∈
(
0, 1

2
rλnmin

)
such that

G(v) ≤ α|v|2, for |v| ≤ δ2;

(G3) there exist constants ρ2 > 0, ζ > 0, β ∈
(

1
2
r̄λnmax,+∞

)
such that

G(v) ≥ β|v|2 − ζ, for |v| ≥ ρ2,
where λmin, λmax are constants which can be referred to (2.7).

Then for any given positive integer m > 0, (1.5) has at least three mT -periodic solutions.

Corollary 1.3. Assume that (r) and (G1) − (G3) are satisfied. Then for any given
positive integer m > 0, (1.5) has at least two nontrivial mT -periodic solutions.

Remark 1.4. Corollary 1.3 reduces to Corollary 1.1 in [9].

The rest of the paper is organized as follows. First, in Section 2, we shall establish the
variational framework associated with (1.1) and transfer the problem of the existence of
periodic solutions of (1.1) into that of the existence of critical points of the corresponding
functional. Some related fundamental results will also be recalled. Then, in Section 3,
we shall complete the proof of the results by using the critical point method. Finally, in
Section 4, we shall give an example to illustrate the main result.

For the basic knowledge of variational methods, the reader is referred to [27,34,36,40].

2. Variational structure and some lemmas
In order to apply the critical point theory, we shall establish the corresponding variational
framework for (1.1) and give some lemmas which will be of fundamental importance in
proving our main results. First, we state some basic notations.

Let S be the set of sequences u = (· · · , u−k, · · · , u−1, u0, u1, · · · , uk, · · · ) = {uk}+∞k=−∞,
that is

S = {{uk}|uk ∈ R, k ∈ Z}.
For any u, v ∈ S, a, b ∈ R, au+ bv is defined by

au+ bv = {auk + bvk}+∞k=−∞.



Then S is a vector space.
For any given positive integers m and T , EmT is defined as a subspace of S by

EmT = {u ∈ S|uk+mT = uk, ∀k ∈ Z}.

Clearly, EmT is isomorphic to RmT . EmT can be equipped with the inner product

(2.1) 〈u, v〉 =

mT∑
j=1

ujvj , ∀u, v ∈ EmT ,

by which the norm ‖ · ‖ can be induced by

(2.2) ‖u‖ =

(
mT∑
j=1

u2
j

) 1
2

, ∀u ∈ EmT .

It is obvious that EmT with the inner product (2.1) is a finite dimensional Hilbert space
and linearly homeomorphic to RmT .

On the other hand, we define the norm ‖ · ‖s on EmT as follows:

(2.3) ‖u‖s =

(
mT∑
j=1

|uj |s
) 1
s

,

for all u ∈ EmT and s > 1.
Since ‖u‖s and ‖u‖2 are equivalent, there exist constants c1, c2 such that c2 ≥ c1 > 0,

and

(2.4) c1‖u‖2 ≤ ‖u‖s ≤ c2‖u‖2, ∀u ∈ EmT .

Clearly, ‖u‖ = ‖u‖2. For all u ∈ EmT , define the functional J on EmT as follows:

(2.5) J(u) =
1

2

mT∑
k=1

rk−1 (∆nuk−1)2 −
mT∑
k=1

F (k, uk+1, uk),

where
∂F (k − 1, v2, v3)

∂v2
+
∂F (k, v1, v2)

∂v2
= f(k, v1, v2, v3).

Clearly, J ∈ C1(EmT ,R) and for any u = {uk}k∈Z ∈ EmT , by using u0 = umT , u1 =
umT+1, we can compute the partial derivative as

∂J

∂uk
= (−1)n∆n (rk−n∆nuk−n)− f(k, uk+1, uk, uk−1).

Thus, u is a critical point of J on EmT if and only if

∆n (rk−n∆nuk−n) = (−1)nf(k, uk+1, uk, uk−1), ∀k ∈ Z(1,mT ).

Due to the periodicity of u = {uk}k∈Z ∈ EmT and f(k, v1, v2, v3) in the first variable k,
we reduce the existence of periodic solutions of (1.1) to the existence of critical points of
J on EmT . That is, the functional J is just the variational framework of (1.1).

