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Abstract

The authors propose a theory of convergence for regular difilters on a
ditopological texture space and go on to discuss completeness and total
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1. Introduction

Let S be a non-empty set. We recall [3] that a texturing on S is a point separating,
complete, completely distributive lattice S of subsets of S with respect to inclusion,
which contains S, ∅, and for which meet

∧

coincides with intersection
⋂

and finite joins
∨ coincide with unions ∪. Textures first arose in connection with the representation of
Hutton algebras and lattices of L-fuzzy sets in a point-based setting [3, 5], and have
subsequently proved to be a fruitful setting for the investigation of complement-free
concepts in mathematics. The sets

Ps =
⋂

{A ∈ S | s ∈ A}, Qs =
∨

{Pu | u ∈ S, s /∈ Pu}, s ∈ S,

are important in the study of textures, and the following facts concerning these so called
p–sets and q–sets will be used extensively below.

1.1. Lemma. [6, Theorem 1.2]

(1) s /∈ A =⇒ A ⊆ Qs =⇒ s /∈ A[ for all s ∈ S, A ∈ S.

(2) A[ = {s | A 6⊆ Qs} for all A ∈ S.

(3) For Ai ∈ S, i ∈ I we have (
∨

i∈I Ai)
[ =

⋃

i∈I A
[
I .
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(4) A is the smallest element of S containing A[ for all A ∈ S.

(5) For A, B ∈ S, if A 6⊆ B then there exists s ∈ S with A 6⊆ Qs and Ps 6⊆ B.
(6) A =

⋂

{Qs | Ps 6⊆ A} for all A ∈ S.

(7) A =
∨

{Ps | A 6⊆ Qs} for all A ∈ S.

Here A[ is defined by

A[ =
⋂

{

⋃

{Ai | i ∈ I} | {Ai | i ∈ I} ⊆ S, A =
∨

{Ai | i ∈ I}
}

and known as the core of A ∈ S. The above lemma exposes an important formal duality
in (S, S), namely that between

⋂

and
∨

, Qs and Ps, and Ps 6⊆ A and A 6⊆ Qs. Indeed,
it is to emphasize this duality that we normally write Ps 6⊆ A in preference to s /∈ A.

The simplest example of a texture is the discrete texture (X,P(X)) on X, for which
Px = {x} and Qx = X \ {x}, x ∈ X. Two other important textures which we will
consider in this paper are given below.

1.2. Examples. (1) Let L = (0, 1] and L = {(0, r] | 0 ≤ r ≤ 1}, where (0, 0] is
interpreted as ∅. Then (L,L) is a texture with Pr = Qr = (0, r] for all r ∈ L. This
texture is of particular interest since it is the Hutton texture corresponding to the Hutton
algebra I = [0, 1], which is closely involved in the theory of classical fuzzy sets [5, 6].

(2) The unit interval texture (I, I) has I = [0, 1] and the texturing I = {[0, r) | 0 ≤ r ≤
1} ∪ {[0, r] | 0 ≤ r ≤ 1}. For this texture Pr = [0, r] and Qr = [0, r), r ∈ I.

We recall that a texture (S, S) is called plain if arbitrary joins coincide with unions;
equivalently if S is closed under arbitrary unions or if Ps 6⊆ Qs for all s ∈ S. For the
above examples, (X,P(X)) and (I, I) are plain but (L,L) is not.
In general a texturing S need not be closed under set complement, so in the context

of a texture (S, S) the notion of topology is replaced by that of dichotomous topology. A
dichotomous topology, or ditopology for short, on a texture space (S, S) is a pair (τ, κ) of
subsets of S, where the set of open sets τ satisfies

(1) S, ∅ ∈ τ ,
(2) G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ and
(3) Gi ∈ τ , i ∈ I =⇒

∨

iGi ∈ τ ,

and the set of closed sets κ satisfies

(1) S, ∅ ∈ κ,
(2) K1, K2 ∈ κ =⇒ K1 ∪K2 ∈ κ and
(3) Ki ∈ κ, i ∈ I =⇒

⋂

Ki ∈ κ.

Hence a ditopology is essentially a “topology” for which there is no a priori relation
between the open and closed sets. The reader is referred to [1,3,4,6-8,10,11,12] for some
results on ditopological texture spaces and their relation with fuzzy topologies. We shall
be particularly interested in an appropriate notion of “compactness” for ditopological
texture spaces, and recall the following definitions from [3].

1.3. Definition. Let (τ, κ) be a ditopology on the texture (S, S). Then (S, S, τ, κ) is
called

(i) Compact if whenever S =
∨

i∈I Gi, Gi ∈ τ , i ∈ I, there is a finite subset J of I
with

⋃

j∈J Gj = S.

(ii) Cocompact if whenever
⋂

i∈I Fi = ∅, Fi ∈ κ, i ∈ I, there is a finite subset J of I
with

⋂

j∈J Fj = ∅.

(iii) Stable if every K ∈ κ with K 6= S is compact, i.e. whenever K ⊆
∨

i∈I Gi,
Gi ∈ τ , i ∈ I, there is a finite subset J of I with K ⊆

⋃

j∈J Gj .
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(iv) Costable if every G ∈ τ with G 6= ∅ is co-compact, i.e. whenever
⋂

i∈I Fi ⊆ G,
Fi ∈ κ, i ∈ I, there is a finite subset J of I with

⋂

j∈J Fj ⊆ G.

We will refer to a ditopological texture space which has all four properties as a di-
compact space (see [10], where a more detailed coverage of compactness properties in
ditopological texture spaces is given). In order to state two important characterizations
of dicompactness we recall the following concepts:

1.4. Definition. Let (τ, κ) be a ditopology on (S, S).

(1) A set D ⊆ S×S is called a difamily on (S, S). A difamily D satisfying D ⊆ τ ×κ
is open and co-closed, one satisfying D ⊆ κ× τ is closed and co-open.

(2) A difamily D has the finite exclusion property (fep) if whenever (Fi, Gi) ∈ D,
i = 1, 2, . . . , n we have

⋂n
i=1 Fi *

⋃n
i=1Gi.

(3) A closed, co-open difamily D with
⋂

{F | F ∈ domD} *
∨

{G | G ∈ ranD} is
said to be bound in (S, S, τ, κ).

(4) A difamily D = {(Gi, Fi) | i ∈ I} is called a dicover of (S, S) if for all partitions
I1, I2 of I (including the trivial partitions) we have

⋂

i∈I1

Fi ⊆
∨

i∈I2

Gi.

(5) A difamily C is called finite if the set domC is finite, and cofinite if the set ranC

is finite. In particular C is finite and cofinite if and only if the set C is finite.

We now have the following important theorem, which is proved in [3].

1.5. Theorem. The following are equivalent for a ditopological texture (S, S, τ, κ).

(1) (S, S, τ, κ) is dicompact.
(2) Every closed, co-open difamily with the finite exclusion property is bound.

(3) Every open, coclosed dicover has a finite, cofinite subdicover.

In view of the equivalence of (1) and (3), a ditopological texture space is dicompact
if and only if it is dicover compact in the sense of [1, 3, 4].

1.6. Examples. (1) Consider the texture (L,L) of Examples 1.2 (1) with the discrete,
codiscrete ditopology (L,L) [7, 10]. Then, for example, {(0, 1 − 1

n
] | n = 2, 3, . . .} is an

open cover of L with no finite subcover, so this ditopological texture space is not compact
and hence not dicompact.

