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Abstract

The aim of this paper is to show the effect of seasonality on the perfor-
mance of traditional information criteria (such as Akaike, Schwarz, Shibata,
and Quinn), used for determining the order of vector autoregressive (VAR)
models. Using a simulation study, we find that the performances of these
criteria decrease in seasonal VAR (SVAR) models.
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1. Introduction

Autoregressive modelling has been used successfully in many fields of application
like economics, agriculture, biomedics, geophysics etc. The VAR(p) model can be
written as follows:

Zt = φp (B)Zt + εt,

where εt, the d× 1 vector of disturbances to the system, is assumed to be a white
noise error (ie. with a mean of zero, a constant variance and zero covariances)
and is a identically and independently distributed random variable, Zt is a d-
dimensional stationary vector time series, and

φp (B) = φ1B + φ2B
2 + · · ·+ φpB

p

is the autoregressive d×dmatrix polynomial of order p, with all its roots outside the
unit circle, and B is the backshift operator: BjZt = Zt−j [13]. It should be noted
that before the VAR model is estimated it is necessary to identify the properties of
the variables used in the model. In other words, it should be determined whether
the underlying data processes are stationary, or not. If the time series are found
to be non-stationary, the order of integration will need to be determined, and the
stationary form of the variable should be added to the VAR model.
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One of the major problems in VAR modelling is the optimal selection of the
model order. In the last two decades several order determination criteria have been
proposed to estimate the order of the VAR(p) model, and occupy an important
place in the literature (see [2–4,8,9,11]). In the multivariate case, the general form
of most criteria is

∆k = log
∣∣∣Σ̂k

∣∣∣+ k

T
λ (T ) , (1)

where Σ̂k is the residual covariance matrix associated with the fitted VAR(k)
structure and is obtained from least squares residuals, T is the sample size, and
the function λ(T ) varies from criterion to criterion. Various order determination
criteria can be expressed in the form of equation (1). Lütkepohl [10] showed
that in the AIC [1], λ(T ) = 2d2, where d is the dimension (i.e., the number of
series), and that λ(T ) = d2 log T in the criterion for VAR models of Schwarz [14].
Hannan and Quinn [5] suggested a criterion that used λ(T ) = 2c log log T , where
c is a constant greater than 1. Subsequently, Quinn [12] generalized the Hannan-
Quinn criterion for VAR(p) models by setting c = d2. Shibata [15] investigated
the asymptotic properties of Akaike’s estimate and proved that the AIC does
not produce a consistent estimate of the order of an autoregressive model. In a
subsequent paper Shibata [16] developed the following criterion:

Sk =

(
1 + 2

dk + 1

T

)d ∣∣∣Σ̂k

∣∣∣ .

The use of order selection criteria, based on fitting vector autoregressive models of
various orders k = 0, 1, . . . to a series, was also proposed and studied by Pukkila
and Krishnaiah [11] as a testing procedure for assessing whether a series is a white
noise process. In their procedure, the white noise null hypothesis for the series
is accepted if the AR order selected by the use of the given order determination
criterion (eg. AIC, SBIC, HQ) is equal to zero. Besides, Pukkila and Krishnaiah
[11] also developed a new criterion that is less dependent on the number of series
by modifying the Quinn criterion as

QPKk = log
∣∣∣Σ̂k

∣∣∣+ kd2 + kd [log (T )− 1]

T − 0.5d (k + 1)
.

The procedure of Pukkila and Krishnaiah [11] was extended by Koreisha and
Pukkila [8,9] for selection of the order of a vector autoregressive model in the
following way: First, VAR models of given orders k = 0, 1, . . . are fitted by least
squares and the residuals from the fitted VAR model of order k are obtained. Then
the procedure of Pukkila and Krishnaiah [11] is applied to this residual series, and
if the order selection criterion leads to selection of an autoregressive model of order
greater than zero for the residual series then the residuals are viewed as not having
satisfied the white noise test and hence the order k is rejected. The smallest VAR
order k for which the corresponding the residual series is accepted to be a white
noise process, is selected as the appropriate VAR order model.



Comparison of Performance among Information Criteria 129

In another study on VAR model orders, Hurvich and Tsai [6] found a criterion
derived from the Akaike information criterion as follows:

HTk = log
∣∣∣Σ̂k

∣∣∣+ 1 + k/T

1− (k + 2) / T
.

