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Abstract

In this study, the influence on parameter estimation of observational vec-
tors in a multivariate linear regression model is investigated. A three-stage
method is proposed for this investigation. The first stage involves, with
the help of a linear restriction, the transformation of the multivariate lin-
ear regression model into a restricted multivariate linear regression model.
The second includes the calculation of the difference, via the projection the-
ory, between parameter estimates of the multivariate linear regression model
and that of the restricted multivariate linear regression model. The third
contains the assessment of the influential observations using the generalized
Cook’s distance. The first two stages in the study facilitate the calculation
of the difference between parameter estimates, while the third aids the easy
determination of the observational vectors influential on the regression co-
efficients. In the final section of the study, the calculations are illustrated
using a numerical example.

Key Words: Influential observation, generalized Cook’s distance, multivariate linear

regression, linear restriction, projection theory.

1. Introduction

As seen in Anscombe’s regression samples, reaching a significant F statistic for a
model in linear regression problems is not always an indicator of the fit (Anscombe,
[1]). Especially in determining the regression coefficient, every observation requires
a detailed examination. Even a single observation on a parameter estimate can be
very influential and the removal of this from the data set can completely change
the regression equation. Such an observation is called an “influential observation”.

Various effectiveness measures have been developed to test whether an obser-
vation is influential or not. The most common of these is Cook’s distance (Cook,
[6]). This measure is fairly influential in examining the effectiveness of an obser-
vation in multiple linear regression models. This measure was later appropriately
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expanded by Cook and Weisberg for use in the multivariate linear regression model
[7]. One of the measures suggested for the investigation the effectiveness of one
or more observations used in the multivariate linear regression model is the gen-
eralised Cook’s distance (GCD) (Pan and Fang, [11]). Apart from the measures
of effectiveness based on Cook’s distance, different measures of effectiveness have
been proposed by Belsley et al [3]. Likewise, Jensen and Ramirez have suggested
certain measures to assess the influential and outlier observations in the multiple
linear regression model [10].

The model defined as a linear regression is

Yn×1 = Xn×mβm×1 + εn×1, ε ∼ N(0, I).

Let ψ be the observation set whose influence on the regression model we wish to
investigate, and denote by β̂ψ the parameter estimate obtained after removing the
observation set ψ from the data set. Most of the measures mentioned above require
the calculation of β̂−β̂ψ. This calculation is especially difficult for the multivariate
linear regression model and involves complex matrix processes. Therefore, a study
in which linear restrictions were used to easily calculate this difference in the
multiple linear regression model was conducted by Pino [12]. In his study, an

equation concerning β̂−β̂ψ is easily calculated through projection theory. However,
his study was carried out for the multiple linear regression model. In parallel to
this, a measure of effectiveness in which β̂ − β̂ψ is used is required to measure the
effectiveness of the observation sets.

In this paper, on the other hand, a three-stage method is suggested to assess
influential observation vectors in the multivariate linear regression model. The
first stage involves transforming the multivariate linear regression model into a re-
stricted multivariate linear regression model through linear restriction. The second
involves obtaining the difference between parameter estimates of the multivariate
linear regression model and those of the restricted multivariate linear regression
model using projection theory. These two stages represent an expansion of Pino’s
work to the multivariate linear regression model. The third stage involves the
determination of influential observations using the GCD. The reason for using the
GCD is that this measure is an influential technique for the multivariate linear
regression model in investigating the effects of both one or more observation vec-
tors on the regression coefficients. In addition, the fact that this measure is not
influenced by such problems as masking makes it more attractive.

This paper is in six sections. In the second section, the calculation of the
parameter estimates of the multivariate linear regression model with linear re-
strictions and the statement of the model equation with the help of the projection
matrix is illustrated. In the third section, it is shown that β̂ − β̂ψ is easily calcu-
lated through the use of projection theory. In the forth section, GCD is explained.
In the fifth section, how the calculations have been carried out for an application is
demonstrated and the numeric values obtained are discussed. In the final section,
conclusions and suggestion are presented.
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2. First Stage : Parameter Estimations in Linear Restriction

Consider the multivariate linear regression model

Y = XB + E, (1)

where Y is an n× p matrix of responses, X is an n×m, (n > m) matrix of known
constants of rank m, B is an m× p parameter matrix and E ∼ N(0, V ⊗ I). Here,
I denotes the identity matrix of order n and V is unknown.

The best linear unbiased estimation (BLUE) of the B parameter B occurring
in (1) can be easily obtained through ordinary least squares as follows:

B̂ = (X ′X)−1(X ′Y ).

