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Exact moments of generalized order statistics from
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Abstract
In this paper some new simple expressions for single and product mo-
ments of generalized order statistics from type II exponentiated log-
logistic distribution have been obtained. The results for order statistics
and record values are deduced from the relations derived and some ra-
tio and inverse moments of generalized order statistics are also carried
out. Further, a characterization result of this distribution by using the
conditional expectation of generalized order statistics is discussed.
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1. Introduction
A random variable X is said to have type II exponentiated log-logistic distribution if

its probability density function (pdf) is given by

f(x) =
αβ(x/σ)β−1

σ[1 + (x/σ)β ]α+1
, x ≥ 0, α, σ > 0, β > 1 (1.1)

and the corresponding survival function is

F̄ (x) =
(

1 +
{x
σ

}β)−α
, x ≥ 0, α, σ > 0, β > 1. (1.2)

It is easy to see that
αβF̄ (x) = σ[1 + (x/σ)β ]xf(x). (1.3)

Log-logistic distribution is considered as a special case of type II exponentiated log-
logistic distribution when α = 1. It is used in survival analysis as a parametric model
where in the mortality rate first increases then decreases, for example in cancer diagnosis
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or any other type of treatment. It has also been used in hydrology to model stream flow
and precipitation, and in economics to model the distribution of wealth or income.

Kamps [24] introduced the concept of generalized order statistics (gos) as follows: Let
X1, X2 . . . be a sequence of independent and identically distributed (iid) random vari-
ables (rv) with absolutely continuous cumulative distribution function (cdf) F (x) and
pdf , f(x), x ∈ (α, β). Let n ∈ N , n ≥ 2, k > 0, m ∈ <, be the parameters such that

γr = k + (n− r)(m+ 1)> 0, for all r ∈ {1, 2, . . . , n− 1},
whereMr =

∑n−1
j=r mj. Then X(1, n,m, k),. . . ,X(n, n,m, k), r = 1, 2, . . . n are called gos

if their joint pdf is given by

k

(
n−1∏
j=1

γj

)(
n−1∏
i=1

[1− F (xi)]
mf(xi)

)
[1− F (xn)]k−1f(xn) (1.4)

on the cone F−1(0) ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ F−1(1).
The model of gos contains as special cases, order statistics, record values, sequential
order statistics.
Choosing the parameters appropriately (Cramer, [18]), we get the variant of the gos given
in Table 1.

Table 1: Variants of the generalized order statistics

γn = k γr mr

i) Sequential order statistics αn (n− r + 1)αr γr − γr+1 − 1

ii) Ordinary order statistics 1 n− r + 1 0

ii) Record values 1 1 −1

iv) Progressively type II
censored order statistics Rn + 1 n− r + 1 +

∑n
j=r Rj Rr

v) Pfeifer’s record values βn βr βr − βr+1 − 1

For simplicity we shall assume m1 = m2 = . . . = mn−1 = m.
The pdf of the r−th gos, X(r, n,m, k), 1 ≤ r ≤ n, is

fX(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F̄ (x)]γr−1f(x)gr−1

m (F (x)) (1.5)

and the joint pdf of X(r, n,m, k) and X(s, n,m, k), 1 ≤ r < s ≤ n, is

fX(r,n,m,k),X(s,n,m,k)(x, y) =
Cs−1

(r − 1)!(s− r − 1)!
[F̄ (x)]mf(x)gr−1

m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y), x < y, (1.6)

where

F̄ (x) = 1−F (x), Cr−1 =
r∏
i=1

γi , γi = k+(n−i)(m+1),

hm(x) =

{
− 1
m+1

(1−x)m+1, m 6=−1

−ln(1−x), m=−1
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and

gm(x) = hm(x)−hm(1), x ∈ [0, 1).

