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Abstract

The aim of this study is to compare popular regression methods with the
partial least squares method. The paper presents a theoretical point of view,
as well as an application on a real data set. It is found that partial least
squares regression yields somewhat better results in terms of the predictive
ability of models obtained when compared to the other prediction methods.
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1. Introduction

In several linear regression and prediction problems, the independent variables
may be many and highly collinear. This phenomenon is called multicollinearity
and it is known that in this case the ordinary least squares (OLS) estimator for
the regression coefficients or predictor based on these estimates may give very
poor results [4]. Even for finite or moderate samples, collinearity problem may
still exist. Plenty of methods have been developed to overcome this problem, such
as principal component regression (PCR), ridge regression (RR) and partial least
squares (PLS).

Two of the most used methods, namely PCR and RR, require a large amount of
computation when the number of variables is large [5]. PCR handles the collinear-
ity problem with few factors. However, PLS may even overcome the collinearity
problem with fewer factors than PCR. Meanwhile simulations tend to show that
PLS reaches its minimal mean square error (MSE) with a smaller number of fac-
tors than PCR. Hence, PLS gives a unique way of choosing factors, contrary to
PCR, and it requires less computations than both PCR and RR. In the follow-
ing sections theoretical aspects of those methods have been presented. Then, the
methods mentioned above have been compared using real data and the results
obtained have been discussed to stress the advantage of PLS.
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2. OLS, PCR, RR and PLS

In this section OLS, PCR and RR are briefly outlined while PLS is presented in
more detail. First of all, the vector of coefficients in the linear regression is given.
The regression model used for these methods is defined by the equation,

y = 1β0 +Xβ + ε (1)

where,

y is a n× 1 vector of observations on the dependent variable,

β0 is an unknown constant,

X is a n× p matrix consisting of n observations on p variables,

β is a p× 1 vector of unknown regression coefficients, and

ε is a n × 1 vector of errors identically and independently distributed with mean
zero and variance σ2.

If the variables included in the matrix X and the vector y are mean centered,
equation (1) can be simplified as follows;

y = Xβ + ε (2)

When there is more than one dependent variable, the equation (2) can be written
as,

Y = XB+E (3)

where,

Y is a n× q matrix of observations on q dependent variables y1, y2, . . . , yq,

E is a n × q matrix of errors, whose rows are independently and identically dis-
tributed, and

B is a p× q matrix of parameters to be estimated.

2.1. Ordinary Least Squares

When the matrix X has a full rank of p, the OLS estimator β̂
OLS

can be obtained
by minimizing the sum of squared residuals,

ε̂
′
ε̂ = (y −Xβ̂)′(y −Xβ̂). (4)

Hence,

β̂
OLS

= (X′X)−1X′y, (5)

where β̂
OLS

is a p × 1 vector of estimated parameters. β̂
OLS

provides unbiased
estimates of the elements of β, which have the minimum variance of any linear
function of the observations. When there are q dependent variables, the OLS
estimator in equation (5) can be generalized as follows;

B̂OLS = (X
′X)−1X′Y, (6)
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where B̂OLS is the least square estimate of B. When the independent variables
are highly correlated, X′X is ill-conditioned and the variance of the OLS estima-
tor becomes large. With multicollinearity, the estimated OLS coefficients may be
statistically insignificant (too large, too small and even have the wrong sign) even
though the R-Square may be high. Therefore, a number of alternative estimation
methods which settle into a category called biased estimation methods have been
proposed and designed to combat multicollinearity. If we quit insisting on unbi-
assedness, biassed methods such as, PCR, RR and PLS can be used to tackle that
problem of imprecise predictions.

