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Abstract

In this study, a Bayesian method will be introduced to describe outlying
observations in multivariate linear regression. This method was proposed by
Chaloner and Brant [3]. Later on, Varbanov [7] extended this method to
apply to multivariate linear regression. According to Chaloner and Brant,
an observation will be accepted as an outlier if the following condition is ful-
filled: the posterior probability of the occurrence of the realized error (Arnold
Zelner [8]) of an observation being greater than a critical value “k”, is higher
than the probability an error occurred in the model, with a critical value
“k” over the assumed distribution. That is, if pr[(εi/Σ, y) > k] > pr(εi > k)
then the ith observation will be accepted as an outlier. In the second section,
the method proposed by Varbanov [7] will be considered. In the application
section the existence or non-existence of outlying observations over the pos-
terior distribution of the square form of the realized error in multivariate
linear regression data is discussed.

Key Words: Realized error, posterior distribution, Jeffrey’s prior, multivariate linear

regression

1. Introduction

When a model is defined it is assumed that the random sample Y1, Y2, . . . , Yn is
composed of independent variables with the same distribution. Suppose we have
observed values obtained from a random sample Y1, Y2, . . . , Yn. We would like to
know two important things. Namely, whether they are from the same distribution,
and even if they have the same distribution whether they have a large error or not.
Answers to these questions are important since they determine whether the model
can be used or not.

If some of observations do not come from the assumed distribution, Box and
Tiao [1] called the observations outliers. According to Chaloner and Brant [3],
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an outlying observation is performed under the assumed model, but has a large
random error.

Bayesian methods to describe outliers in linear regression models are divided
into two groups, based on the underlying model. The first group comprises meth-
ods applied under the null model assumption ε ∼ N(0, I). The second includes
methods used assuming models such as mean-shift, variance-inflation and mixture
which are defined when there are believed to be outlier observations. There are
two different methods to find out possible outlying observations under the null
mode. The first method, is called the predictive density method (Geisser S. [4]).
The predictive conditional density is defined as follows:

pr(yI/y(I)) =

∫

θ

f(yI)p(θ/y(I)) dθ

In this equation, yI is a vector of possible outlying observations; f(y1/θ) is the
conditional probability density function of the outlying observations; p(θ/y(I)) =
`(θ/y(I))p(θ) is the posterior density function of θ under the condition that the
observations y(I) are known. Using this function we test whether the suspected
values yI and y(I) came from the same distribution.

The second method was proposed by Chaloner and Brant [3]. According to
this method, all observations were performed under the assumed model. However
some of them may have a large error. In order to accept an observation as an
outlier, the magnitude of the corresponding random error must reach a critical
value. Using the probability density function of the random error associated with
the assumed model, we want to find the critical value k for the model under
consideration. If we choose the probability that non of the observations are outliers
to be large, for example 0.95 = [pr(εi < k), for all i], then for a sample of size
n we obtain pr(εi < k) = (0.95)1/n as the probability that a given observation is
not an outlier. According to this, the probability that an observation is an outlier
is pr(εi > k) = 1 − (0.95)1/n. The “k” satisfying this equality is defined as the
critical value. Actually, Chaloner and Brant use the condition that the probability
pr((εi/Σ, Y ) > k) of the realized but unobserved error over the posterior function
should be larger than the probability pr(εi > k) of εi over the distribution defined
in the model as an indicator that the i th observation is an outlier.

Varbanov [7] extended the work of Chaloner and Brant to multivariate linear
regression analysis.

2. A Bayesian Method to detect Outliers in Multivariate

Linear Regression

Let Yi be the vector with p response variables on the i th sampling unit (i =
1, 3, . . . , n). Let Y be the n× p data matrix defined by,

Y =
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Here Y (j) is a vector composed of n independent observations of the j th variable.
The Multivariate Linear Regression model can be written as,

Y (j) = Xθj + ε(j), j = 1, 2, . . . , p

where X is the n × p dimensional design matrix. In matrix form, the model is
expressed as

Y = XΘ+ E, Θ = (θ1, θ2, . . . , θp).

The i th row of the matrix E contains the random error of Yi, where E is defined
as follows. Here the εi’s are assumed to be random variables of he same Normal
distribution having independent “0” and “I” parameters with dimension p. In this
case the model Y = XΘ+ E can be written as,

Yi = ΘTXi +Σ1/2εi, i = 1, 2, . . . , n

(εi = (ε1i, ε2i, . . . , εpi) = Σ−1/2(Yi −XiΘ) ∼ N(0, I)).

Varbanov used the following equation to test whether the i th observation in

δi = εTi εi = (Yi −Θ′Xi)
′Σ−1(Yi −Θ′Xi)

is an outlier or not. If the εi’s have p variables having mean 0 and the variance of
the covarians matrix of I and the same distribution, δi will have central chi-square
distribution of p degrees of freedom.

If for the appropriate model distribution (namely a chi-square distribution with
p degrees of freedom) we choose the probability of no outliers to be large, say 0.95,
then for a sample of size n

0.95 = pr{δi ≤ k for all i}

= pr{δ1 ≤ k} · pr{δ2 ≤ k} · · · pr{δn ≤ k} = {Fp(k)}

Hence the critical value k may be found from the equality pr{δi ≤ k} = {Fp(k)}
1/n

for the probability of any observation not being an outlier.

The fact that pr{(δi/Σ, Y ) > k}, the posterior probability that the square form
δi of the realized but unobserved error exceeds the critical value k, is larger than
pr(δi > k), the probability that the statistic δi exceeds k under the hypotheses of
the model, indicates that the i th observation may be an outlier.