Let P be the mT ×mT matrix defined by

P =


2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
−1 0 0 · · · −1 2

 .



By matrix theory, we see that the eigenvalues of P are

(2.6) λj = 2

(
1− cos

2j

mT
π

)
, j = 0, 1, 2, · · · ,mT − 1.

Thus, λ0 = 0, λ1 > 0, λ2 > 0, · · · , λmT−1 > 0. Therefore,

(2.7)

λmin = min{λ1, λ2, · · · , λmT−1} = 2
(
1− cos 2

mT
π
)
,

λmax = max{λ1, λ2, · · · , λmT−1} =

{
4, when mT is even,
2
(
1 + cos 1

mT
π
)
, when mT is odd.


Let

W = kerP = {u ∈ EmT |Pu = 0 ∈ RmT }.
Then

W = {u ∈ EmT |u = {c}, c ∈ R}.
Let V be the direct orthogonal complement of EmT to W , i.e., EmT = V ⊕W . For

convenience, we identify u ∈ EmT with u = (u1, u2, · · · , umT )∗.
Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-

differentiable functional defined on E. J is said to satisfy the Palais-Smale condition
(P.S. condition for short) if any sequence

{
u(i)
}
⊂ E for which

{
J
(
u(i)
)}

is bounded

and J ′
(
u(i)
)
→ 0(i→∞) possesses a convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its boundary.

Lemma 2.1 (Linking Theorem [40]). Let E be a real Banach space, E = E1⊕E2, where
E1 is finite dimensional. Suppose that J ∈ C1(E,R) satisfies the P.S. condition and
(J1) there exist constants a > 0 and ρ > 0 such that J |∂Bρ∩E2 ≥ a;
(J2) there exists an e ∈ ∂B1 ∩ E2 and a constant R0 ≥ ρ such that J |∂Q ≤ 0, where
Q = (B̄R0 ∩ E1)⊕ {se|0 < s < R0}.
Then J possesses a critical value c ≥ a, where

c = inf
h∈Γ

sup
u∈Q

J(h(u)),

and Γ = {h ∈ C(Q̄, E) | h|∂Q = id}, where id denotes the identity operator.

Lemma 2.2. Assume that (r), (F1) and (F3) are satisfied. Then the functional J is
bounded from above in EmT .

Proof. By (F ′3) and (2.4), for any u ∈ EmT ,

J(u) =
1

2

mT∑
k=1

rk−1 (∆nuk−1,∆
nuk−1)−

mT∑
k=1

F (k, uk+1, uk)

=
1

2

mT∑
k=1

rk (∆nuk,∆
nuk)−

mT∑
k=1

F (k, uk+1, uk)

≤ r̄

2
x∗Px−

mT∑
k=1

[
β(u2

k+1 + u2
k)− ζ′

]
≤ r̄

2
λmax‖x‖22 − 2β‖u‖22 +mTζ′,

where x = (∆n−1u1,∆
n−1u2, · · · ,∆n−1umT )∗. Since

‖x‖22 =

mT∑
k=1

(
∆n−2uk+1 −∆n−2uk

)2 ≤ λmax

mT∑
k=1

(
∆n−2uk

)2 ≤ λn−1
max‖u‖22,



we have
J(u) ≤

( r̄
2
λnmax − 2β

)
‖u‖22 +mTζ′ ≤ mTζ′.

The proof of Lemma 2.2 is complete. 2

Remark 2.1. The case mT = 1 is trivial. For the case mT = 2, P has a different form,
namely,

P =

(
2 −2
−2 2

)
.

However, in this special case, the argument need not to be changed and we omit it.

Lemma 2.3. Assume that (r), (F1) and (F3) are satisfied. Then the functional J satisfies
the P.S. condition.

Proof. Let
{
J
(
u(i)
)}

be a bounded sequence from the lower bound, i.e., there exists a
positive constant M1 such that

−M1 ≤ J
(
u(i)
)
, ∀i ∈ N.

By the proof of Lemma 2.2, it is easy to see that

−M1 ≤ J
(
u(i)
)
≤
( r̄

2
λnmax − 2β

)∥∥∥u(i)
∥∥∥2

2
+mTζ′, ∀i ∈ N.