Theory of record values and its distributional properties have been extensively studied
in the literature, Ahsanullah [4], Balakrishnan et al. [12], Nevzorov [33], Glick [21] and
Arnold et al. [8, 9]. Resnick [35] discussed the asymptotic theory of records. Sequential
order statistics have been studies by Arnold and Balakrishnan [7], Kamps [24], Cramer
and Kamps [19] and Schenk [37], among others.
Aggarawala and Balakrishnan [1] established recurrence relations for single and prod-
uct moments of progressive type II right censored order statistics from exponential and
truncated exponential distributions. Balasooriya and saw [14] develop reliability sam-
pling plans for the two parameter exponential distribution under progressive censoring.
Balakrishnan et al. [13] obtained bounds for the mean and variance of progressive type
II censored order statistics. Ordinary via truncated distributions and censoring schemes
and particularly progressive type II censored order statistics have been discuss by Kamps
[24] and Balakrishnan and Aggarwala [10], among others.
Kamps [24] investigated recurrence relations for moments of gos based on non-identically
distributed random variables, which contains order statistics and record values as spe-
cial cases. Cramer and Kamps [20] derived relations for expectations of functions of
gos within a class of distributions including a variety of identities for single and prod-
uct moments of ordinary order statistics and record values as particular cases. Various
developments on gos and related topics have been studied by Kamps and Gather [23],
Ahsanullah [5], Pawlas and Szynal [34], Kamps and Cramer [22], Ahmad and Fawzy [2],
Ahmad [3], Kumar [27, 28, 29] among others. Characterizations based on gos have been
studied by some authors, Keseling [25] characterized some continuous distributions based
on conditional distributions of gos . Bieniek and Szynal [15] characterized some distri-
butions via linearity of regression of gos. Cramer et al. [17] gave a unifying approach
on characterization via linear regression of ordered random variables. Khan et al. [26]
characterized some continuous distributions through conditional expectation of functions
of gos.

The aim of the present study is to give some explicit expressions and recurrence re-
lations for single and product moments of gos from type II exponentiated log-logistic
distribution. In Section 2, we give the explicit expressions and recurrence relations for
single moments of type II exponentiated log-logistic distribution and some inverse mo-
ments of gos are also worked out. Then we show that results for order statistics and
record values are deduced as special cases. In Section 3, we present the explicit expres-
sions and recurrence relations for product moments of type II exponentiated log-logistic
distribution and we show that results for order statistics and record values are deduced
as special cases and ratio moments of gos are also established. Section 4, provides a char-
acterization result on type II exponentiated log-logistic distribution based on conditional
moment of gos. Two applications are performed in Section 5. Some concluding remarks
are given in Section 6.

2. Relations for single Moments
In this Section, the explicit expressions, recurrence relations for single moments of gos

and inverse moments of gos are considered. First we need the basic result to prove the
main Theorem.

2.1. Lemma. For type II exponentiated log-logistic distribution as given in (1.2) and
any non-negative and finite integers a and b with m 6= −1
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Jj(a, 0) = ασj
∞∑
p=0

(−1)p(j/β)(p)

[α(a+ 1) + p− (j/β)]
, β > j and j = 0, 1, 2, . . . , (2.1)

where
(α)(i) =

{
α(α+1)...(α+i−1), i>0
1, i=0 .

and

Jj(a, b) =

∫ ∞
0

xj [F̄ (x)]af(x)gbm(F (x))dx. (2.2)

Proof From (2.2), we have

Jj(a, 0) =

∫ ∞
0

xj [F̄ (x)]af(x)dx. (2.3)

By making the substitution z = [F̄ (x)]1/α in (2.3), we get

Jj(a, 0) = ασj
∫ ∞

0

(1− z)j/βzα(a+1)−(j/β)−1dz.

= ασj
∞∑
p=0

(−1)p(j/β)(p)

∫ 1

0

zα(a+1)−(j/β)+p−1dz

and hence the result given in (2.1).

2.2. Lemma. For type II exponentiated log-logistic distribution as given in (1.2) and
any non-negative and finite integers a and b

Jj(a, b) =
1

(m+ 1)b

b∑
u=0

(−1)u
(

b
u

)
Jj(a+ u(m+ 1), 0) (2.4)

=
ασj

(m+ 1)b

∞∑
p=0

b∑
u=0

(−1)p+u
(

b
u

)
(j/β)(p)

[α{a+ (m+ 1)u+ 1}+ p− (j/β)]
,

m 6= −1 (2.5)

= αb+1σjb!

∞∑
p=0

(j/β)(p)

[α(a+ 1) + p− (j/β)]b+1
, m = −1, (2.6)

where Jj(a, b) is as given in (2.2).
Proof: On expanding gbm(F (x)) =

[
1

m+1
(1 − (F (x))m+1)

]b binomially in (2.2), we get
when m 6= −1

Jj(a, b) =
1

(m+ 1)b

b∑
u=0

(−1)u
(

b
u

)∫ ∞
0

xj [F (x)]a+u(m+1)f(x)dx

=
1

(m+ 1)b

b∑
u=0

(−1)u
(

b
u

)
Jj(a+ u(m+ 1), 0).

Making use of Lemma 2.1, we establish the result given in (2.5)
and when m = −1 that

Jj(a, b) = 0
0
as
∑b
u=0(−1)u

(
b
u

)
= 0.