A linear restriction on the observation can be shown as:

T = A′Y. (2)

Here A refers to an n× r matrix with rank(A) = r, when r ≤ n [12]. Thus, under
the linear restriction (2), the multivariate linear regression model given in (1) is
changed into the following restricted multivariate linear regression model:

T = A′XB +A′E. (3)

It will be observed for this model that E(T ) = A′XB and Var(T ) = A′V A. For
the B parameter in (3) BLUE can be obtained as follows:

B̂ψ = (X
′A(A′A)−1A′X)−1(X ′A(A′A)−1A′Y ). (4)

For any q1 × q2 matrix M , let PM be the matrix representing the orthogonal
projection on the column space of M . It is well known that if M is of rank q2,
(q2 ≤ q1), then

PM =M(M ′M)−1M ′

([4], p.247). Equation (4) can be formulated as:

B̂ψ = (X
′PAX)

−1(X ′PAY ), (5)

or using the inner product 〈a, b〉 = a′b, Equation (5) is expressed as:

B̂ψ = 〈X,PAX〉
−1〈X,PAY 〉.

Here

〈a, PAb〉 = 〈PAa, b〉 = 〈PAa, PAb〉 (6)

is known from the general properties of a projection matrix [5].

B̂ψ can be written, using Equation (6), as:

B̂ψ = 〈PAX,PAX〉
−1〈PAX,Y 〉. (7)

Then, using Equation (7), the model equation can be formulated as:

Y = PAXB + E, (8)

where E ∼ N(0, V ⊗ I).
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3. Second Stage : The Projection Theory

In this section we examine how β̂ − β̂ψ is obtained with the help of projection
theory. Projection theory can be formulated as:

3.1. Theorem : A linear regression model is given as follows:

Y = XB + Zγ + E, (9)

where E ∼ N(0, V ⊗ I). If B∗ is the BLUE in the linear regression model (9),
in this case, the estimator B̂ψ equals B∗ under the condition that the matrix Z
meets the following conditions:

(i) rank(A) + rank(Z) = n,

(ii) Z ′A = 0.

Proof. From (i) the following equation can be written:

PA + PZ = A(A′A)−1A′ + Z(Z ′Z)−1Z ′. (10)

When the equation (10) is multiplied with A on the right-hand side we have

(PA + PZ)A = A(A′A)−1A′A+ Z(Z ′Z)−1Z ′A. (11)

Since (A′A)−1A′A = I and Z ′A being equal to zero due to (ii), Equation (11) can
be re-written as:

(PA + Pz)A = A

If both sides of the above equation are multiplied by A′(AA′)−1, the result is:

PA + PZ = I.

Using this equation, the following is obtained from (8):

Y = (I − PZ)XB + E = PAXB + E. (12)

From (12) and the above theorem the best linear unbiased estimation (BLUE) of
B is seen to be B∗. Using the above theorem we obtain:

B̂ − B̂ψ = (X
′X)−1X ′Zγ̂ (13)

Since PX = X(X ′X)−1X ′,

Y = (I − PX)Zγ + E. (14)

If γ̂ is the BLUE of γ in the above model it follows from (14) that

γ̂ = (Z ′(I − PX)Z)
−1Z ′(I − PX)Y. (15)

Thus, due to the linear restriction T = A′Y , the change in the regression coefficient
matrix can be formulated as:

B̂ − B̂ψ = (X
′X)−1X ′Z(Z ′(I − PX)Z)

−1Z ′(I − PX)Y. (16)
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Notation: For the matrix Ga×b, the sub-matrix formed by choosing rows (i1, i2,
. . . , ir) and columns (j1, j2, . . . , js) will be denoted by G

F
D, where D = {i1, i2, . . . ,

id} and F = {j1, j2, . . . , js}. If D = {1, . . . , a} or F = {1, . . . , b} then the corre-
sponding subscript or superscript will be dropped [12].

If we take, K = (I − PX), (I − PX)Y = (Y − XB̂) and L = B̂ − B̂ψ, then
Equation (16) can be written as:

L = (X ′X)−1X ′ID(KD
D )

−1ID(Y −XB̂). (17)

Specifically, if D = {i}, then Equation (17) can be re-arranged as:

L = (X ′X)−1X ′IDID(Y −XB̂)/kii. (18)

4. Third Stage: Generalized Cook’s Distance

Those observations causing significant changes to the parameter estimates are
defined as “influential observations” (Belsley et. al., [4]). GCD can be employed to
investigate the effect of the observation vector on the parameter estimates. GCD
is defined as:

DCψ =
1

m
trace{L′X ′XLU−1} (19)

(Barrett and Ling, [2]). Here the matrix U is a positively-defined matrix having a
dimension of m×m. It is possible to select the matrix U as (E ′E)/(n−m) ([7],
p. 116) and Equation (19) can be reformulated as:

DCψ =
n−m

m
trace{L′X ′XL(E′E)−1}. (20)

Generally speaking, in the case of DCψ > 1, the observation vector is said to have
a major effect on the parameter estimates ([7], p. 118).