Therefore, (
2β − r̄

2
λnmax

)∥∥∥u(i)
∥∥∥2

2
≤M1 +mTζ′.

Since β > 1
4
r̄λnmax, it is not difficult to know that

{
u(i)
}
is a bounded sequence in EmT .

As a consequence,
{
u(i)
}

possesses a convergence subsequence in EmT . Thus the P.S.
condition is verified. 2

3. Proof of the main results
In this Section, we shall prove our main results by using the critical point theory.

3.1. Proof of Theorem 1.1

Assumptions (F1) and (F2) imply that F (k, 0) = 0 and f(k, 0) = 0 for k ∈ Z. Then
u = 0 is a trivial mT -periodic solution of (1.1).

By Lemma 2.2, J is bounded from the upper on EmT . We define c0 = sup
u∈EmT

J(u).

The proof of Lemma 2.2 implies lim
‖u‖2→+∞

J(u) = −∞. This means that−J(u) is coercive.

By the continuity of J(u), there exists ū ∈ EmT such that J(ū) = c0. Clearly, ū is a
critical point of J .

We claim that c0 > 0. Indeed, by (F2), for any u ∈ V, ‖u‖2 ≤ δ1, we have

J(u) =
1

2

mT∑
k=1

rk−1 (∆nuk−1,∆
nuk−1)−

mT∑
k=1

F (k, uk+1, uk)

=
1

2

mT∑
k=1

rk (∆nuk,∆
nuk)−

mT∑
k=1

F (k, uk+1, uk)

≥ 1

2
rx∗Px− α

mT∑
k=1

(u2
k+1 + u2

k)



≥ 1

2
rλmin‖x‖22 − 2α‖u‖22,

where x = (∆n−1u1,∆
n−1u2, · · · ,∆n−1umT )∗. Since

‖x‖22 =

mT∑
k=1

(
∆n−2uk+1 −∆n−2uk

)2 ≥ λmin

mT∑
k=1

(
∆n−2uk

)2 ≥ λn−1
min ‖u‖

2
2,

we have

J(u) ≥
(

1

2
rλnmin − 2α

)
‖u‖22.

Take σ =
(

1
2
rλnmin − 2α

)
δ2
1 . Then

J(u) ≥ σ, ∀u ∈ V ∩ ∂Bδ1 .

Therefore, c0 = sup
u∈EmT

J(u) ≥ σ > 0. At the same time, we have also proved that there

exist constants σ > 0 and δ1 > 0 such that J |∂Bδ1∩V ≥ σ. That is to say, J satisfies the
condition (J1) of the Linking Theorem.

Noting that
mT∑
k=1

rk−1 (∆nuk−1)2 = 0, for all u ∈W , we have

J(u) =
1

2

mT∑
k=1

rk−1 (∆nuk−1)2 −
mT∑
k=1

F (k, uk+1, uk) = −
mT∑
k=1

F (k, uk+1, uk) ≤ 0.

Thus, the critical point ū of J corresponding to the critical value c0 is a nontrivial mT -
periodic solution of (1.1).

In order to obtain another nontrivial mT -periodic solution of (1.1) different from ū,
we need to use the conclusion of Lemma 2.1. We have known that J satisfies the P.S.
condition on EmT . In the following, we shall verify the condition (J2).

Take e ∈ ∂B1 ∩ V , for any z ∈W and s ∈ R, let u = se+ z. Then

J(u) =
1

2

mT∑
k=1

rk (∆nuk,∆
nuk)−

mT∑
k=1

F (k, uk+1, uk)

≤ r̄

2
s2

mT∑
k=1

(∆nek,∆
nek)−

mT∑
k=1

F (k, sek+1 + zk+1, sek + zk)

≤ r̄

2
s2y∗Py −

mT∑
k=1

{
β
[
(sek+1 + zk+1)2 + (sek + zk)2]− ζ′}

≤ r̄

2
s2λmax‖y‖22 − 2β

mT∑
k=1

(sek + zk)2 +mTζ′

=
r̄

2
s2λmax‖y‖22 − 2βs2 − 2β‖z‖22 +mTζ′,

where y = (∆n−1e1,∆
n−1e2, · · · ,∆n−1emT )∗. Since

‖y‖22 =

mT∑
k=1

(
∆n−2ek+1 −∆n−2ek

)2 ≤ λmax

mT∑
k=1

(
∆n−2ek

)2 ≤ λn−1
max ,

we have

J(u) ≤
( r̄

2
λnmax − 2β

)
s2 − 2β‖z‖22 +mTζ′ ≤ −2β‖z‖22 +mTζ′.