Since (2.5) is of the form 0
0
at m = −1, therefore, we have



719

Jj(a, b) = A

b∑
u=0

(−1)u
(

b
u

)
[α{a+ u(m+ 1) + 1}+ p− (j/β)]−1

(m+ 1)b
, (2.7)

where

A = ασj
∞∑
p=0

(−1)p(j/β)(p).

Differentiating numerator and denominator of (2.7) b times with respect to m, we get

Jj(a, b) = Aαb
b∑

u=0

(−1)u+b

(
b
u

)
ub

[α{a+ u(m+ 1) + 1}+ p− (j/β)]b+1
.

On applying the L’ Hospital rule, we have

limm→−1Jj(a, b) = Aαb
b∑

u=0

(−1)u+b

(
b
u

)
ub

[α(a+ 1) + p− (j/β)]b+1
. (2.8)

But for all integers n ≥ 0 and for all real numbers x, we have Ruiz [36]
n∑
i=0

(−1)i
(
n
i

)
(x− i)n = n!. (2.9)

Therefore,
b∑

u=0

(−1)u+b

(
b
u

)
ub = b!. (2.10)

Now on substituting (2.10) in (2.8), we have the result given in (2.6).

2.3. Theorem. For type II exponentiated log-logistic distribution as given in (1.2) and
1 ≤ r ≤ n, k = 1, 2, . . . and m 6= −1

E[Xj(r, n,m, k)] =
Cr−1

(r − 1)!
Jj(γr − 1, r − 1) (2.11)

=
ασjCr−1

(r − 1)!(m+ 1)r−1

∞∑
p=0

r−1∑
u=0

(−1)p+u
(
r − 1
u

)

×
(j/β)(p)

[αγr−u + p− (j/β)]
, β > j and j = 0, 1, 2, . . . (2.12)

where Jj(γr − 1, r − 1) is as defined in (2.2).
Proof. From (1.5) and (2.2), we have

E[Xj(r, n,m, k)] =
Cr−1

(r − 1)!
Jj(γr − 1, r − 1)

Making use of Lemma 2.2, we establish the result given in (2.12).
Identity 2.1. For γr ≥ 1, k ≥ 1, 1 ≤ r ≤ n and m 6= −1

r−1∑
u=0

(−1)u
(
r − 1
u

)
1

γr−u
=

(r − 1)!(m+ 1)r−1∏r
t=1 γt

. (2.13)

Proof. (2.13) can be proved by setting j = 0 in (2.12).
Special Cases
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i) Putting m = 0, k = 1 in (2.12), the explicit formula for the single moments of order
statistics of the type II exponentiated log-logistic distribution can be obtained as

E[Xj
r:n] = Cr:n

∞∑
p=0

r−1∑
u=0

(−1)u+p

(
r − 1
u

)
ασj(j/β)(p)

[α(n− r + u+ 1) + p− (j/β)]
,

where
Cr:n =

n!

(r − 1)!(n− r)! ,

ii) Setting m = −1 in (2.12), we deduce the explicit expression for the single moments of
upper k record values for type II exponentiated log-logistic distribution in view of (2.11)
and (2.6) in the form

E[Xj(r, n,−1, k)] = E[(Z(k)
r )j ] = (αk)rσj

∞∑
p=0

(−1)p(j/β)(p)

[αk + p− (j/β)]r

and hence for upper records

E[(Z(1)
r )j ] = E[Xj

U(r)] = αrσj
∞∑
p=0

(−1)p(j/β)(p)

[α+ p− (j/β)]r
.

Recurrence relations for single moments of gos from (1.5) can be obtained in the following
theorem.

2.4. Theorem. For the distribution given in (1.2) and 2 ≤ r ≤ n, n ≥ 2 and k =
1, 2, . . . ,

(
1− σj

αβγr

)
E[Xj(r, n,m, k)] = E[Xj(r − 1, n,m, k)]

+
jσβ+1

αβγr
E[Xj−β(r, n,m, k)]. (2.14)

Proof. From (1.5), we have

E[Xj(r, n,m, k)] =
Cr−1

(r − 1)!

∫ ∞
0

xj [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx. (2.15)

Integrating by parts treating [F̄ (x)]γr−1f(x) for integration and rest of the integrand for
differentiation, we get

E[Xj(r, n,m, k)] = E[Xj(r − 1, n,m, k)] +
jCr−1

γr(r − 1)!