Univariate seasonal models have received considerably more attention than mul-
tivariate seasonal models for vector time series [13]. However, many of the time
series encountered in signal processing, economics, meteorology, and environmen-
tal studies exhibit strong seasonal behaviour. These situations require the use of
seasonal VAR (SVAR) models of the form:

Zt = Φp (B
s)Zt + εt,

where s is the period of the seasonal behavior, and

Φp (B
s) = Φ1B

s +Φ2B
2s + · · ·+ΦpB

ps

is the seasonal autoregressive operator [13].

2 Simulation Study

In this simulation study, we investigated the performance of the traditional infor-
mation criteria such as Akaike, Schwarz, Shibata and Quinn in VAR and seasonal
VAR models. We performed a simulation with 10000 trials for each of a variety
of model structures, involving many series with varying parameter values. The
sample size (T ) was taken to be 100, the period (s) for the seasonal models was 4,
the number of series (d) was 2 to 5 and the lag number (k) was taken to be 1 to 7.
Data was generated using the VAR(1), VAR(2), SVAR(1) and SVAR(2) stationary
models. Following the method of Koreisha and Pukkila [8], the parameters and
the covariance matrices of the residuals of the models were defined in the same
way:

For the VAR(1) model:

φ1ii = 0, 5

φ1ij =

{
(0, 5)(−1)j−i ; j > i
0 ; j < i

For the VAR(2) model:

φ1ii =

{
1, 42 ; i odd
0, 50 ; i even

φ2ii =

{
−0, 73 ; i odd
0 ; i even

φ1ij =

{
(0, 5)(−1)j−i ; j > i
0 ; j < i

φ2ij =

{
(−0, 5)(−1)j−i ; j > i
0 ; j < i
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where i indicates the ith row and j indicates the jth column of the matrix of
parameters. For the SVAR models, the parameters were selected to be the same
as in the VAR models to allow comparison of the performance of the criteria in the
VAR and SVAR models under the same conditions. The residuals were obtained
from a multivariate normal distribution with mean 0 and covariance matrix Σ .
The elements of the covariance matrix was defined as σij = 0, 5|i−j|.

As is shown in Table 1, in this simulation study we have 4 models, and in each
model there are 2 + 3 + 4 + 5 = 14 regression equations because the number of
series was taken as 2, 3, 4 and 5. Also it will be seen that we tried 7 fitted VAR
model orders for each regression equation since k = 1, 2, ..., 7. Thus, we applied
the least squares method 4 × 14 × 7 = 392 times in each trial in order to find
the least square residuals, and in this way we obtained the covariance matrices
of residuals corresponding to related sub-models, and computed the determinant
values of these matrices.

Table 1. The Models in the Simulation Study
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Table 1. (Continued)
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As there are 4 models, 4 different numbers of series and 7 fitted VAR orders,
we have 4 × 4 × 7 = 112 submodels in total, so we tried to find 112 different
determinant values of the 112 covariance matrices of residuals for the 4 information
criteria formulae in each trial. Therefore, this simulation program calculated 112×
4 × 10000 = 4480000 criteria results, these results as shown tabulated in Table
2. Using the output of the program we can analyze 4480000 results and thereby
contrast the performances of the criteria for each model. Kadilar presented graphs
and a detail analysis of these results in [7] .

Table 2 lists the frequency distribution of choosing the lags of AIC, Schwarz,
Shibata, and Quinn in VAR(1), SVAR(1), VAR(2), and SVAR(2) models. For
example, in Table 2, when 10000 trials were performed from VAR(1) for d = 2,
the AIC chose VAR(1) as the best model in 7711 trials, VAR(2) in 1122 trials,
VAR(3) in 490 trials, VAR(4) in 249 trials, VAR(5) in 150 trials, VAR(6) in 132
trials, and VAR(7) in 146 trials. Given that the correct model is VAR(1), the
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performance of AIC is 77% (7711/10000 = 0.7711) when d = 2 in VAR(1) models.
In another example, when the trials were performed from SVAR(2) for d = 5, in
10000 trials, the AIC chose SVAR(1) as the best model in 0 trials, SVAR(2) in 509
trials, SVAR(3) in 48 trials, SVAR(4) in 18 trials, SVAR(5) in 31 trials, SVAR(6)
in 144 trials, and SVAR(7) in 9250 trials. Given that in this example the correct
model is SVAR(2), the performance of AIC is 5% (509/10000 = 0.0509) when
d = 5 in SVAR(2) models.