2.2. Principal Component Regression

PCR [9] is one way to deal with the problem of ill-conditioned matrices [11]. What
has been done basically is to obtain the number of principal components (PCs)
providing the maximum variation of X which optimizes the predictive ability of
the model. PCR is actually a linear regression method in which the response is
regressed on the PCs. Consider X as mean centered and scaled (Mean-centering
is achieved by subtracting the mean of the variable vector from all the columns of
X. Variable scaling is also used to remove differences in units between variables,
which can be accomplished by dividing each element of the mean centered X by
the root sum of squares of that variable), then

X′Xγi = λiγi, i = 1, 2, . . . , p, (7)

where the λi’s are the eigenvalues of the correlation matrix X
′X and the γi’s are

the unit-norm eigenvectors of X′X. The vector γi is used to re-express the X’s in
terms of PC Z’s in the form,

Zi = γ1iX1 + γ2iX2 + · · ·+ γpiXp (8)

These Zi’s are orthogonal to each other and called the artificial variables [12].
Assume that the first m PCs optimize the predictive ability of the model. Then

y = Zmαm + ε, (9)

where αm = (Z
′
mZm)

−1Z ′my and m is the number of PCs retained in the model.
Using estimates α, it is easy to get back to the estimates of β as,

β̂
PCR

= Vmαm, (10)

where Vm is a matrix consisting of the first m unit-norm eigenvectors. PCR gives
a biassed estimate of the parameters. If all of the PC’s are used instead of using
the first m PC’s, then β̂

PCR
becomes identical to β̂

OLS
[9].

2.3. Ridge Regression

Another method to overcome the multicollinearity problem amongst the regressors
is RR [8]. RR was first suggested by Hoerl [7]. When multicollinearity exists, the
matrix X′X, where X consists of the original regressors, becomes nearly singular.
Since Var(β̂) = σ2(X′X)−1, and the diagonal elements of (X′X)−1 become quite
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large, this makes the variance of β̂ to be large. This leads to an unstable estimate
of β when OLS is used. In RR, a standardized X is used and a small positive
constant θ is added to the diagonal elements of X′X. The addition of a small
positive number θ to the diagonal elements of X′X causes X′X to be non-singular.
Thus,

β̂
RIDGE

= (X′X+ θI)−1X′y, (11)

where I is the p × p identity matrix and X′X is the correlation matrix of inde-
pendent variables. Values of theta lie in the range (0, 1). When θ = 0, β̂

RIDGE

becomes β̂
OLS
. Obviously, a key aspect of ridge regression is determining what the

best value of the constant that is added to the main diagonal of the matrix X′X
should be to maximize prediction. There are many procedures in the literature for
determining the best value. The simplest way is to plot the values of each β̂

RIDGE

versus θ. The smallest value for which each ridge trace plot shows stability in the
coefficient is adopted [10].

2.4. Partial Least Squares

PLS is a reasonably new method developed by Herman Wold in the 1960s as
a method for constructing predictive models when the explanatory variables are
many and highly collinear [5-6,12]. It may be used with any number of explanatory
variables, even for more than the number of observation. Although PLS is heavily
promoted and used by chemometricians, it is largely unknown to statisticians [1].

To regress the Y variables with the explanatory variables X1, . . . , Xp, PLS
attempts to find new factors that will play the same role as the X’s. These new
factors often called latent variables or components. Each component is a linear
combination of X1, . . . , Xp. There are some similarities with the PCR. In both
methods, some attempts have been made to find some factors that will be regressed
with theY variables. The major difference is, while PCR uses only the variation of
X to construct new factors, PLS uses both the variation of X and Y to construct
new factors that will play the role of explanatory variables.

The intension of PLS is to form components that capture most of the infor-
mation in the X variables, that is useful for predicting y1, . . . , yq, while reducing
the dimensionality of the regression problem by using fewer components than the
number of X variables [2].

Now we are going to derive the PLS estimators of β and B. The matrix X has
a bilinear decomposition in the following form;

X = t1p
′

1 + t2p
′

2 + · · ·+ tpp
′

p =

p
∑

i=1

tip
′

i = TP
′. (12)