(2) Now consider the texture (I, I) of Examples 1.2 (2) with the natural ditopology

τI = {[0, r) | r ∈ I} ∪ {I}, κI = {[0, r] | r ∈ I} ∪ {∅}.

Any open cover of I must contain I, and therefore have the finite subcover {I}. Thus the
ditopological texture space (I, I, τI, κI) is compact. In exactly the same way it is stable,
cocompact and costable, whence it is dicompact.

It will be noted that the proofs of the compactness, stability, cocompactness and
costability of (I, I, τI, κI) are trivial. On the other hand it may be shown that the condition
that every open, coclosed dicover has a finite, cofinite subdicover is equivalent to the
compactness of the unit interval under its usual topology. Hence the notion of dicover
can be expected to occupy an important place in the study of ditopological texture spaces,
and this is confirmed by its role in the theory of dicovering uniformities [11, 12]. Our
study of completeness and total boundedness in di-uniformities on a texture in Section
3 will be stated almost exclusively in terms of dicovering uniformities, and the reader is
referred to [11, 12] for the necessary details.
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Finally we shall make occasional reference to difunctions and the notion of direlation
on which they are based [2, 6], and to the notion of direlational uniformity on a texture
which is shown in [11, 12] to be equivalent to that of dicovering uniformity. Results
on direlations and difunctions between textures obtained over the past few years have
been collected by the third author in the preprint [2], and much of this material appears
with proofs in [6]. The necessary background may also be found in [11], and will not be
repeated here.

Readers are referred to [9] for terms from lattice theory not defined here.

Much of the material described here may be found in the first author’s Ph.D. thesis
[12] on di-uniform spaces, while the notion of convergence of difilters also plays an impor-
tant role in the second author’s continuing Ph.D. studies on spaces of real bicontinuous
difunctions and the concept of realcompactness for ditopological texture spaces.

2. Regular Difilters and Convergence

An appropriate notion of “filter” would seem to be that of difilter defined below.

2.1. Definition. Let (S, S) be a texture.

(1) F ⊆ S is called a S–filter, or a filter on (S, S), if F 6= ∅ and satisfies:
F1. ∅ /∈ F,
F2. F ∈ F, F ⊆ F ′ ∈ S =⇒ F ′ ∈ F, and
F3. F1, F2 ∈ F =⇒ F1 ∩ F2 ∈ F.

(2) G ⊆ S is called a S–cofilter, or a cofilter on (S, S), if G 6= ∅ and satisfies:
CF1. S /∈ G,
CF2. G ∈ G, G ⊇ G′ ∈ S =⇒ G′ ∈ G, and
CF3. G1, G2 ∈ G =⇒ G1 ∪G2 ∈ G.

(3) If F is a S-filter and G a S-cofilter then F × G is called a S-difilter, or a difilter
on (S, S).

The notion of difilter is very general, so we seek to impose a suitable “regularity”
condition. To this end let us note the following.

2.2. Lemma. The following are equivalent for a difilter F × G on (S, S).

(1) F ∩ G = ∅.
(2) F × G has the f.e.p.

(3) A 6⊆ B for all A ∈ F and B ∈ G.

Proof. (1) =⇒ (2) If {(A1, B1), . . . (An, Bn)} ⊆ F × G then
⋂n
k=1Ak ∈ F by F3 and

⋃n
k=1Bk ∈ G byCF3. Since

⋂n
k=1Ak ⊆

⋃n
k=1Bk would give the contradiction

⋃n
k=1Bk ∈

F ∩ G by F2, we deduce that F × G has the f.e.p.

(2) =⇒ (3) Clear.

(3) =⇒ (1) A ∈ F ∩ G would contradict (3) since A ⊆ A. ¤

2.3. Definition. A difilter on (S, S) is called regular if it satisfies the equivalent condi-
tions of Lemma 2.2.

Note that Altay and Diker [1], who use closed, co-open difilters in their construction
of a Wallman type compactification, use this term in the sense of regular difilter. Difilters
may be compared by set inclusion in the obvious way.

2.4. Lemma. For difilters F1 × G1, F2 × G2 on (S, S) the following are equivalent:

(1) F1 × G1 ⊆ F2 × G2.

(2) F1 ⊆ F2 and G1 ⊆ G2.
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(3) Given (A,B) ∈ F1×G1 there exists (A
′, B′) ∈ F2×G2 with A

′ ⊆ A and B ⊆ B′.

Proof. Straightforward. ¤

Clearly, if F1×G1 ⊆ F2×G2 and F2×G2 is regular then so is F1×G1, but the converse
will not be true in general as the next example shows.

2.5. Examples. (1) For X = {a, b, c} consider the discrete texture (X,P(X)) and define

F1 = {{a, b}, X}, G1 = {∅, {c}}

and

F2 = {{a}, {a, b}, {a, c}, X}, G2 = {∅, {a}, {c}, {a, c}}.

Clearly F1 × G1 is a regular difilter, F1 × G1 ⊆ F2 × G2 but F2 × G2 is a difilter which is
not regular.

(2) Let (τ, κ) be a ditopology on (S, S). We recall [8] that a neighbourhood of s ∈ S[

is an element N of S for which there exists G ∈ τ satisfying Ps ⊆ G ⊆ N 6⊆ Qs. The
set of neighbourhoods (nhds) of s is denoted by η(s). Dually, a coneighbourhood of s
is an element M of S satisfying Ps 6⊆ M ⊆ K ⊆ Qs for some K ∈ κ, and the set of
coneighbourhoods (conhds) of s is denoted by µ(s).

It is easy to verify that µ(s) is a S-cofilter, but in general η(s) need not be a S-filter.
The reason is that ifN1 6⊆ Qs andN2 6⊆ Qs it is not necessarily the case thatN1∩N2 6⊆ Qs
and so η(s) need not satisfy F3. On the other hand if (S, S) is plain then N1 ∩N2 6⊆ Qs
is equivalent to Ps ⊆ N1 ∩ N2, which clearly holds when N1 6⊆ Qs and N2 6⊆ Qs, since
then Ps ⊆ N1 and Ps ⊆ N2. Thus for a plain texture (S, S) and ditopology (τ, κ) on

(S, S) the product η(s)× µ(s) is a S-difilter for all s ∈ S[ = S. Moreover, η(s)× µ(s) is
regular since N ∈ η(s) satisfies Ps ⊆ N and M ∈ µ(s) satisfies Ps 6⊆M , whence N 6⊆M .

(2) The open nhds of s ∈ S[ generate the S-filter

η∗(s) = {A ∈ S | ∃Gk ∈ τ with Gk 6⊆ Qs, 1 ≤ k ≤ n, and G1 ∩ . . . ∩Gn ⊆ A}.

Likewise, the closed conhds of s ∈ S give us the S-cofilter

µ∗(s) = {A ∈ S | ∃Fk ∈ κ with Ps 6⊆ Fk, 1 ≤ k ≤ n, and A ⊆ F1 ∪ . . . ∪ Fn}.

Clearly, µ∗(s) = {B ∈ S | ∃K ∈ κ with Ps 6⊆ K and B ⊆ K}, and again η∗(s)× µ∗(s) is
clearly regular.