∫ ∞
0

xj−1[F̄ (x)]γrgr−1
m (F (x))dx

the constant of integration vanishes since the integral considered in (2.15) is a definite
integral. On using (1.3), we obtain

E[Xj(r, n,m, k)]− E[Xj(r − 1, n,m, k)]

=
σjCr−1

αβγr(r − 1)!

∫ ∞
0

xj [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx

+
σβ+1jCr−1

αβγr(r − 1)!

∫ ∞
0

xj−β [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx

and hence the result given in (2.14).
Remark 2.1: Setting m = 0, k = 1, in (2.14), we obtain a recurrence relation for single
moments of order statistics for type II exponentiated log-logistic distribution in the form(

1− σj

αβ(n− r + 1)

)
E[Xj

r:n] = E[Xj
r−1:n] +

jσβ+1

αβ(n− r + 1)
E[Xj−β

r−1:n].
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Remark 2.2: Putting m = −1 , in Theorem 2.4, we get a recurrence relation for single
moments of upper k record values from type II exponentiated log-logistic distribution in
the form (

1− σj

αβk

)
E[(X

(k)

U(r))
j ] = E[(X

(k)

U(r−1))
j ] +

jσβ+1

αβk
E[(X

(k)

U(r))
j−β ].

Inverse moments of gos from type II exponentiated log-logistic distribution can be obtain
by the following Theorem.

2.5. Theorem. For type II exponentiated log-logistic distribution as given in (1.2) and
1 ≤ r ≤ n, k = 1, 2, . . . ,

E[Xj−β(r, n,m, k)] =

∞∑
p=0

σj−β(−1)pΓ
(
j
β

)
p!Γ
(
j
β
− p
)∏r

i=1

(
1 + p+1−(j/β)

αγi

) , β > j. (2.16)

Proof. From (1.5), we have

E[Xj−β(r, n,m, k)] =
Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u
(
r − 1
u

)

×
∫ ∞

0

xj−β [F̄ (x)]γr−u−1f(x)dx. (2.17)

Now letting t = [F̄ (x)]1/α in (2.17), we get

E[Xj−β(r, n,m, k)] =
σj−βCr−1

(r − 1)!(m+ 1)r

r−1∑
u=0

∞∑
p=0

(−1)u+p

(
r − 1
u

) Γ
(
j
β

)
p!Γ
(
j
β
− p
)

×B
( k

m+ 1
+ n− r + u+

p+ 1− (j/β)

α(m+ 1)
, 1
)
.

Since
b∑

a=0

(−1)a
(

b
a

)
B(a+ k, c) = B(k, c+ b) (2.18)

where B(a, b) is the complete beta function.
Therefore,

E[Xj−β(r, n,m, k)] =
σj−βCr−1

(m+ 1)r

∞∑
p=0

(−1)p
Γ
(
j
β

)
p!Γ
(
j
β
− p
)

×
Γ
(
α{k+(n−r)(m+1)}+p+1−(j/β)

α(m+1)

)
Γ
(
α{k+n(m+1)}+p+1−(j/β)

α(m+1)

) (2.19)

and hence the result given in (2.16).
Special Cases
iii) Putting m = 0, k = 1 in (2.19), we get inverse moments of order statistics from type
II exponentiated log-logistic distribution as;

E[Xj−β
r:n ] =

σj−βn!

(n− r)!

∞∑
p=0

(−1)pΓ
(
j
β

)
Γ[α(n− r + 1) + p+ 1− (j/β)]

p!Γ
(
j
β
− p
)

Γ[α(n+ 1) + p+ 1− (j/β)]
.



722

iv) Putting m = −1 in (2.16), to get inverse moments of k record values from type II
exponentiated log-logistic distribution as;

E[Xj−β
U(r)] = σj−β

∞∑
p=0

(−1)pΓ
(
j
β

)
p!Γ
(
j
β
− p
)(

1 + p+1−(j/β)
αk

)r .
Recurrence relations for inverse moments of gos from (1.2) can be obtained in the fol-
lowing theorem.

2.6. Theorem. For type II exponentiated log-logistic distribution and for 2 ≤ r ≤ n,
n ≥ 2 k = 1, 2, . . . ,

(
1− σ(j − β)

αβγr

)
E[Xj−β(r, n,m, k)] = E[Xj−β(r − 1, n,m, k)]

+
(j − β)σβ+1

αβγr
E[Xj−2β(r, n,m, k)], β > j. (2.20)

Proof. The proof is easy.
Remark 2.3: Setting m = 0, k = 1 in (2.20), we obtain a recurrence relation for inverse
moments of order statistics for type II exponentiated log-logistic distribution in the form(

1− σ(j − β)

αβ(n− r + 1)

)
E[Xj−β

r:n ] = E[Xj−β
r−1:n] +

(j − β)σβ+1

αβ(n− r + 1)
E[Xj−2β

r:n ].