Thus, there exists a positive constant R2 > δ1 such that for any u ∈ ∂Q, J(u) ≤ 0, where
Q = (B̄R2 ∩W )⊕{se|0 < s < R2}. By the Linking Theorem, J possesses a critical value
c ≥ σ > 0, where

c = inf
h∈Γ

sup
u∈Q

J(h(u)),

and Γ = {h ∈ C(Q̄, EmT ) | h|∂Q = id}.
Let ũ ∈ EmT be a critical point associated to the critical value c of J , i.e., J(ũ) = c.

If ũ 6= ū, then the conclusion of Theorem 1.1 holds. Otherwise, ũ = ū. Then c0 =
J(ū) = J(ũ) = c, that is sup

u∈EmT
J(u) = inf

h∈Γ
sup
u∈Q

J(h(u)). Choosing h = id, we have

sup
u∈Q

J(u) = c0. Since the choice of e ∈ ∂B1 ∩ V is arbitrary, we can take −e ∈ ∂B1 ∩ V .

Similarly, there exists a positive number R3 > δ1, for any u ∈ ∂Q1, J(u) ≤ 0, where
Q1 = (B̄R3 ∩W )⊕ {−se|0 < s < R3}.

Again, by the Linking Theorem, J possesses a critical value c′ ≥ σ > 0, where

c′ = inf
h∈Γ1

sup
u∈Q1

J(h(u)),

and Γ1 = {h ∈ C(Q̄1, EmT ) | h|∂Q1 = id}.

If c′ 6= c0, then the proof is finished. If c′ = c0, then sup
u∈Q1

J(u) = c0. Due to the fact

J |∂Q ≤ 0 and J |∂Q1 ≤ 0, J attains its maximum at some points in the interior of sets Q
and Q1. However, Q ∩Q1 ⊂ W and J(u) ≤ 0 for any u ∈ W . Therefore, there must be
a point u′ ∈ EmT , u′ 6= ũ and J(u′) = c′ = c0. The proof of Theorem 1.1 is complete.2

Remark 3.1. Similarly to above argument, we can also prove Theorems 1.2 and 1.3.
For simplicity, we omit their proofs.

Remark 3.2. Due to Theorems 1.1, 1.2 and 1.3, the conclusion of Corollaries 1.1, 1.2
and 1.3 is obviously true.

4. Example
As an application of Theorem 1.1, we give an example to illustrate our main result.

Example 4.1. For all n ∈ Z(3), k ∈ Z, assume that

∆n (rk−n∆nuk−n) =

(4.1)

(−1)nµuk

[(
8 + sin2

(
πk

T

))(
u2
k+1 + u2

k

)µ
2
−1

+

(
8 + sin2

(
π(k − 1)

T

))(
u2
k + u2

k−1

)µ
2
−1
]
,

where rk is real valued for each k ∈ Z and rk+T = rk > 0, µ > 2, T is a given positive
integer.

We have

f(k, v1, v2, v3) =

µv2

[(
8 + sin2

(
πk

T

))(
v2

1 + v2
2

)µ
2
−1

+

(
8 + sin2

(
π(k − 1)

T

))(
v2

2 + v2
3

)µ
2
−1
]

and

F (k, v1, v2) =

[
8 + sin2

(
πk

T

)] (
v2

1 + v2
2

)µ
2 .



Then

∂F (k − 1, v2, v3)

∂v2
+
∂F (k, v1, v2)

∂v2

= µv2

[(
8 + sin2

(
πk

T

))(
v2

1 + v2
2

)µ
2
−1

+

(
8 + sin2

(
π(k − 1)

T

))(
v2

2 + v2
3

)µ
2
−1
]
.

It is easy to verify all the assumptions of Theorem 1.1 are satisfied. Consequently, for
any given positive integer m > 0, (4.1) has at least three mT -periodic solutions.
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