Let (S, S, τ, κ) be a ditopological texture space and F × G a difilter on (S, S). On
analogy with filters in classical topology it would be tempting to say that F×G converges
to s ∈ S[ if η(s) × µ(s) ⊆ F × G. However in general this would seem to be too weak a
concept to support a satisfactory theory, and we make the following tentative definitions.

2.6. Definition. Let (S, S, τ, κ) be a ditopological texture space, F a S-filter and G a
S-cofilter.

(1) We say F converges to s ∈ S[, and write F → s, if η∗(s) ⊆ F.
(2) We say G converges to s ∈ S, and write G → s, if µ∗(s) ⊆ G.
(3) The difilter F × G is said to be diconvergent if F → s and G → s′ for some

s, s′ ∈ S satisfying Ps′ 6⊆ Qs. In this case, s is called a limit and s
′ a colimit of

F × G.

2.7. Lemma. Let (S, S, τ, κ) be a ditopological texture space, F a S-filter and G a S-

cofilter.

(1) F → s if and only if G ∈ τ , G 6⊆ Qs =⇒ G ∈ F.

(2) G → s if and only if K ∈ κ, Ps 6⊆ K =⇒ K ∈ G.
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Proof. Immediate. ¤

2.8. Proposition. Let F × G be a difiter on the ditopological texture space (S, S, τ, κ)
with (S, S) plain. Then the following are equivalent:

(1) F × G is diconvergent.

(2) η(s)× µ(s) ⊆ F × G for some s ∈ S.

Proof. (1) =⇒ (2) Let F → s, G → s′ with Ps′ 6⊆ Qs. Clearly µ
∗(s) ⊆ µ∗(s′), while

η(s) = η∗(s), µ(s) = µ∗(s) since (S, S) is plain. Hence η(s)× µ(s) ⊆ F × G, as required.

(2) =⇒ (1) From the equalities above we deduce F → s and G → s, whence F × G is
diconvergent since Ps 6⊆ Qs for all s ∈ S in a plain texture. ¤

This proposition shows that for plain textures, Definition 2.6 gives a notion of con-
vergence which is a straightforward analogue of that for the convergence of filters in a
topological space. This is not the case in general, however, as the next example illustrates.

2.9. Example. Consider the texture (L,L) of Examples 1.2 (1) with the discrete, codis-
crete ditopology τ = κ = L. For 0 < r < 1 we have η∗(r) = η(r) = {(0, r′] | r < r′} and
µ∗(r) = µ(r) = {(0, r′] | r′ < r}. Let F = η∗(r), G = µ∗(r) so that η∗(r)×µ∗(r) ⊆ F×G.
On the other hand F → s ⇐⇒ η∗(s) ⊆ η∗(r) ⇐⇒ r ≤ s and G → s′ ⇐⇒ µ∗(s′) ⊆
µ∗(r) ⇐⇒ s′ ≤ r, so s′ ≤ s which would contradict Ps′ 6⊆ Qs. Hence F × G is not
diconvergent in the sense of Definition 2.6.

2.10. Lemma. Let F×G be a regular difilter on the ditopological texture space (S, S, τ, κ).

(1) If F → s then B ∈ G =⇒ ]B[ ⊆ Qs.
(2) If G → s then A ∈ F =⇒ Ps ⊆ [A].

Proof. (1) Let F → s and take B ∈ G. Suppose that ]B[ 6⊆ Qs. Then ]B[ ∈ F by
Lemma 2.7 (1), and ]B[ ⊆ B now gives a contradiction to the regularity of F× G. Hence
]B[ ⊆ Qs, as required.

(2) Dual to (1). ¤

This leads to the following definition.

2.11. Definition. Let (S, S, τ, κ) be a ditopological texture space, F a filter and G a
cofilter on (S, S).

(1) s ∈ S is called a cluster point of F if Ps ⊆ [A] for all A ∈ F.
(2) s ∈ S is called a cluster point of G if ]B[ ⊆ Qs for all B ∈ G.
(3) The difilter F × G is said to be diclustering in (S, S, τ, κ) if for some s, s′ ∈ S

with Ps′ 6⊆ Qs, s
′ is a cluster point of F and s a cluster point of G. In this case,

s′ is known as a cluster point of F × G and s as a cocluster point of F × G.

Altay and Diker use a slightly stronger concept of cluster point in [1], but it is easy
to check that this would lead to the same notion of diclustering as given above. From
Lemma 2.10 and the above definition we have at once:

2.12. Proposition. A diconvergent regular difilter on a ditopological texture space (S, S,
τ, κ) is diclustering in (S, S, τ, κ).

In general the converse of Proposition 2.12 is false, as the following example shows.

2.13. Example. Consider the texture (L,L) of Examples 1.6 (1) with the discrete,
codiscrete ditopology τ = κ = L. Choose 0 < r0 < r1 < 1 and define F = {(0, r] | r1 <
r ≤ 1}, G = {(0, r] | 0 < r < r0}. Clearly F × G is a regular difilter. Suppose F → s,
G → s′ with Ps′ 6⊆ Qs, that is s < s′. Choose s′ < a < s and let A = (0, a]. then

A 6⊆ Qs, A ∈ τ =⇒ A ∈ η∗(s) ⊆ F, Ps′ 6⊆ A,A ∈ κ =⇒ A ∈ µ∗(s′) ⊆ G
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which gives the contradiction A ∈ F ∩ G 6= ∅. Hence F × G is not diconvergent. On the
other hand (0, r] ∈ F =⇒ Pr1 ⊆ (0, r] so r1 is a cluster point of F, and likewise r0 is a
cluster point of G. Since Ps1 6⊆ Qr0 we see that F × G is diclustering.

Let us consider the situation for maximal regular difilters, that is for regular difilters
which are maximal elements in the set of all regular difilters on (S, S, τ, κ) ordered by
set inclusion. We will require a characterization of maximal regular difilters, and the
following concepts will be of interest.

2.14. Definition. Let F be a filter and G a cofilter on (S, S):

(1) F is called prime if A1, A2 ∈ S, A1 ∪A2 ∈ F =⇒ A1 ∈ F or A2 ∈ F.
(2) G is called prime if B1, B2 ∈ S, B1 ∩B2 ∈ G =⇒ B1 ∈ G or B2 ∈ G.

Now we may give:

2.15. Proposition. The following are equivalent for a regular difilter F × G on (S, S).

(1) F × G is a maximal regular difilter.

(2) F ∪ G = S.

(3) F is a prime S-filter and G = S \ F.

(4) G is a prime S-cofilter and F = S \ G.

Proof. (1) =⇒ (2) Suppose that F ∪ G 6= S. Then there exists C ∈ S with C /∈ F and
C /∈ G. We claim that

C ∩ F 6⊆ G ∀(F,G) ∈ F × G or F 6⊆ C ∪G ∀(F,G) ∈ F × G.

Suppose that this is not the case. Then

(1) ∃(F1, G1) ∈ F × G satisfying C ∩ F1 ⊆ G1

and

(2) ∃(F2, G2) ∈ F × G satisfying F2 ⊆ C ∪G2.