Here the ti are linear combinations ofX, which we will write asXri. The p×1 vec-
tors pi are often called loadings. Unlike the weights in PCR (i.e. the eigenvectors
γi), the ri are not orthonormal. The ti, however, like the principal components
Zi, are orthogonal. There are two popular algorithms for obtaining the PLS esti-
mators. One is called NIPALS and the other one is called the SIMPLS algorithm.
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In the first one this orthogonality is imposed by computing the ti as linear com-
binations of residual matrices Ei, in other words, as

ti = Ei−1wi, Ei = X−

i
∑

j=1

tjp
′

j , E0 = X, (13)

where the wi are orthonormal. Then two sets of weight vectors wi and ri, i =
1, 2, . . . ,m, span the same space [12]. In most algorithms for both multivariate
and univariate PLS, the first step is to derive either wi or ri, i = 1, . . . ,m, in order
to be able to calculate the linear combination of the ti. Then pi are calculated by
regressing X onto ti. When m factors are to be taken into account, the following
relationship can be written,

Tm = XRm (14)

Pm = X′Tm(T
′

mTm)
−1 (15)

Rm = Wm(P
′

mWm)
−1 (16)

where the first m dominant factors, which capture most of the variance in X, have
maximum ability for predictive models. Equation (16) connects two sets of weight
vectors by a linear transformation. From equations (14) and (15), P′mRm equals
Im, since such a transformation exists. Also R

′
mPm equals Im,

R′mPm = R
′

mX
′Tm(T

′

mTm)
−1 = T′mTm(T

′

mTm)
−1 = Im. (17)

After m dimensions have been extracted, the vector of fitted values from PLS can
be represented by the first m PLS linear combinations Tm. Thus the following
equation is obtained;

ŷm
PLS

= Tm(T
′

mTm)
−1T′my. (18)

Notice that this is the derivation only for the univariate case. The multivariate case
is identical to the univariate case except that the vector ŷm

PLS
should be replaced

by the matrix Ŷm
PLS
[12]. Substituting XRm for Tm and β̂OLS

for y results in

ŷm
PLS

= XRm(R
′

mX
′XRm)

−1R′mX
′Xβ̂

OLS
. (19)

Then it is clear that

β̂
m

PLS
= Rm(R

′

mX
′XRm)

−1R′mX
′Xβ̂

OLS
. (20)

A somewhat a simpler expression for β̂
OLS

can be obtained by first substituting
equation (14) into (15), which yields Pm = X

′XRm(R
′
mX

′XRm)
−1. Then using

this result in equation (20) gives

β̂
m

PLS
= RmP

′

mβ̂OLS
=Wm(P

′

mWm)
−1P′mβ̂OLS

. (21)

In the the multivariate case B̂m
PLS

has a similar form. The only difference is that

β̂
OLS

is replaced by B̂OLS [12] i.e.,

B̂m
PLS

=Wm(P
′

mWm)
−1P′mB̂OLS (22)
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3. A Comparative Study of OLS, RR, PCR and PLS on Real

Data

Before comparing the predictive ability of the models, it is useful to introduce
several measures of a model’s fit to the data and of predictive power used in our
study. In all of the measures considered, we are attempting to estimate the average
deviation of the model from the data. The root-mean square error (RMSE) tells
us about the fit of the model to the data set used. It is defined as,

RMSE =

√

∑n

i=1
(yi − ŷi)2

n
(23)

where the ŷi are the values of the predicted variable when all samples are included
in the model formation, and n is the number of observations. RMSE is a measure
of how well the model fits the data. This is in contrast to the root-mean-square
error of cross-validation (RMSECV), which is a measure of a model’s ability to
predict new samples. The RMSECV is defined as in Equation (23), except the
yi are predictions for samples not included in the model formulation. RMSECV
is related to the PRESS value for the number of PC’s or latent variables (LV’s)
included in the model, i.e.

RMSECV =

√

PRESS

n
(24)

where PRESS is the sum of squares prediction error. PRESS is calculated via
a leave one out cross-validation, i.e. where each sample is left out of the model
formulation and predicted once. It is also possible to calculate a root-mean-square
error of prediction (RMSEP) when the model is applied to new data provided that
the reference values for the new data are known. RMSEP is calculated exactly
as in Equation (23) except that the estimates yi are based on a previously devel-
oped model, not one in which the samples to be “predicted” are included in the
model building. In our case new data are not provided. Therefore we will not be
interested in calculating RMSEP.