Remark 2.4: Putting m = −1, in Theorem 2.6, we get a recurrence relation for inverse
moments of upper k record values from type II exponentiated log-logistic distribution in
the form

(
1− σ(j − β)

αβk

)
E[(X

(k)

U(r))
j−β ] = E[(X

(k)

U(r−1))
j−β ] +

(j − β)σβ+1

αβk
E[(X

(k)

U(r))
j−2β ].

3. Relations for product moments
In this Section, the explicit expressions and recurrence relations for single moments

of gos and ratio moments of gos are considered. First we need the following Lemmas to
prove the main result.

3.1. Lemma. For type II exponentiated log-logistic distribution as given in (1.2) and
any non-negative integers a, b, c with m 6= −1

Ji,j(a, 0, c) = α2σi+j
∞∑
p=0

∞∑
q=0

(−1)p+q(j/β)(p)(j/β)(q)

[α(c+ 1) + p− (j/β)]

× 1

[α(a+ c+ 2) + p+ q − {(i+ j)/β}] , (3.1)

where

Ji,j(a, b, c) =

∫ ∞
0

∫ ∞
x

xiyj [F̄ (x)]af(x)[hm(F (y))− hm(F (x))]b[F̄ (y)]cf(y)dydx. (3.2)

Proof: From (3.2), we have

Ji,j(a, 0, c) =

∫ ∞
0

xi[F̄ (x)]af(x)G(x)dx, (3.3)

where
G(x) =

∫ ∞
x

yj [F̄ (y)]cf(y)dy. (3.4)
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By setting z = [F̄ (y)]1/α in (3.4), we find that

G(x) = ασj
∞∑
p=0

(−1)p
(j/β)p[F̄ (x)]c+1+{p−(j/β)}/α

[α(c+ 1) + p− (j/β)]
.

On substituting the above expression of G(x) in (3.3), we get

Ji,j(a, 0, c) = ασj
∞∑
p=0

(−1)p(j/β)p
[α(c+ 1) + p− (j/β)]

×
∫ ∞

0

xi[F̄ (x)]a+c+1+{p−(j/β)}/αf(x)dx. (3.5)

Again by setting t = [F̄ (x)]1/α in (3.5) and simplifying the resulting expression, we derive
the relation given in (3.1).

3.2. Lemma. For the distribution as given in (1.2) and any non-negative integers a, b,
c

Ji,j(a, b, c) =
1

(m+ 1)b

b∑
v=0

(−1)v
(

b
v

)
Ji,j(a+ (b− v)(m+ 1), 0, c+ v(m+ 1)) (3.6)

=
α2σi+j

(m+ 1)b

∞∑
p=0

∞∑
q=0

b∑
v=0

(−1)p+q+v
(

b
v

)
(j/β)p

[α{c+ (m+ 1)v + 1}+ p− (j/β)]

× (i/β)q
[α{a+ c+ (m+ 1)b+ 2}+ p+ q − {(i+ j)/β}] , m 6= −1 (3.7)

=

∞∑
p=0

∞∑
q=0

(−1)p+qαb+2σi+jb! (j/β)(p)(i/β)(q)

[α(c+ 1) + p− (j/β)]b+1[α(a+ c+ 2) + p+ q − {(i+ j)/β}] , m = −1

(3.8)
where Ji,j(a, b, c) is as given in (3.2).
Proof: When m 6= −1, we have

[hm(F (y))− hm(F (x))]b =
1

(m+ 1)b
[(F̄ (x))m+1 − (F̄ (y))m+1]b

=
1

(m+ 1)b

b∑
v=0

(−1)v
(

b
v

)
[F̄ (y)]v(m+1)[F̄ (x)](b−v)(m+1).

Now substituting for [hm(F (y))− hm(F (x))]b in equation (3.2), we get

Ji,j(a, b, c) =
1

(m+ 1)b

b∑
v=0

(−1)v
(

b
v

)
Ji,j(a+ (b− v)(m+ 1), 0, c+ v(m+ 1)).

Making use of the Lemma 3.1, we derive the relation given in (3.7).
When m = −1, we have

Ji,j(a, b, c) = 0
0

as
∑b
v=0(−1)v

(
b
v

)
= 0.

On applying L’ Hospital rule, (3.8) can be proved on the lines of (2.6).