Now F1∩F2 ∈ F, G1∪G2 ∈ G and F×G is regular so F1∩F2 6⊆ G1∪G2 (Lemma 2.2 (3)).
If we take s ∈ F1 ∩ F2 with s /∈ G1 ∪ G2 then s ∈ C by the inclusion (2) since s /∈ G2,
and now we have the contradiction s ∈ G1 by inclusion (1). This establishes our claim
so we have the following two cases:

Case 1 C ∩F 6⊆ G ∀ (F,G) ∈ F×G. Now define F∗ = {A ∈ S | C ∩F ⊆ A for some F ∈
F}. It is clear that F∗ is a S-filter and that F∗×G is a regular difilter on (S, S). Moreover
F × G ⊆ F

∗ × G and C ∈ F
∗ \ F so F × G ⊂ F

∗ × G, which contradicts the maximality.

Case 2 F 6⊆ C ∪G ∀(F,G) ∈ F × G. A contradiction may be obtained by an argument
dual to the above, and we omit the details.

This establishes F ∪ G = S, as required.

(2) =⇒ (3) Since F∪G = S and F∩G = ∅ by regularity (Lemma 2.2 (1)) we deduce that
G = S \F. Suppose that F is not prime. Then for some A1, A2 ∈ S we have A1 ∪A2 ∈ F

but A1, A2 /∈ F. Now A1, A2 ∈ S \F = G, whence A1 ∪A2 ∈ G since G is a S-cofilter. But
then we have A1 ∪A2 ∈ F ∩ G 6= ∅, which contradicts the regularity of F × G.

(3) =⇒ (4) Since G = S \ F we deduce F ∪ G = S, and an argument dual to the above
easily establishes (4).

(4) =⇒ (1) Let F′ × G′ be a regular difilter with F × G ⊆ F′ × G′. Then F ⊆ F′ and
G ⊆ G′ by Lemma 2.4, and F′ ∩ G′ = ∅ by Lemma 2.2. Now A ∈ F′ =⇒ A /∈ G′ =⇒
A /∈ G =⇒ A ∈ S \ G = F by (4). Hence F′ ⊆ F and we have F′ = F. Likewise, G′ = G

and we have established that F × G is a maximal regular difilter on (S, S). ¤
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2.16. Corollary. There exists a one to one correspondence between the set of maximal

regular difilters on (S, S), the set of prime filters on (S, S), and the set of prime cofilters

on (S, S).

Proof. Let F be a prime filter on (S, S) and set G = S \ F. Then G is a cofilter on (S, S).
Indeed ∅ /∈ F =⇒ ∅ ∈ G which shows that G 6= ∅, while S ∈ F =⇒ S /∈ G so G satisfies
CF1. For CF2 take G ∈ G and G ⊇ G′ ∈ S. Then G′ /∈ G would give G′ ∈ F and
hence the contradiction G ∈ F by F2. Thus G

′ ∈ G. Finally, suppose G1, G2 ∈ G but
G1 ∪G2 /∈ G. Then G1 ∪G2 ∈ F, and we have the contradiction G1 ∈ F or G2 ∈ F since
F is prime. This establishes CF3, and hence G is a cofilter on (S, S) as claimed. Since
F ∩ G = ∅ we see that F × G is a regular difilter, and F ∪ G = S shows that F × G is a
maximal regular difilter by Proposition 2.15. Hence

F 7→ F × (S \ F)

is a mapping between the prime filters on (S, S) and the maximal regular difilters on (S, S).
Since for prime filters F,F′ on (S, S) we have F × (S \ F) = F′ × (S \ F′) =⇒ F = F′

this mapping is injective, while by Proposition 2.15 (3) every maximal regular difilter on
(S, S) has the form F × (S \ F) with F prime, so it is also surjective.

This argument verifies that the above mapping is a bijection between the prime filters
and the maximal regular difilters, and a bijection between the prime cofilters and the
maximal regular difilters may be obtained in the same way. ¤

2.17. Example. Let us use Proposition 2.15 to characterize the maximal regular difilters
on the texture (L,L).

Let F×G be a maximal regular difilter on (L,L) and define r0 = inf{r ∈ L | (0, r] ∈ F}.
There are three cases to consider:

Case 1: r0 = 0. This clearly implies F = L \ {∅} and G = {∅}.

Case 2: r0 = 1. This clearly implies F = {L} and G = S \ {L}.

Case 3: 0 < r0 < 1. In this case there are two possibilities

a) F = {(0, r] | r0 < r ≤ 1} and G = {(0, r] | 0 < r ≤ r0}, or

b) F = {(0, r] | r0 ≤ r ≤ 1} and G = {(0, r] | 0 < r < r0}.

Conversely, with F and G defined as above, F is a prime filter (and G a prime cofilter)
on (L,L), F ∩ G = ∅ and F ∪ G = L, so F × G is a maximal regular difilter on (L,L) in
each case.

With regard to the existence of maximal regular difilters under the axiom of choice
we have the following.

2.18. Proposition. Let F×G be a regular difilter on (S, S). Then there exists a maximal

regular difilter H ×K satisfying F × G ⊆ H ×K.

Proof. Let Fj × Gj , j ∈ J , be a chain of regular difilters satisfying F × G ⊆ Fj × Gj for
all j ∈ J . Let F′ =

⋃

j∈J Fj . We claim that F′ is a S-filter. Since ∅ /∈ Fj for all j ∈ J

we have ∅ /∈ F′ so F1 holds. F2 is also trivial, so we verify F3. Take A1, A2 ∈ F′. Then
A1 ∈ Fj , A2 ∈ Fk for some j, k ∈ J . Without loss of generality we may suppose Fj ⊆ Fk

and so A1∩A2 ∈ Fk ⊆ F
′, whence F3 holds also. In just the same way G

′ =
⋃

j∈J Gj is a

S-cofilter, and a similar argument to the above shows that F′×G′ is regular. Hence F′×G′

is an upper bound for the chain Fj × Gj , j ∈ J in the set of regular difilters on (S, S)
containing F × G and ordered by inclusion. By Zorn’s Lemma we see that this partially
ordered set of regular difilters contains a maximal element H×K. Hence F×G ⊆ H×K
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and it is clear that H ×K is in fact maximal in the set of all regular difilters on (S, S)
ordered by inclusion. ¤

2.19. Proposition. Let F × G be a maximal regular difilter on (S, S, τ, κ). Then F × G

is diconvergent on (S, S, τ, κ) if and only if it diclustering.

Proof. In view of Proposition 2.12 we only have to prove sufficiency. Hence for Ps′ 6⊆ Qs
let s′ be a cluster point and s a cocluster point of F × G. Take G ∈ τ with G 6⊆ Qs.
Suppose that G ∈ G. Then ]G[ ⊆ Qs since s is a cluster point of G, and this is a
contradiction since ]G[ = G. Hence G ∈ S \ G = F by Proposition 2.15, and we have
established F → s by Lemma 2.7 (1). A dual argument gives G → s′, whence s is a limit
and s′ a colimit of F × G. Since Ps′ 6⊆ Qs this shows that F × G is diconvergent on
(S, S, τ, κ). ¤

We end this section by giving characterizations of dicompactness [3, 10] of ditopological
texture spaces in terms of the concepts given here ( c.f. [1]).

2.20. Theorem. The following are equivalent for a ditopological texture space (S, S, τ, κ):

(1) (S, S, τ, κ) is dicompact.
(2) Every regular difilter on (S, S, τ, κ) is diclustering.
(3) Every maximal regular difilter on (S, S, τ, κ) is diconvergent.