3.1. Model Fitting by All Prediction Methods

In this section, we will compare the OLS, RR, PCR and PLS prediction methods
on a real data set. The data with 80 observations consists of the gross domestic
product per capita (GDPPC) and various variables affecting GDPPC in Turkey.
Each observation represents one of the 80 provinces in Turkey. The data are taken
from The State Planning Organization [14]. The variables used are described in
Table 1.
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Table 1. Description of the Variables

Variables Description

Y Gross domestic product per capita (GDPPC)

X1 Number of private cars

X2 Population according to provinces

X3 Number of schools

X4 Number of students

X5 Number of teachers

X6 Number of doctors

X7 Number of dentists

X8 Number of other health staff

X9 Retirement salaried population from pension fund

X10 Electricity consumption (dwellings)

X11 Electricity consumption (commercial)

X12 Electricity consumption (industrial)

X13 Consolidated budget tax income

X14 Public investment expenditure

X15 Number of motor vehicles

X16 Amount of private sector investment incentives

X17 Number of employees in private sector investment incentives

X18 Number of insured population connected with SII

X19 Number of retirement salaried population connected with SII

X20 Number of tax payers

X21 Total bank deposits

X22 Total bank credits per capita

X23 Crops production value

X24 Livestock production value

X25 Animal products production value

X26 Number of rural settlements with adequate drinking water supply

Using the ordinary least squares method, coefficients and their related statistics
have been calculated and are presented in Table 2. Those calculations have been
performed using Matlab via PLS Toolbox 2.1 [13].
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Table 2. Coefficients and Collinearity Statistics

Model Unstandardized Coeff. t Sig. Collinearity

Coefficients Statistics

B Std. Error Beta Tolerance VIF

Const. -1714.5 528591.059 -0.003 0.997

X1 -55.524 23.592 -7.914 -2.354 0.022 0.000 2393.922

X2 -1.043 0.821 -1.427 -1.270 0.210 0.004 267.175

X3 88.113 12543.582 0.005 0.007 0.994 0.011 94.617

X4 72.613 36.871 2.043 1.969 0.054 0.004 227.950

X5 -1239.6 664.815 -2.315 -1.865 0.068 0.003 326.386

X6 222.033 476.390 0.590 0.466 0.643 0.003 339.256

X7 328.163 3439.452 0.184 0.095 0.924 0.001 789.592

X8 -293.169 328.627 -1.056 -0.892 0.376 0.003 296.590

X9 88.736 44.571 3.429 1.991 0.052 0.002 628.148

X10 -2.826 3.240 -1.824 -0.872 0.387 0.001 925.461

X11 0.477 2.655 0.155 0.180 0.858 0.006 158.090

X12 -0.748 0.442 -1.012 -1.695 0.096 0.013 75.535

X13 7.026 1.884 0.824 3.729 0.000 0.097 10.341

X14 3.0E-02 0.013 0.405 2.302 0.025 0.153 6.538

X15 11.941 10.442 2.229 1.144 0.258 0.001 804.182

X16 -5.0E-03 0.005 -0.502 -1.002 0.321 0.019 53.240

X17 62.252 40.616 0.559 1.533 0.131 0.036 28.116

X18 22.224 13.366 4.584 1.633 0.102 0.001 1608.990

X19 6.558 10.431 0.606 0.629 0.532 0.005 196.703

X20 10.222 19.705 0.836 0.519 0.606 0.002 549.737

X21 6.7E-03 0.003 0.722 1.959 0.055 0.035 28.730

X22 -8.0E-04 0.004 -0.076 -0.233 0.817 0.044 22.659

X23 1.7E-02 0.008 0.543 2.142 0.037 0.073 13.611

X24 -8.0E-03 0.021 -0.075 -0.396 0.694 0.131 7.611

X25 -2.0E-02 0.024 -0.192 -0.972 0.336 0.121 8.256

X26 8387.467 6489.710 0.135 1.292 0.202 0.431 2.319

Looking at both the tolerance and VIF columns, only four of the independent
variables (x14, x24, x25, and x26) are significantly non collinear, but the rest are
highly correlated. This leads to imprecise predictions.

Using the ordinary least squares method, an ANOVA table has been performed
in order to test whether the model, in which the regressors may be a linear com-
bination of the predicted variable, is significant.
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Table 3. Analysis of Variance Results for GDPPC Data.