5. Application

A study conducted for a national firm that sells automobile tires is described by
Green ([9], p. 27). One objective of the study was to determine the interest in the
company’s newly introduced steel-belted radial tire after respondents had viewed
a television commercial advertising the tire. Among the variables measured were
an interest score (0-10) for the tire advertised (Y1), a believability score (0 − 10)
for the claims made about the tire in the commercial (Y2), respondents age (X1),
family size (X2), education level in years (X3), and annual income to the nearest
hundred dollars (X4). The data for the first 10 respondents are shown in Table 1.
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Table 1 : First 10 Respondents from an Automobile Tire Survey

Respondent Y1 Y2 X1 X2 X3 X4

1 8 8 40 4 12 190

2 0 6 57 2 12 220

3 9 8 35 1 16 220

4 0 4 54 3 14 220

5 4 6 43 5 14 110

6 7 8 19 6 14 220

7 8 10 38 5 18 220

8 5 5 42 3 14 220

9 8 8 21 2 12 25

10 7 7 19 5 14 190

The value of I − PX calculated from PX = X(X ′X)−1X ′ is obtained as

I−PX =



















































0.712 -0.264 0.125 -0.133 -0.089 -0.200 0.142 0.119 -0.039 -0.135

0.501 -0.066 -0.303 -0.016 0.069 0.170 -0.206 0.038 0.077

0.290 -0.079 0.267 0.065 -0.196 -0.190 -0.162 -0.055

0.721 -0.158 0.065 -0.130 -0.157 0.098 0.075

0.378 0.047 -0.289 0.024 -0.206 0.042

0.447 -0.063 -0.079 0.069 -0.421

0.329 -0.059 0.149 -0.052

0.842 0.016 -0.072

0.138 -0.102

0.642



















































Suppose, for instance, that D = {1}; that is, the question to explore is whether
or not the first observation vector is influential on the parameter estimate for the
regression coefficients. In this case, KD

D = 0.712.

ID = [1 0 0 0 0 0 0 0 0 0 ]′

and

ID = [1 0 0 0 0 0 0 0 0 0 ]

are written as above. The matrix concerning the residuals can be easily calculated,
using, E = (Y −XB̂) = (I − PX)Y , as follows:

E =

[

4.35 −1.11 0.94 −2.46 −0.02 −0.99 0.93 0.24 −0.44 −1.45

2.01 1.12 0.15 −1.83 −0.79 0.04 1.65 −1.58 0.30 −1.07

]′

(21)
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These values can be placed in (18) to find the following:

L =























5.513 2.551

0.007 0.003

0.220 0.102

−0.501 −0.232

0.006 0.003























. (22)

According to GCD, then DC{1} = 0.344 is found from (19). Thus, it is hardly
possible to say that the first observation parameter or the first individual is influ-
ential on the parameter estimates. Likewise, by excluding the other observation
vectors from the observation matrix, the differences in the parameter estimates
and the GCD values may be found as illustrated in Table 2. The values Lij in the
table refer to row i and column j of the matrix L.