Proof. (1) =⇒ (2) Let F×G be a regular difilter and consider the family D = {([A], ]B[) |
A ∈ F, B ∈ G} ⊆ κ×τ . ClearlyD has the fep because F×G has the fep by Lemma 2.2 (2),
A ⊆ [A] and ]B[ ⊆ B. In view of Theorem 1.5 (2), dicompactness gives

⋂

domD 6⊆
∨

ranD, so we may choose s, s′ ∈ S satisfying
⋂

domD 6⊆ Qs′ , Ps′ 6⊆ Qs, and Ps 6⊆
∨

ranD. Hence, A ∈ F =⇒ [A] ∈ domD =⇒ Ps′ ⊆ [A] and B ∈ G =⇒ ]B[ ∈
ranD =⇒ ]B[ ⊆ Qs, which establishes that s

′ is a cluster point of F and s a cluster
point of G. Thus F × G is diclustering in (S, S, τ, κ), as required.

(2) =⇒ (1) Take D ⊆ κ× τ satisfying the fep and define

F ={A ∈ S | ∃K1, . . . ,Kn ∈ domD with K1 ∩ . . . ∩Kn ⊆ A},

G ={B ∈ S | ∃G1, . . . , Gm ∈ ranD with B ⊆ G1 ∪ . . . ∪Gm}.

It is trivial to verify that F × G is a regular difilter, so there exists s, s′ ∈ S satisfying
Ps′ 6⊆ Qs for which s

′ is a cluster point of F and s a cluster point of G. Since D ⊆ F×G,
for each (K,G) ∈ D we have Ps′ ⊆ K and G ⊆ Qs. Hence Ps′ ⊆

⋂

domD,
∨

ranD ⊆ Qs,
so
⋂

domD 6⊆
∨

ranD. Hence D is bound and so (S, S, τ, κ) is dicompact.

(2)⇐⇒ (3) Immediate from Proposition 2.19. ¤

3. Completeness of Di-uniformities

Let us first define the notion of Cauchy difilter and completeness for dicovering uni-
formities [11, 12]. We recall that the uniform ditopology (τ, κ) of υ [11, Definition 4.5] is
given by:

G ∈ τ ⇐⇒ G 6⊆ Qs =⇒ ∃C ∈ υ with St(C, Ps) ⊆ G,

K ∈ κ ⇐⇒ Ps 6⊆ K =⇒ ∃C ∈ υ with K ⊆ CSt(C, Qs).

In what follows, convergence and clustering of difilters on (S, S, υ) will be with respect
to the uniform ditopology (τ, κ).

3.1. Definition. Let (S, S) be a texture and υ a dicovering uniformity on (S, S).

(1) A difilter F × G on (S, S) is said to be Cauchy if (F × G) ∩ C 6= ∅ for all C ∈ υ.
(2) (S, S, υ) is called dicomplete if every regular Cauchy difilter is diconvergent.
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3.2. Proposition. A difilter which is diconvergent for the uniform ditopology of a di-

covering uniformity υ on (S, S) is Cauchy.

Proof. Let F × G be a diconvergent difilter on (S, S) and C ∈ υ. Since by [11, Proposi-
tion 4.8] the di-uniformity υ has a base of open, coclosed dicovers we may choose D ∈ υ
open, coclosed so that D ≺ C. On the other hand, by ([11, Definition 3.6], the di-
uniformity has a base of anchored dicovers so we have an anchored dicover E ∈ υ with
E ≺ D.

On the other hand we have s, s′ ∈ S satisfying Ps′ 6⊆ Qs for which F → s and G → s′.
Choose u ∈ S with Ps′ 6⊆ Qu and Pu 6⊆ Qs. Since E is anchored we have in particular
P ≺ E, so there exists AEB with Pu ⊆ A and B ⊆ Qu. Now we have GDF with A ⊆ G,
F ⊆ B and so G 6⊆ Qs and Ps′ 6⊆ F . Since G ∈ τ , F ∈ κ we obtain G ∈ η∗(s) ⊆ F since
F → s and F ∈ µ∗(s′) ⊆ G since G → s′. Finally we have C CD with G ⊆ C, D ⊆ F ,
whence (C,D) ∈ C ∩ (F × G) 6= ∅. Thus, F × G is Cauchy as required. ¤

3.3. Proposition. A diclustering Cauchy difilter is diconvergent.

Proof. Let F × G be a Cauchy difilter on (S, S, υ) which is diclustering in (S, S, τ, κ).
Then we have Ps′ 6⊆ Qs with s

′ a cluster point and s a cocluster point of F × G. Take
u′, u ∈ S satisfying Ps′ 6⊆ Qu′ , Pu′ 6⊆ Qu and Pu 6⊆ Qs. We prove that F → u.
To this end take G ∈ τ with G 6⊆ Qu. By the above we now have C ∈ υ satisfying
St(C, Pu) ⊆ G, and without loss of generality we may suppose that C is closed and co-
open [11, Proposition 4.8]. Since F × G is Cauchy there exists (A,B) ∈ (F × G) ∩ C,
whence B =]B[ ⊆ Qs since s is a cluster point of G. This gives Pu 6⊆ B, whence
A ⊆ St(C, Pu) ⊆ G and we obtain G ∈ F as claimed. A dual argument may be used to
show that G → u′, and hence F × G is diconvergent in (S, S, τ, κ) since Pu′ 6⊆ Qu. ¤

3.4. Corollary. Every dicovering uniformity with a dicompact uniform ditopology is

dicomplete.

Proof. Let (S, S, υ) have a dicompact uniform ditopology and let F × G be a regular
Cauchy difilter. By Theorem 2.20, F × G is diclustering. Hence F × G diconverges by
Proposition 3.3, which establishes dicompleteness. ¤

Now we generalize the notion of total boundedness to dicovering uniformities.

3.5. Definition. The dicovering uniformity υ on (S, S) is said to be totally bounded if
each C ∈ υ has a finite, cofinite sub-dicover.

3.6. Proposition. Every dicovering uniformity with a dicompact uniform ditopology is

totally bounded.

Proof. It suffices to note that by [11, Proposition 4.8], the dicovering uniformity υ has a
base of open, coclosed dicovers. ¤

3.7. Proposition. Suppose that υ is a totally bounded dicovering uniformity on (S, S)
and let F × G be a maximal regular difilter. Then F × G is Cauchy.

Proof. Take C ∈ υ. Since υ is totally bounded we have AjCBj , j ∈ J = {1, 2, . . . , n},
for which {(Aj , Bj) | j ∈ J} is a dicover of (S, S). Define J1 = {j ∈ J | Bj /∈ G} and
J2 = J \ J1. By the definition of dicover we have

⋂

j∈J1
Bj ⊆

⋃

j∈J2
Aj .

Now j ∈ J1 =⇒ Bj /∈ G =⇒ Bj ∈ F by Proposition 2.15 (2) since F × G is
a maximal regular difilter, whence

⋂

j∈J1
Bj ∈ F and so

⋃

j∈J2
Aj ∈ F by the above

inclusion. However, by Proposition 2.15 (3), F is prime and so there exists k ∈ J2
satisfying Ak ∈ F. On the other hand since k /∈ J1 we have Bk ∈ G, which gives
(Ak, Bk) ∈ (F × G) ∩ C 6= ∅. This verifies that F × G is Cauchy. ¤
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Now we may give:

3.8. Theorem. Let υ be a dicovering uniformity on (S, S) with uniform ditopology (τ, κ).
Then (S, S, τ, κ) is dicompact if and only if υ is totally bounded and dicomplete.