Model Sum of Squares df. Mean Square F Sig.

Regression 4.07E+13 26 1.5657E+12 6.105 0.000

Residual 1.36E+13 53 2.5647E+11

Total 5.43E+13 79

From Table 3, it is clear that the model is significant with a probability of 95%.
Even though the OLS model fits the data well, multicollinearity may severely
prohibit quality prediction. RMSECV values for both PCR and PLS are calculated
and plotted as a function of the number of latent variables in Figure 1.

Figure 1. Latent Variables Versus RMSECV for PCR and PLS

As can be seen from Figure 1, the optimal number of latent variable for PCR,
which is determined by the minimum RMSECV value, is 8 whereas it is 7 for PLS.

Table 4 and Table 5 present the percent variance captured by the model. For
the optimal number of latent variable in PCR, 100% of the variance is captured by
the regressors. These 8 latent variables could explain 79.65% of the variation. This
is equivalent to R-Square in OLS. For the optimal number of latent variable in
PLS, 100% of the variance is captured by the regressors. These 7 latent variables
could explain 79.59% of the variation.
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Table 4. Percent Variance Captured by Regression Model Using PCR

X block Y block

LV This LV Total This LV Total

1 86.05 86.12 53.69 53.69

2 5.15 94.49 2.06 55.75

3 6.25 97.59 19.63 75.38

4 2.09 99.55 3.60 78.98

5 0.28 99.83 0.11 79.09

6 0.15 99.97 0.05 79.14

7 0.04 100.00 0.04 79.18

8 0.00 100.00 0.47 79.65

9 0.00 100.00 1.98 81.63

10 0.00 100.00 1.51 83.14

Table 5. Percent Variance Captured by Regression Model Using PLS

X block Y block

LV This LV Total This LV Total

1 86.05 86.05 55.63 55.63

2 5.15 91.19 19.54 75.17

3 6.25 97.44 3.60 78.77

4 2.09 99.53 0.28 79.05

5 0.28 99.81 0.12 79.16

6 0.15 99.96 0.07 79.24

7 0.04 100.00 0.35 79.59

8 0.00 100.00 3.23 82.82

9 0.00 100.00 0.44 83.26

10 0.00 100.00 3.97 87.23

It should be evident from the comparison of the models that fit and prediction
are entirely different aspects of a model’s performance. If prediction is the goal,
a model that gives the minimum RMSECV value amongst the prediction models
should be selected.

Before starting with comparisons of the models according to RMSE and RM-
SECV, it is useful to present some plots describing how well the model fits the
data. These plots are presented in Figure 2 and they help us to visualize the model
performance for all the prediction methods.
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Figure 2. Actual and Predicted Values for OLS, RR, PCR and PLS

Table 7 presents RMSE and RMSECV values obtained for the OLS, PCR, PLS
and RR models.

Table 7. RMSE and RMSECV Values for All Prediction Methods

OLS PCR PLS RR

RMSE 506428.868* 616250 591592 507285.736*

RMSECV 1974920.421 1337700 1335270* 1377270.852

As can be seen from Table 7, the OLS model has the smallest RMSE value.
The second smallest RMSE value belongs to the RR model. Under the condition
of no collinearity in the independent variables, this indicates that, the RR and
OLS models fit the data better than both PCR and PLS. Due to the existence
of the collinearity in the data used, this interpretation would not be true at all.
For comparison of models intended for prediction it is inadequate to look just at
model fit. Note, however, from the RMSECV that the OLS does not predict as
well as the other prediction methods, even for samples within the original data.
Here the best models are PLS and PCR, respectively.
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4. Conclusion

In this comparative study, OLS, RR, PCR and PLS have been applied to real
data with high collinearity, and compared from the point of view of model fit and
prediction. The results show that when the model fit is considerable, RR and
OLS seem to fit the data best. However the existence of collinearity among the
regressors prevents us making this comment. The data set used in this paper
has also proved that the regression model constructed by PLS has the highest
predictive ability with the smallest number of factors. This is advantageous in
that there are fewer factors to interpret.
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