From Table 2, we observe that there is a decrease in the performances of each
criterion for SVAR(1) with respect to VAR(1) models. For example, when the
number of series is 2, the performance of AIC decreases from 77.11% to 46.36%,
the performance of the Schwarz criterion decreases from 99.57% to 97.54%, the
performance of the Shibata criterion decreases from 67.11% to 34.82%, and the
performance of the Quinn criterion decreases from 95.76% to 83.58%.

Table 2. Frequency Distribution of the Identified Model Structures for
the Model Selection Criteria

VAR(1) MODEL

Akaike k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

d = 2 0,7711 0,1122 0,0490 0,0249 0,0150 0,0132 0,0146

d = 3 0,8852 0,0717 0,0199 0,0088 0,0051 0,0037 0,0056

d = 4 0,9448 0,0380 0,0071 0,0028 0,0029 0,0022 0,0022

d = 5 0,9666 0,0212 0,0037 0,0018 0,0015 0,0017 0,0035

Schwarz

d = 2 0,9957 0,0041 0,0002 0,0000 0,0000 0,0000 0,0000

d = 3 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

d = 4 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

d = 5 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

Shibata

d = 2 0,6711 0,1132 0,0588 0,0359 0,0301 0,0358 0,0551

d = 3 0,7244 0,0798 0,0357 0,0228 0,0216 0,0318 0,0839

d = 4 0,6525 0,0447 0,0191 0,0110 0,0158 0,0381 0,2188

d = 5 0,3486 0,0168 0,0037 0,0026 0,0062 0,0302 0,5919

Quinn

d = 2 0,9576 0,0349 0,0057 0,0013 0,0003 0,0001 0,0001

d = 3 0,9955 0,0043 0,0002 0,0000 0,0000 0,0000 0,0000

d = 4 0,9995 0,0005 0,0000 0,0000 0,0000 0,0000 0,0000

d = 5 0,9999 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000
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Table 2. (Continued)

SVAR(1) MODEL

Akaike k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

d = 2 0,4636 0,0994 0,0605 0,0473 0,0523 0,0767 0,2002

d = 3 0,5038 0,0694 0,0339 0,0250 0,0313 0,0536 0,2830

d = 4 0,4061 0,0297 0,0116 0,0090 0,0113 0,0379 0,4944

d = 5 0,1660 0,0066 0,0017 0,0011 0,0017 0,0123 0,8106

Schwarz

d = 2 0,9754 0,0211 0,0024 0,0006 0,0003 0,0000 0,0002

d = 3 0,9986 0,0013 0,0001 0,0000 0,0000 0,0000 0,0000

d = 4 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

d = 5 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

Shibata

d = 2 0,3482 0,0794 0,0516 0,0459 0,0565 0,0980 0,3204

d = 3 0,2223 0,0320 0,0225 0,0164 0,0245 0,0756 0,6067

d = 4 0,0441 0,0036 0,0016 0,0020 0,0032 0,0225 0,9230

d = 5 0,0002 0,0000 0,0001 0,0000 0,0002 0,0012 0,9983

Quinn

d = 2 0,8358 0,0790 0,0256 0,0134 0,0121 0,0112 0,0229

d = 3 0,9577 0,0267 0,0042 0,0023 0,0012 0,0012 0,0067

d = 4 0,9905 0,0067 0,0002 0,0001 0,0001 0,0002 0,0022

d = 5 0,9939 0,0009 0,0001 0,0000 0,0001 0,0000 0,0050

VAR(2) MODEL

Akaike k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

d=2 0,0000 0,7478 0,1192 0,0534 0,0324 0,0237 0,0235

d=3 0,0000 0,8443 0,0874 0,0302 0,0159 0,0106 0,0116

d=4 0,0000 0,9053 0,0560 0,0149 0,0067 0,0073 0,0098

d=5 0,0000 0,9141 0,0400 0,0101 0,0058 0,0090 0,0210

Schwarz

d=2 0,0001 0,9966 0,0032 0,0001 0,0000 0,0000 0,0000

d=3 0,0000 0,9998 0,0002 0,0000 0,0000 0,0000 0,0000

d=4 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000

d=5 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000
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Table 2. (Continued)