Proof. In view of Corollary 3.4 and Proposition 3.6 we need only prove the sufficiency.
Hence, let υ be totally bounded and dicomplete. If F×G is a maximal regular difilter on
(S, S) it is Cauchy by Proposition 3.7, and hence diconvergent. This shows that (τ, κ) is
dicompact by Theorem 2.20 (3). ¤

The following concepts will be useful in dealing with finite, cofinite dicovers.

3.9. Definition. Let C = {(Aj , Bj) | j ∈ J} be a dicover of (S, S).

(1) C is said to be excluding if Aj 6⊆ Bj for all j ∈ J .
(2) (Ak, Bk), k ∈ J , is said to be essential in C if {(Aj , Bj) | j ∈ J \ {k}} is not a

dicover of (S, S).
(3) C is called essential if every (Aj , Bj), j ∈ J , is essential in C.

3.10. Lemma. Let (S, S) be a texture.

(1) A finite, cofinite dicover has an essential subdicover.

(2) An essential finite, cofinite dicover is excluding.

(3) A finite excluding dicover is anchored.

Proof. (1) Since the number of elements of a finite, cofinite dicover is finite, non-essential
elements may be removed until an essential subdicover is obtained.

(2) Let C = {(Aj , Bj) | j ∈ J}, J finite, be essential. Then C \ {(Ak, Bk)} is not
a dicover for each k ∈ J , so there exists a partition K1, K2 of K = J \ {k} satisfying
⋂

j∈K1
Bj 6⊆

⋃

j∈K2
Aj . Take s ∈

⋂

j∈K1
Bj \

⋃

j∈K2
Aj . Since {K1 ∪ {k}, K2} is a

partition of J and C is a dicover,
⋂

j∈K1∪{k}
Bj ⊆

⋃

j∈K2
Aj . Hence s /∈ Bk. Likewise,

considering the partition {K1, K2 ∪ {k}} leads to s ∈ Ak, and so Ak 6⊆ Bk as required.

(3) Let C be a finite excluding dicover of (S, S). To show that C is anchored we must

first establish P ≺ C, so take s ∈ S[. Suppose that Ps 6⊆ Aj or Bj 6⊆ Qs for all j ∈ J ,
and define J1 = {j ∈ J | Ps ⊆ Bj}, J2 = J \ J1. Since C is a dicover Ps ⊆

⋂

j∈J1
Bj ⊆

∨

j∈J2
Aj , whence Ps ⊆

⋃

j∈J2
Aj since by finiteness the family {Aj | j ∈ J} is finite.

Hence, Ps ⊆ Aj for some j ∈ J2. On the other hand j ∈ J2 =⇒ Ps 6⊆ Bj =⇒ Bj ⊆
Qs =⇒ Ps 6⊆ Aj by hypothesis. This contradiction establishes P ≺ C.

Secondly, take j ∈ J . Then Aj 6⊆ Bj , whence Aj 6⊆ Qs, Ps 6⊆ Bj for some s ∈ S.
Associate this s with (Aj , Bj). To show [11, Definition 2.1 (2 a)] take Aj 6⊆ Qu. Clearly,
setting (A′, B′) = (Aj , Bj) gives A

′CB′ for which A′ 6⊆ Qu and Ps 6⊆ B′. Dually, [11,
Definition 2.1 (2 b)] may be established in the same way. ¤

It is well known that in the classical case, a totally bounded covering uniformity
actually has a base of finite covers. It is not known if the corresponding result holds for
dicovering uniformities on a texture, but we may establish the following result.

3.11. Proposition. A totally bounded dicovering uniformity has a base of finite, cofinite

excluding dicovers if and only if it has a base of excluding dicovers.

Proof. Necessity is clear, so suppose that the totally bounded dicovering uniformity υ
has a base of excluding dicovers. Then for C ∈ υ we may take an excluding dicover D ∈ υ
with D ≺ (?) C.

Since υ is totally bounded there exists a dicover E = {(Aj , Bj) | j ∈ J} ⊆ D with
J finite, and for each j ∈ J we may choose A∗jCB

∗
j with St(D, Aj) ⊆ A∗j and B

∗
j ⊆
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CSt(D, Bj). Since Aj ⊆ A∗j , B
∗
j ⊆ Bj and Aj 6⊆ Bj we have A

∗
j 6⊆ B∗j , so E∗ =

{(A∗j , B
∗
j ) | j ∈ J} is a finite, cofinite excluding subdicover of C. Since E∗ ≺ C it will

suffice to show that D ≺ E
∗, whence E

∗ ∈ υ. To this end take UDV and suppose that
U ⊆ Bj or Aj ⊆ V for all j ∈ J . Let J1 = {j ∈ J | U ⊆ Bj} and J2 = J \ J1. Since E is
a dicover we have U ⊆

⋂

j∈J1
Bj ⊆

⋃

j∈J2
Aj ⊆ V , which is a contradiction. Hence there

exists j ∈ J with U 6⊆ Bj and Aj 6⊆ V , so U ⊆ St(D, Aj) ⊆ A∗j , B
∗
j ⊆ CSt(D, Bj) ⊆ V .

This establishes D ≺ E∗, as required. ¤

3.12. Example. Consider the unit interval texture (I, I) with the usual dicovering
uniformity υI [11, Example 3.8]. We recall that the family {Dε | ε > 0}, where
Dε = {([0, r + ε), [0, r − ε]) | r ∈ I}, is a base for υI.

The uniform ditopology of (I, I, υI) is the usual ditopology of (I, I). Indeed, take
0 < r < 1 and [0, r) 6⊆ Qs. Then s < r, and if we set ε = 1

2
(r−s) > 0 it is trivial to verify

St(Dε, Ps) ⊆ [0, r), whence [0, r) is open for the uniform ditopology. On the other hand
[0, r] 6⊆ Qr and for any ε > 0 we have [0, r + ε) ⊆ St(Dε, Pr), whence St(Dε, Pr) 6⊆ [0, r]
and so [0, r] is not open. Hence the only open sets in the uniform ditopology are ∅, I and
[0, r), 0 < r < 1. Likewise a dual argument shows that the only closed sets are I, ∅ and
[0, r], 0 < r < 1.

As shown in Examples 1.6 (2), the usual ditopology (τI, κI) on (I, I) is dicompact,
whence (I, I, υI) is dicomplete and totally bounded by Theorem 3.8. Since the basic
dicovers Dε, ε > 0, are clearly excluding we see from Proposition 3.11 that (I, I, υI) has
a base of finite, cofinite excluding dicovers. More specifically, let us show that the family
E of all finite, cofinite open, coclosed excluding dicovers actually forms a base for υI.

To this end take E = {(Aj , Bj) | 1 ≤ j ≤ n} ∈ E. Since the union of the sets Aj is I,
one of these sets must equal I, and we assume without loss of generality that A1 = [0, 1].
Hence B1 = [0, t1] with t1 < 1 since A1 6⊆ B1 and B1 is closed. Likewise, the intersection
of the sets Bj is empty, so without loss of generality we have A2 = [0, s2), s2 > 0, and
B2 = ∅. Finally, the remaining elements† of C have the form Ak = [0, sk), Bk = [0, tk]
where sk > tk for k = 3, . . . , n. Now define ε > 0 by

ε =
1

2
min{1− s1, t2, s3 − t3, . . . , sn − tn}.