3.3. Theorem. For type II exponentiated log-logistic distribution as given in (1.2) and
1 ≤ r < s ≤ n, k = 1, 2, . . . and m 6= −1
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E[Xi(r, n,m, k)Xj(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u

×
(
r − 1
u

)
Ji,j(m+ u(m+ 1), s− r − 1, γs − 1) (3.9)

=
α2σi+jCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
p=0

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)p+q+u+v

(
r − 1
u

)

×
(
s− r − 1

v

)
(j/β)(p) (i/β)(q)

[αγs−v + p− (j/β)][αγr−u + p+ q − {(i+ j)/β}] ,

β > max(i, j) and i, j = 0, 1, 2, . . . . (3.10)

Proof: From (1.6), we have

E[Xi(r, n,m, k)Xj(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj [F̄ (x)]mf(x)

×gr−1
m (F (x))[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y)dydx. (3.11)

On expanding gr−1
m (F (x)) binomially in (3.11), we get

E[Xi(r, n,m, k)Xj(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)r−1

×
r−1∑
u=0

(−1)u
(
r − 1
u

)
Ji,j(m+ u(m+ 1), s− r − 1, γs − 1).

Making use of the Lemma 3.2, we derive the relation in (3.10).
Identity 3.1: For γr, γs ≥ 1, k ≥ 1, 1 ≤ r < s ≤ n and m 6= −1

s−r−1∑
v=0

(−1)v
(
s− r − 1

v

)
1

γs−v
=

(s− r − 1)!(m+ 1)s−r−1∏s
t=r+1 γt

. (3.12)

Proof. At i = j = 0 in (3.10), we have

1 =
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v

×
(
r − 1
u

)(
s− r − 1

v

)
1

γs−vγr−u
.

Now on using (2.13), we get the result given in (3.12).
At r = 0, (3.12) reduces to (2.13).

Special cases:
i) Putting m = 0, k = 1 in (3.10), the explicit formula for the product moments of order
statistics of the type II exponentiated log-logistic distribution can be obtained as

E(Xi
r:nX

j
s:n) = α2σi+jCr,s:n

∞∑
p=0

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)p+q+u+v

(
n− s
u

)

×
(
s− r − 1

v

)
(j/β)(p)

[α(n− s+ 1 + v) + p− (j/β)]

×
(i/β)(q)

[α(n− r + 1 + u) + p+ q − {(i+ j)/β}] .
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where,

Cr,s:n =
n!

(r − 1)!(s− r − 1)!(n− s)! .

ii)Putting m = −1 in (3.10), we deduce the explicit expression for the product moments
of upper k record values for the type II exponentiated log-logistic distribution in view of
(3.9) and (3.8) in the form

E[(X
(k)

U(r))
i(X

(k)

U(s))
j)] = (αk)sσi+j

∞∑
p=0

∞∑
q=0

(−1)p+q(j/β)(p)

[αk + p− (j/β)]s−r

×
(i/β)(q)

[αk + p+ q − {(i+ j)/β}]r
and hence for upper records

E(Xi
U(r)X

j
U(s)) = αsσi+j

∞∑
p=0

∞∑
q=0

(−1)p+q(j/β)(p)(i/β)(q)

[α+ p− (j/β)]s−r[α+ p+ q − {(i+ j)/β}]r .

Remark 3.1 At j = 0 in (3.10), we have

E[Xi(r, n,m, k) =
ασiCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)q+u+v

×
(
r − 1
u

)(
s− r − 1

v

)
(i/β)q

γs−v[αγr−u + q − (i/β)]
. (3.12)

Making use of (3.12) in (3.13) and simplifying the resulting expression, we get

E[Xi(r, n,m, k) =
ασiCr−1

(r − 1)!(m+ 1)s−1

∞∑
q=0

r−1∑
u=0

(−1)q+u

×
(
r − 1
u

)
(i/β)q

[αγr−u + q − (i/β)]
,

as obtained in (2.12).
Making use of (1.6), we can derive recurrence relations for product moments of gos from
(1.2).

3.4. Theorem. For the given type II exponentiated log-logistic distribution and n ∈ N ,
m ∈ <, 1 ≤ r < s ≤ n− 1

(
1− σj

αβγs

)
E[Xi(r, n,m, k)Xj(s, n,m, k)] = E[Xi(r, n,m, k)Xj(s− 1, n,m, k)]

+
jσβ+1

αβγs
E[Xi(r, n,m, k)Xj−β(s, n,m, k)]. (3.14)

Proof: From (1.6), we have

E[Xi(r, n,m, k)Xj(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!