VAR(2) MODEL

Shibata

d=2 0,0000 0,6221 0,1253 0,0706 0,0526 0,0533 0,0761

d=3 0,0000 0,6063 0,0980 0,0535 0,0462 0,0611 0,1349

d=4 0,0000 0,4577 0,0589 0,0335 0,0344 0,0686 0,3469

d=5 0,0000 0,1386 0,0140 0,0099 0,0138 0,0401 0,7836

Quinn

d=2 0,0000 0,9513 0,0405 0,0060 0,0016 0,0005 0,0001

d=3 0,0000 0,9914 0,0081 0,0005 0,0000 0,0000 0,0000

d=4 0,0000 0,9989 0,0011 0,0000 0,0000 0,0000 0,0000

d=5 0,0000 0,9995 0,0005 0,0000 0,0000 0,0000 0,0000

SVAR(2) MODEL

Akaike k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

d=2 0,0000 0,4047 0,1134 0,0758 0,0682 0,1012 0,2367

d=3 0,0000 0,3841 0,0776 0,0470 0,0469 0,0839 0,3605

d=4 0,0000 0,2502 0,0318 0,0179 0,0199 0,0568 0,6234

d=5 0,0000 0,0509 0,0048 0,0018 0,0031 0,0144 0,9250

Schwarz

d=2 0,0004 0,9661 0,0255 0,0049 0,0020 0,0004 0,0007

d=3 0,0000 0,9968 0,0031 0,0001 0,0000 0,0000 0,0000

d=4 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000

d=5 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 0,0000

Shibata

d=2 0,0000 0,2886 0,0925 0,0667 0,0680 0,1226 0,3616

d=3 0,0000 0,1382 0,0326 0,0255 0,0321 0,0891 0,6825

d=4 0,0000 0,0138 0,0029 0,0023 0,0038 0,0265 0,9507

d=5 0,0000 0,0000 0,0000 0,0000 0,0001 0,0005 0,9994

Quinn

d=2 0,0000 0,7800 0,0946 0,0384 0,0237 0,0241 0,0392

d=3 0,0000 0,9105 0,0457 0,0111 0,0072 0,0059 0,0196

d=4 0,0000 0,9557 0,0168 0,0031 0,0016 0,0024 0,0204

d=5 0,0000 0,9285 0,0055 0,0004 0,0007 0,0018 0,0631
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A similar trend is observed in the performance of the criteria for the second
order models VAR(2) and SVAR(2). For example, when the number of series
is 3, the performance of AIC declines from 84.43% to 38.41%, the performance
of the Schwarz criterion declines from 99.98% to 99.68%, the performance of the
Shibata criterion declines from 60.63% to 13.82%, and the performance of the
Quinn criterion declines from 99.14% to 91.05%.

The consistently poor performance of the AIC and Shibata for the SVAR mod-
els in comparison to the VAR models indicates that there is a serious problem
in the determination of the lag number in multivariate seasonal models for AIC
and Shibata. However, the Quinn and especially the Schwarz criteria demonstrate
high performance also in seasonal vector autoregressive models.

3 Conclusion

The results from the simulation can be given briefly as follows:

• For all the models, the order of the performances of the criteria from higher
to lower: Schwarz, Quinn, Akaike and Shibata.

• For all criteria, the performances are high in VAR models with respect to
SVAR models.

• For all criteria (except the Schwarz criterion when d = 2), the performances
are higher in VAR(1) than in VAR(2) models.

• For all criteria, the performances are higher in SVAR(1) than in SVAR(2)
models.

• Except for the VAR(1) model when d = 3, the performance of the Shibata
criterion decreases when the number of series increases.

• The performance of AIC increases when the number of series increases in
the VAR models.

• Except for the SVAR(1) model when d = 3, the performances of AIC de-
creases when the number of series increases in the SVAR models.

• Our results indicate that AIC and Shibata should not be used in SVAR
models because of their very poor performance.

In planning future studies, one could change the values of the parameters in the
models and define the covariance matrix of residuals in a different way. Also, while
generating data, the multiplicative seasonal models for a vector time series could
be used. Besides, the period in the seasonal models could be taken as 6 and 12
instead of 4, the sample size can be selected as 150 and 200, the fitted VAR model
orders extended to 10, and the number of series increased to 7. Probably, when
these are done it will be confirmed that there is a serious problem in determining
the correct order of SVAR models. Consequently, it is clear that new criteria for
determining the order of multivariate seasonal models should be developed.
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