Table 2 : Differences in the parameter estimates and their GCD’s

produced by deleting observation vectors

D L11 L21 L31 L41 L51 L12 L22 L32 L42 L52 DC{i}

1 5.513 0.007 0.220 -0.501 0.006 2.551 0.003 0.102 -0.232 0.003 0.344

2 -1.495 -0.018 0.066 0.158 -0.003 1.509 0.018 -0.066 -0.159 0.003 0.688

3 -0.666 -0.03 -0.507 0.228 0.004 -0.103 -0.005 -0.078 0.035 0.001 0.322

4 1.165 -0.035 -0.015 -0.004 -0.001 0.865 -0.026 -0.011 -0.003 0 0.132

5 0.027 -0.001 -0.004 -0.002 0 1.463 -0.031 -0.225 -0.082 0.008 0.298

6 -1.289 0.027 -0.145 0.108 -0.005 0.051 -0.001 0.006 -0.004 0 0.166

7 -5.556 0.017 0.131 0.384 -0.003 -9.821 0.029 0.232 0.678 -0.006 1.196*

8 0.042 0 -0.008 -0.003 0 -0.276 0 0.051 0.021 -0.002 0.072

9 -4.105 0.022 0.223 0.016 0.011 2.787 -0.015 -0.151 -0.011 -0.007 1.576*

10 -1.397 0.028 -0.051 0.064 -0.003 -1.033 0.02 -0.038 0.047 -0.002 0.074

∗ Influential cases

The GCD values in the table above can be easily examined with the help of
Figure 1. As seen in Figure 1, observations 7 and 9 can be said to be influential.
Similarly, thanks to GCD, the effect of more than one individual on the parameter
estimates can be examined simultaneously. For example, by taking D = {1, 2} we
can ask whether or not the first and second individuals together are influential on
the parameter estimate for the regression coefficients. In this case, (21) remains
the same. The other calculations are performed as follows:

KD
D =





0.712 -0.264

-0.264 0.501



 , (23)
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Figure 1 : The GCD values for the observations in Table 2
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ID =





1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0





′

(24)

and

ID =





1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0



 . (25)

If matrices (23), (24) and (25) are placed in Equation (17), the following is found:

L =























6.762 7.224

0.018 0.043

0.200 0.026

−0.627 −0.703

0.008 0.010























,

and DC{1,2} = 1.914 is found from (20). That is, the observation values of the
first and the second individuals are influential on the parameter estimates. In the
same way, the GCD values for all paired combinations are shown in Table 3.
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Table 3 : The GCD values where paired observation vectors are

deleted

Case D DC{i.j},i>j Case D DC{i.j},i>j Case D DC{i.j},i>j

1 1.2 1.914* 16 2.9 1.467* 31 5.6 0.587

2 1.3 0.410 17 2.10 0.668 32 5.7 7.061*

3 1.4 0.270 18 3.4 0.380 33 5.8 0.312

4 1.5 0.793 19 3.5 6.042* 34 5.9 13.141*

5 1.6 0.539 20 3.6 0.790 35 5.10 0.344

6 1.7 1.699* 21 3.7 6.944* 36 6.7 1.660*

7 1.8 0.532 22 3.8 1.471* 37 6.8 0.162

8 1.9 1.710* 23 3.9 6.992* 38 6.9 1.264*

9 1.10 0.304 24 3.10 0.349 39 6.10 6.470*

10 2.3 0.800 25 4.5 0.970 40 7.8 1.019*

11 2.4 2.390* 26 4.6 0.280 41 7.9 7.874*

12 2.5 0.903 27 4.7 1.033* 42 7.10 1.152*

13 2.6 0.379 28 4.8 0.395 43 8.9 1.870*

14 2.7 1.491* 29 4.9 2.564* 44 8.10 0.191

15 2.8 0.379 30 4.10 0.131 45 9.10 2.331*

∗ Influential cases

The graph of the GCD is given in Figure 2.

Figure 2: The GCD values for the cases in Table 3
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As seen in Figure 2, it seems that cases numbered 1, 6, 8, 11, 14, 16, 19, 21, 22, 23,
27, 29, 32, 34, 36, 38, 39, 40, 41, 42, 43 and 45 represent paired observation vectors
influential on the parameter estimate. The cases 19, 21, 23, 32, 34, 39 and 41 are
especially influential on parameter estimation. When all the cases are considered,
the 7 th and 9 th observations, which are influential for the case D = {i}, are
also seen to be influential on parameter estimation in all positions (i, j = 7 or 9)
for the case D = {i, j}. On examining Table 3 and Figure 2, it is important to
notice that some observation vectors which are not influential in the D = {i}
case can become quite influential, when included in a paired observation vector.
For example, looking in the table for D = {3, 5} gives DC{3,5} = 6.042, which
shows that this paired observation vector is quite influential on the parameter
estimate. However, for D = {i}, these observation vectors are not influential.
In the same way the influence of the observation vectors obtained by removing
various combinations of observation vectors from the observation matrix can be
easily calculated. However the number of removed observations will be less than
n/2, and with an increase in the number of observation vectors removed the effect
on the parameter estimate will increase.

6. Conclusions and Suggestions

In this paper, a three-stage method to assess influential observation vectors in
multivariate linear regression has been suggested. The first two stages of this
method involve an expansion of Pino’s work to the multivariate linear regression
model. The third stage, on the other hand, proposes using the generalized Cook
distance to measure the effectiveness of the observation vectors in the multivariate
linear regression model. The linear restrictions and projection theory handled
in this paper facilitate the calculation of β̂ − β̂ψ, and make β̂ − β̂ψ easy to use.
The exclusion of unrelated rows and columns from the matrices L and K reduces
the dimensions of these matrices, facilitating the calculations. It is, then, quite
possible to examine all the sub-combinations using simple computer software due
to this useful form of β̂ − β̂ψ.