×
∫ ∞

0

xi[F̄ (x)]mf(x)gr−1
m (F (x))I(x)dx, (3.15)

where
I(x) =

∫ ∞
x

yj [F̄ (y)]γs−1[hm(F (y))− hm(F (x))]s−r−1f(y)dy.
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Solving the integral in I(x) by parts and substituting the resulting expression in (3.15),
we get

E[Xi(r, n,m, k)Xj(s, n,m, k)]− E[Xi(r, n,m, k)Xj(s− 1, n,m, k)]

=
jCs−1

γs(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj [F̄ (x)]mf(x)gr−1
m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γsdydx

the constant of integration vanishes since the integral in I(x) is a definite integral. On
using the relation (1.3), we obtain

E[Xi(r, n,m, k)Xj(s, n,m, k)]− E[Xi(r, n,m, k)Xj(s− 1, n,m, k)]

=
jσCs−1

αβγs(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj [F̄ (x)]mf(x)gr−1
m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y)dydx

+
jσβ+1Cs−1

αβγs(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj−β [F̄ (x)]mf(x)gr−1
m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y)dydx

and hence the result given in (3.14).
Remark 3.2 Setting m = 0, k = 1 in (3.14), we obtain recurrence relations for product
moments of order statistics of the type II exponentiated log-logistic distribution in the
form (

1− σj

αβ(n− s+ 1)

)
E[Xi,j

r,s:n] = E[Xi,j
r,s−1:n] +

jσβ+1

αβ(n− s+ 1)
E[Xi,j−β

r,s:n ].

Remark 3.3 Puttingm = −1, k ≥ 1 in (3.5), we get the recurrence relations for product
moments of upper k records of the type II exponentiated log-logistic distribution in the
form (

1− σj

αβk

)
E[(X

(k)

U(r))
i(X

(k)

U(s))
j ] = E[(X

(k)

U(r))
i(X

(k)

U(s−1))
j ]

+
jσβ+1

αβk
E[(X

(k)

U(r))
i(X

(k)

U(s−1))
j−β ].

Ratio moments of gos from type II exponentiated log-logistic distribution can be obtain
by the following Theorem.

3.5. Theorem. For type II exponentiated log-logistic distribution as given in (1.2)

E[Xi(r, n,m, k)Xj−β(s, n,m, k)] =

∞∑
p=0

∞∑
q=0

(−1)p+qσi+j−βΓ
(
j
β

)
Γ
(
i
β

+ 1
)

p!q!Γ
(
j
β
− p
)

Γ
(
i
β

+ 1− p
)

× 1∏r
a=1

(
1 + p+q−((i+j)/β)

αγa

)∏s
b=r+1

(
1 + p+1−(j/β)

αγb

) , β > j. (3.16)

Proof From (1.6), we have

E[Xi(r, n,m, k)Xj−β(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

×
r−1∑
u=0

s−r−1∑
v=0

(−1)u+v

(
r − 1
u

)(
s− r − 1

v

)
×
∫ ∞

0

xi[F̄ (x)](s−r+u−v)(m+1)−1f(x)J(x)dx, (3.17)
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where
J(x) =

∫ ∞
x

yj−β [F̄ (y)]γs−v−1f(y)dy. (3.18)

By setting z = [F̄ (y)]1/α in (3.18), we find that

J(x) = σj−β
∞∑
p=0

(−1)pΓ
(
j
β

)
[ ¯F (x)]γs−v+

p+1−(j/β)
α

p!Γ
(
j
β
− p
)[
γs−v + p+1−(j/β)

α

] .
On substituting the above expression of J(x) in (3.17), we get

E[Xi(r, n,m, k)Xj−β(s, n,m, k)] =
σj−βCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
p=0

r−1∑
u=0

×
s−r−1∑
v=0

(−1)u+v+p

(
r − 1
u

)(
s− r − 1

v

) Γ
(
j
β

)
p!Γ
(
j
β
− p
)

× 1[
γs−v + p+1−(j/β)

α

] ∫ ∞
0

xi[F̄ (x)]γr−u+
p+1−(j/β)−1

α
−1dx. (3.19)

Again by setting t = [F̄ (x)]1/α in (3.19), we get

E[Xi(r, n,m, k)Xj−β(s, n,m, k)] =
σi+j−βCs−1

(m+ 1)s

∞∑
p=0

∞∑
q=0

(−1)p+q

×
Γ
(
j
β

)
Γ
(
i
β

+ 1
)