Another approach is to use Bayes Factor to test the hypothesis,

H0i : δi > k, if Yi is an outlying observation,

H1i : δi ≤ k.

The Bayes Factor used to test H0i against H1i is the ratio of posterior odds to
prior odds. Bayes Factor Bi is expressed as

Bi =
piFp(k)

(1− pi){1− Fp(k)}
,

where the posterior probability pi will be defined in section 3.

Kass and Raftery [6] say that if Bi > 10, H0i is valid; if Bi > 100, H0i is
certainly valid.
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3. The Posterior Distribution of the square form of the

Realizable Error

In order to obtain the posterior distribution of δi = εTi εi, which is the square form
of the realized error, the posterior distribution of (εi/Σ, Y ) has to be obtained.
Since εi = Σ−1/2(Yi − ΘTXi) is a linear function of Θ and Σ, the joint posterior
distribution of Θ and Σ,

pr(Θ,Σ/Y ) = `(Θ,Σ/Y )pr(Θ,Σ)

must be obtained. Here `(Θ,Σ/Y ) denotes the likelihood function of Θ and Σ,
where Y is given and pr(Θ,Σ) denotes the joint prior distribution. If Σ is regarded
as a nuisance parameter, that is its only importance is in making inferences from
Θ, the posterior distribution of Θ and Σ can be expressed as

pr(Θ,Σ/Y ) = pr(Θ/Σ, Y ) · pr(Σ/Y ).

In multivariate linear regression analysis, Jeffrey’s prior pr(Θ,Σ) = pr(Θ)·pr(Σ) =

|Σ|−
1

2
(p+1) is used to find the joint posterior distribution of Θ and Σ as follows

(Box and Tiao [2]):

pr(Θ,Σ/Y ) = |Σ|−
1

2
(n+p+1) exp{− 12 trΣ

−1[A+ (Θ− Θ̂)′X ′X(Θ− Θ̂)]},

−∞ < Θ <∞, Σ > 0.

Here, A = {aij}, aij = (Yi −XΘ̂i)
′(Yj −XΘ̂j), i, j = 1, 2, . . . p.

If Σ and Y are known, the posterior distribution of Θ; and if Y is known, the
marginal posterior distribution of Σ, are obtained respectively as follows:

(Θ/Σ, Y ) ∼ N(Θ̂,Σ⊗ (X ′X)−1),

(Σ/Y ) ∼ W−1(S, n− q − p+ 1).

Here Θ̂ = (X ′X)−1X ′Y and S = (Y −XΘ̂)′(Y −XΘ̂).

Using these posterior distributions the posterior distribution of (εi/Σ, Y ) can
be obtained as:

(εi/Σ, Y ) ∼ N(ε̂i = Σ−1/2(Yi −XiΘ̂), (X
′

i(X
′X)−1Xi)I).

Let σ(i) = X ′i(X
′X)−1Xi, λi = σ−1(i) (Yi−Θ̂

′Xi)
′Σ−1(Yi−Θ̂

′Xi). Then given Σ and

Y , the posterior distribution of Ti =
δi
σ(i)

is non-central chi-square with p degrees

of freedom and parameter of non-centrality λi. So, we can write pi, i = 1, 2, . . . , n,
as

pi = EΣ/Y {pr(Ti >
k

σ(i)
/Σ, Y }

or, in terms of Σ−1, as

pi = EΣ−1/Y {pr(Ti >
k

σ(i)
/Σ−1, Y }.

In practice pi can be calculated using the Monte-carlo simulation technique.
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4. An Application

The Bayesian method was applied to some data in “A Handbook of Small Data
Sets” by Hand, Daly, Lunn, Conway and Ostrowski [5]. The data sets cover the
following.

Independent variables X.

X1; GNP implicit price deflator (1954 = 100.0)

X2; GNP

X3; Unemployment

X4; Size of armed forces

X5; Non-institutional population aged 14 and over

Dependent variables Y .

Y1; Census: Agricultural employment

Y2; Census: Self-employment

Y3; Census: Unpaid family workers.

There are 16 observations (n = 16). The values of pi and Bi were calculated
using the MAT-LAB12 computer program. If the probability of the existence of
no outlier was chosen to be 0.95, k was calculated as 13.7931. The corresponding
values of pi and Bi are tabulated in Table 1.

Table 1

I pi Bi

1 0.0039 1.2171

2 7.4338E-004 0.2313

3 0.0043 1.3244

4 0.0074 2.2888

5 1.1680E-004 3.6374E-004

6 1.0759E-006 3.3507E-004

7 3.7271E-005 0.0116

8 3.0506E-0.006 9.500E-004

9 3.3058E-0.05 0.0103

10 1.1580E-004 0.0361

11 2.8354E-005 0.0088

12 7.2055E-004 0.2242

13 6.1890E-005 0.0193

14 3.1934E-007 9.9454E-005

15 1.4678E-006 4.5712E-004

16 0.0025 0.7716
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Non of the Bi’s were found to be greater than 10. However, for the 1 st, 3 th and
4 th observations, the limiting values of pi were calculated to be 1−{Fp(k)}

1/n =
0.0032006977101885, greater than the prior probabilities. For this reason, these
observations need more attention.

5. Conclusion

The logic behind the Bayesian method is quiet simple and the method is easily
applicable. In addition to the non-informative prior function, other prior functions
can be used to obtain the posterior distribution of the square form of the realized
error. But in this case the posterior distribution may not be of a known form.
This must certainly be taken into account. The non-informative prior, who’s use
is foreseen when no prior information is available, or when such information varies
from person to person, has been used to obtain the posterior distribution of the
realized error.
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