However, there may occur certain problems in examining all the sub-combina-
tions in general. One of these problems is that the number of cases to be examined
rapidly increases as the number of the observation goes up. For example, in
the case of n = 100 in order to examine the effectiveness of observation vectors

with ten components, the number of possible cases is

(

100
10

)

= 17310309456440.

Considering the fact that a typical computer does one operation per microsecond,
the examination of observation vectors with ten components could take up to 150
years to complete, as a rough estimate. The second problem is determining the
maximum number of components to be examined in the observation groups. Using
heuristic optimization methods rather than examining all possible cases could solve
these two problems, ensuring the easy determination of the influential cases.

As shown in the numerical example in the fifth section, non-influential observa-
tion vectors of one component can be much more influential when taken as pairs.
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This may also be true for other sub-groups of the observation vectors. This is
called “masking”, and forms a specific field of study.

One of the problems encountered in studies involving influential observations is
how to deal with the influential observations. Most researchers maintain that the
influential observations should be excluded from the data set and that the analysis
should then be performed on the rest. However, it is not desirable, practically
speaking, to remove an influential observation from the data set when using small
samples, for this can greatly affect the results.

7. Appendices

A1. The OLS estimator of B in the multivariate linear regression model (1) is
given by:

E′E,

where E′E = (Y −XB)′(Y −XB) (Draper and Smith, 1980, p.86).

If a derivation of E′E is taken according to B, then

∂E′E

∂B
= −X ′(Y −XB̂)

−X ′Y +X ′XB̂ = 0

B̂ = (X ′X)−1X ′Y.

A2. As in A1, the OLS estimator of B in the restricted multivariate linear regres-
sion model (3) is given by:

E′E = (A′Y −A′XB)′(A′A)−1(A′Y −A′XB)

If a derivation of E′E is taken according to B, then

∂E′E

∂B
= −X ′A(A′A)−1(A′Y −A′XB̂) = 0

B̂ψ = (X ′A(A′A)−1A′X)−1X ′A(A′A)−1A′Y

A3. Equation (12) is obtained from Equation (5) as follows:

(M +NDN ′)−1 =M−1 −M−1N(N ′M−1N +D−1)−1N ′M−1,

where M and N are non-singular (Rao, 1973). Then

B̂ψ = (X ′PAX)
−1(X ′PAY )

= (X ′(I − Pz)X)
−1(X ′(I − Pz)Y )

= (X ′X −X ′Z(Z ′Z)−1Z ′X)−1(X ′Y −X ′PzY ).
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If, M = X ′X,N = X ′Z and D = −(Z ′Z)−1, then

B̂ψ = [(X ′X)−1 − (X ′X)−1X ′Z(Z ′X(X ′X)−1XZ − Z ′Z)−1Z ′X(X ′X)−1] ·

(X ′Y −X ′PzY ).

This can be reformulated as:

B̂ψ = [(X ′X)−1 − (X ′X)−1X ′Z(Z ′PXZ − Z
′Z)−1Z ′X(X ′X)−1] ·

(X ′Y −X ′PzY ).

and if we multiply out and set R = Z ′(I − PX)Z,

B̂ψ = B̂ + (X ′X)−1(X ′ZR−1Z ′PXY − (X
′X)−1X ′PZY +

+(X ′X)−1X ′ZR−1Z ′PXPzY.

This formulation can be rewritten, by collecting terms, as:

B̂ − B̂ψ = (X
′X)−1X ′(Pz − ZR

−1Z ′PX + ZR
−1Z ′PXPz)Y. (26)

In this equation, Q = (PZ − ZR
−1Z ′PX + ZR

−1Z ′PXPZ),??

R−1R = I. (27)

If the both sides of Equation (27) are multiplied by the matrix Z on the left and
by (Z ′Z)−1Z on the right, the following is obtained:

ZR−1R(Z ′Z)−1Z = Z(Z ′Z)−1Z

Since, R = Z ′(I − PX)Z, then

ZR−1Z ′(I − PX)PZ = PZ .

Thus,

Q = (ZR−1Z(I − PX)PZ − ZR
−1Z ′PX + ZR

−1Z ′PXPZ

= Z(R−1Z ′(I − PX))

This equation, if substituted in (26), gives

B̂ − B̂ψ = (X
′X)−1X ′Zγ̂

with the help of Equation (15).
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