If we let u1 =
1
2
(1+s1), u2 =

1
2
t2 and uk =

1
2
(sk+ tk) for k = 3, . . . , n then it is trivial to

verify that C = {([0, uj+ ε), [0, uj− ε]) | 1 ≤ j ≤ n} ≺ E. On the other hand C ≺ Dε, and
since Dε/2 ≺ (?) Dε an argument very similar to that used in the proof of Proposition 3.11
gives Dε/2 ≺ E, whence E ∈ υI.

Now take any C ∈ υI. By [11, Proposition 4.8] there exists an open, coclosed dicover
D ∈ υI with D ≺ C, and since υI is totally bounded we have a finite, cofinite subdicover
E of D. Without loss of generality we may assume E is essential by Lemma 3.10 (1), and
then E is excluding by Lemma 3.10 (2). Hence E ∈ E, while E ≺ C, so E is a base of υI.

3.13. Proposition. An initial dicovering uniformity of totally bounded dicovering uni-

form spaces is totally bounded.

Proof. Let υ be the initial dicovering uniformity on (S, S) generated by the totally
bounded dicovering uniform spaces (Tj ,Tj , νj), j ∈ J and the difunctions (fj , Fj) :
(S, S) → (Tj ,Tj), j ∈ J . By [11, Definition 5.23], a base for υ is given by dicovers of

the form

(

n
∧

k=1

(fjk , Fjk )
−1(Cjk )

∆

)∆

, Cjk ∈ νjk . Since νjk is totally bounded, Cjk has a

†For simplicity we are assuming that only one Aj equals I and that only one Bj equals ∅. It

is easy to modify the argument if this is not the case
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finite, cofinite subdicover Djk . Clearly (fjk , Fjk )
−1(Djk ) is also finite and cofinite, so by

Lemma 3.10 (1) we may choose an essential finite, cofinite subdicover Ejk . Hence

Ejk ≺ (fjk , Fjk )
−1(Djk ) ≺ (fjk , Fjk )

−1(Cjk ),

and so

Ejk ≺ (∆) (fjk , Fjk )
−1(Djk )

∆ ≺ (fjk , Fjk )
−1(Cjk )

∆.

By Lemma 3.10 (2,3) the dicover Ejk is anchored, so by [11, Lemma 2.2 (3 i)] we have

Ejk ≺ (fjk , Fjk )
−1(Djk )

∆. Hence
n
∧

k=1

Ejk ≺
n
∧

k=1

(fjk , Fjk )
−1(Djk )

∆ ≺
n
∧

k=1

(fjk , Fjk )
−1(Cjk )

∆.

Again
∧n
k=1 Ejk is finite and cofinite so we have an essential finite, cofinite subdicover E.

Hence, by the same argument as used above we obtain

E ≺

( n
∧

k=1

Ejk

)∆

≺

( n
∧

k=1

(fjk , Fjk )
−1(Cjk )

∆

)∆

which shows that υ is totally bounded. ¤

3.14. Theorem. Every completely biregular ditopological texture space ([8], see also [11,
Definition 4.11]) has a compatible totally bounded dicovering uniformity.

Proof. According to [11, Theorem 5.16], the initial direlational uniformity generated by
the space (I, I,UI) and the family of bicontinuous difunctions from the completely biregu-
lar ditopological texture space (S, S, τ, κ) to (I, I, τI, κI) is compatible with the ditopology
(τ, κ). In view of the equivalence between direlational uniformities and dicovering unifor-
mities established in [11, 12], the initial dicovering uniformity υ generated by the space
(I, I, υI) and the same family of difunctions is also compatible. However (I, I, υI) is totally
bounded (Example 3.12), so υ is totally bounded by Proposition 3.13. Thus (S, S, τ, κ)
has a compatible totally bounded dicovering uniformity. ¤

3.15. Example. Consider the texture (L,L) with the discrete, codiscrete ditopology
(L,L). Note that (L,L,L,L) is completely biregular. Indeed, take G ∈ L and s ∈ L
with G 6⊆ Qs, whence G = (0, r] and s < r. Define ϕ : L→ I by

ϕ(t) =

{

0 t ≤ r

1 r < t
.

Clearly ϕ satisfies the condition of [6, Lemma 3.4], so we have a difunction (f, F ) :
(L,L) → (I, I) for which f←B = F←B = ψ←B for all B ∈ I, where ψ←B =

∨

{Ps |
Pψ(u) ⊆ B ∀u ∈ L with Ps 6⊆ Qu}. We deduce easily that Ps ⊆ f←P0 and F

←Q1 ⊆ G,
while (f, F ) is clearly bicontinuous, which verifies that (L,L,L,L) is completely regular.
The proof of complete coregularity is dual, and is omitted.

We deduce that the initial dicovering uniformity υ generated by the space (I, I, υI)
and the bicontinuous difunctions between (L,L,L,L) and (I, I, τI, κI) is compatible with
(L,L). Since by Theorem 3.14, (L,L, υ) is totally bounded, this di-uniform space can-
not be dicomplete because the uniform ditopology (L,L) is not dicompact by Exam-
ples 1.6 (1).

To obtain more specific information about υ let us consider the embedding ψ : L→ I,
r 7→ r for 0 < r ≤ 1. If Pr 6⊆ Qr′ in (L,L) then r

′ < r, whence ψ(r′) < ψ(r) and so
Pψ(r′) 6⊆ Qψ(r) in (I, I). Hence ψ satisfies the condition of [6, Lemma 3.4], and as above
we have a difunction (f, F ) : (L,L)→ (I, I) for which f←B = F←B = ψ←B for all B ∈ I.
It is easy to verify that for B = [0, r] and for B = [0, r), 0 < r < 1, we have ψ←B = [0, r].



66 S. Özçağ, F. Yıldız, L. M. Brown

In particular the difunction (f, F ) is bicontinuous. Take E ∈ E, where E is the base of
υI described in Example 3.12. Then C = (f, F )−1(E) = {(Cj , Dj) | 1 ≤ j ≤ n}, where
C1 = (0, 1], D1 = (0, t1], t1 < 1; C2 = (0, s2], D2 = ∅, s2 > 0; Ck = (0, sk], Dk = (0, tk],
sk > tk, k = 3, . . . , n. Hence C is a finite, cofinite excluding dicover of (L,L), so C

is anchored by Lemma 3.10 (2,3). We now obtain C ∈ υ. Indeed if E1 ∈ E satisfies
E1 ≺ (?) E then C1 = (f, F )

−1(E1) satisfies C1 ≺ (?) C because the inverse (co)image of a
difunction preserves inclusion. Since C1, like C, is anchored, by [11, Lemma 2.2 (2)] we
have C∆1 ≺ C and C ∈ υ follows because C∆1 ∈ υ by [11, Definition 5.23]. This argument
clearly establishes that υ contains the set C of all finite, cofinite excluding dicovers of
(L,L).

Now take D ∈ υ. Since υ is totally bounded we have a finite, cofinite subdicover C of
D, and without loss of generality we may assume that C is essential and hence excluding
by Lemma 3.10. Thus C ∈ C and C ≺ D, so C is a base of υ.

We have found it convenient to work in terms of dicovering uniformities in this sec-
tion, but we will close by giving characterizations of the Cauchy property and of total
boundedness in terms of direlational uniformities.

3.16. Proposition. Let υ be a dicovering uniformity and F×G a difilter on (S, S). Then
F × G is Cauchy with respect to υ if and only if given (d,D) ∈ ∆(υ) there exists s ∈ S
with d[s] ∈ F and D[s] ∈ G.

Proof. First let F × G be Cauchy and take (d,D) ∈ ∆(υ). Now we have C ∈ υ with
δ(C) v (d,D). By [11, Theorem 3.7 (4)] we have γ(δ(C)) ∈ Γ(∆(υ)) = υ and so γ(δ(C))∩
(F × G) 6= ∅, whence there exists s ∈ S with (d(C)[s], D(C)[s]) ∈ F × G. But d(C) ⊆ d,
D ⊆ D(C) so d(C)[s] ⊆ d[s] and D[s] ⊆ D(C)[s]. This verifies d[s] ∈ F and D[s] ∈ G, as
required.

Conversely let F × G satisfy the stated condition and take C ∈ υ. Since, as above,
C ∈ Γ(∆(υ)) there exists (d,D) ∈ ∆(υ) with γ(d,D) ≺ C. By hypothesis there exists
s ∈ S with d[s] ∈ F and D[s] ∈ G. Since (d[s], D[s]) ∈ γ(d,D) there exists ACB with
d[s] ⊆ A, B ⊆ D[s], whence (A,B) ∈ C ∩ (F × G) 6= ∅. This verifies that F × G is
Cauchy. ¤

In view of the above the following definition is compatible with Definition 3.1 (1).

3.17. Definition. Let U be a direlational uniformity and F×G a difilter on (S, S). Then
F×G is said to be Cauchy if for (d,D) ∈ U there exists s ∈ S with d[s] ∈ F and D[s] ∈ G.

3.18. Proposition. Let υ be a dicovering uniformity on (S, S). Then (S, S, υ) is totally
bounded if and only if for each (d,D) ∈ ∆(υ) there exists s1, s2, . . . , sn ∈ S for which

{(d[s1], D[s1]), (d[s2], D[s2]), . . . , (d[sn], D[sn])} is a dicover of (S, S).

Proof. First suppose that υ is totally bounded and take (d,D) ∈ ∆(υ). Now we have
C ∈ υ with δ(C) v (d,D) and by hypothesis there exists a finite, cofinite subdicover
{(A1, B1), (A2, B2), . . . , (An, Bn)} of C. By Lemma 3.10 (1) we may assume that this
dicover is essential, so by Lemma 3.10 (2) we have Aj 6⊆ Bj for all 1 ≤ j ≤ n. Hence, for
each j we have sj ∈ S satisfying Aj 6⊆ Qsj and Psj 6⊆ Bj . We claim that Aj ⊆ d(C)[sj ].
To show this assume the contrary and take u ∈ S satisfying Aj 6⊆ Qu, Pu 6⊆ d(C)[sj ], and
then u′ ∈ S with Aj 6⊆ Qu′ , Pu′ 6⊆ Qu. We recall from [11, statement of Proposition 2.5]
that

d(C) =
∨

{P (s,t) | ∃ j ∈ J with Aj 6⊆ Qt and Ps 6⊆ Bj},

whence P (sj ,u′) ⊆ d(C). Hence d(C) 6⊆ Q(sj ,u)
, from which we deduce d(C)[sj ] 6⊆ Qu

by [6, Lemma 2.6 (1)]. However, this contradicts Pu 6⊆ d(C)[sj ] and we have established
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Aj ⊆ d(C)[sj ] ⊆ d[sj ]. A dual argument shows thatD[sj ] ⊆ D(C)[sj ] ⊆ Bj , so the dicover
{(A1, B1), (A2, B2), . . . , (An, Bn)} refines {(d[s1], D[s1]), (d[s2], D[s2]), . . . , (d[sn], D[sn])},
showing that the latter is a dicover of (S, S) as required.

Conversely, suppose that ∆(υ) has the stated property and take C ∈ υ. Now there
exists D ∈ υ with D ≺ (?) C, and without loss of generality we may assume that
D is anchored. Since δ(D) ∈ ∆(υ) there exists s1, s2, . . . , sn ∈ S for which E =
{(d(D)[s1], D(D)[s1]), (d(D)[s2], D(D)[s2]), . . . , (d(D)[sn], D(D)[sn])} is a dicover of (S, S).
By definition E ⊆ γ(δ(D)), and γ(δ(D)) = D∆ by [11, Theorem 2.7 (2)]. Finally, since D

is anchored and hence satisfies P ≺ D we have D ≺ (∆) C by [4, Lemma 4.7 (2)], that is
D∆ ≺ C. Hence E ≺ C and for each j we may choose AjCBj satisfying d(D)[sj ] ⊆ Aj and
Bj ⊆ D(D)[sj ]. Clearly {(A1, B1), (A2, B2), . . . (An, Bn)} is a finite, cofinite subdicover
of C, so υ is totally bounded. ¤

In view of the above result, the following is consistent with Definition 3.5.

3.19. Definition. Let U be a direlational uniformity on (S, S). Then (S, S,U) is called
totally bounded if for each (d,D) ∈ U there exists s1, s2, . . . , sn ∈ S for which the family
{(d[s1], D[s1]), (d[s2], D[s2]), . . . , (d[sn], D[sn])} is a dicover of (S, S).

These equivalent definitions enable the results for dicovering uniformities given above
to be reformulated for direlational uniformities in the natural way, and we omit the
details.

4. Conclusion

As mentioned earlier, the definitions relating to convergence given here should be
regarded as tentative. It is therefore worthwhile seeing how far the results obtained meet
our expectations for a workable theory.

On the positive side it would appear that the general notion of difilter is a suitable
construct on which to base such a theory. The regularity condition also occurs naturally,
and has interesting consequences with respect to maximality as is shown by Proposi-
tion 2.15. Also, Proposition 2.12 and Proposition 2.19 show that for regular difilters the
relation between diconvergence and diclustering echoes that between convergence and
clustering of filters in general topology, while Theorem 2.20 gives a characterization of
dicompactness analogous to that for compactness. Further, in connection with dicover-
ing uniformities, Proposition 3.2 and Proposition 3.6 give the expected relation between
diconvergence, diclustering and the Cauchy property for regular difilters, while Theo-
rem 3.8 shows that a relation analogous to that between compactness, completeness and
total boundedness in General Topology holds between dicompactness, dicompleteness
and total boundedness.

We may conclude that the notions of diconvergence and diclustering for regular difil-
ters is appropriate for the study of dicompact spaces, and for the study of dicompleteness
of di-uniformities, particularly in the presence of total boundedness. Moreover, in view
of Proposition 3.8, these concepts should be appropriate for plain textures in the general
case. However, the characterization of maximal regular difilters on (L,L) in Exam-
ple 2.17 and the formulae for η∗(s), µ∗(s) on this texture with the discrete, codiscrete
ditopology given in Example 2.9, lead easily to the conclusion that this space has no
diconvergent (maximal) regular difilters. This shows very strikingly that the concept of
diconvergence for regular difilters on general non-plain ditopological texture spaces can
be excessively restrictive. It remains an open problem to develop appropriate concepts
related to convergence in the context of such spaces.
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