Γ
[
α{k+(n−r)(m+1)}+p+q−{(i+j)/β}

α(m+1)

]
p!q! Γ

(
j
β
− p
)

Γ
(
i
β

+ 1− q
)

Γ
[
α{k+n(m+1)}+p+q−{(i+j)/β}

α(m+1)

]
×

Γ
[
α{k+(n−s)(m+1)}+p+1−(j/β)

α(m+1)

]
Γ
[
α{k+(n−r)(m+1)}+p+1−(j/β)

α(m+1)

] (3.20)

and hence the result given in (3.16).
Special cases
iii) Putting m = 0, k = 1 in (3.20), the explicit formula for the ratio moments of order
statistics of the type II exponentiated log-logistic distribution can be obtained as

E[Xi
r:nX

j−β
s:n ] =

n!σi+j−β

(n− s)!

∞∑
p=0

∞∑
q=0

(−1)p+q
Γ
(
j
β

)
Γ
(
i
β

+ 1
)

p!q! Γ
(
j
β
− p
)

Γ
(
i
β

+ 1− q
)

×Γ[α(n− r + 1) + p+ q − {(i+ j)/β}]Γ[α(n− s+ 1) + p+ 1− (j/β)]

Γ[α(n+ 1) + p+ q − {(i+ j)/β}]Γ[α(n− r + 1) + p+ 1− (j/β)]
.

iv) Putting m = −1 in (3.16), the explicit expression for the ratio moments of upper k
record values for the type II exponentiated log-logistic distribution can be obtained as

E[(X
(k)

U(r))
i(X

(k)

U(s))
j−β ] = σi+j−β

∞∑
p=0

∞∑
q=0

(−1)p+q

p!q!

Γ
(
j
β

)
Γ
(
i
β

+ 1
)

Γ
(
j
β
− p
)

Γ
(
i
β

+ 1− q
)

× 1(
1 + p+q−{(i+j)/β}

αk

)r(
1 + p+1−(j/β)

αk

)s−r .
Making use of (1.6), we can derive recurrence relations for ratio moments of gos from
(1.2).
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3.6. Theorem. For type II exponentiated log-logistic distribution

(
1− σ(j − β)

αβγs

)
E[Xi(r, n,m, k)Xj−β(s, n,m, k)]

= E[Xi(r, n,m, k)Xj−β(s− 1, n,m, k)]

+
(j − β)σβ+1

αβγs
E[Xi(r, n,m, k)Xj−2β(s, n,m, k)], β > j. (3.21)

Proof The proof is easy.

Remark 3.4 Setting m = 0, k = 1 in (3.21), we obtain a recurrence relation for
Ratio moments of order statistics for type II exponentiated log-logistic distribution in
the form(

1− σ(j − β)

αβ(n− s+ 1)

)
E[Xi

r:nX
j−β
s:n ] = E[Xi

r:nX
j−β
s−1:n] +

(j − β)σβ+1

αβ(n− s+ 1)
E[Xi

r:nX
j−2β
s:n ].

Remark 3.5 Putting m = −1, in Theorem 3.6, we get a recurrence relation for ratio
moments of upper k record values from type II exponentiated log-logistic distribution in
the form (

1− σ(j − β)

αβk

)
E[(X

(k)

U(r))
i(X

(k)

U(s))
j−β ] = E[(X

(k)

U(r))
i(X

(k)

U(s−1))
j−β ]

+
(j − β)σβ+1

αβk
E[(X

(k)

U(r))
i(X

(k)

U(s))
j−2β ].

Remark 3.6 At γr = n − r + 1 +
∑j
i=rmi, 1 ≤ r ≤ j ≤ n, mi ∈ N , k = mn + 1

in (3.16) the product moment of progressive type II censored order statistics of type II
exponentiated log-logistic distribution can be obtained.

Remark 3.7 The result is more general in the sense that by simply adjusting j − β
in (3.16), we can get interesting results. For example if j − β = −1 then E

[
X(r,n,m,k)
X(s,n,m,k)

]i
gives the moments of quotient. For j−β > 0, E[Xi(r, n,m, k) Xj−β(s, n,m, k)] represent
product moments, whereas for j < β , it is moment of the ratio of two generalized order
statistics of different powers.

4. Characterization
This Section contains characterization of type II exponentiated log-logistic distribution

by using the conditional expectation of gos .
Let X(r, n,m, k), r = 1, 2, . . . , n be gos, then from a continuous population with cdf
F (x) and pdf f(x), then the conditional pdf of X(s, n,m, k) given X(r, n,m, k) = x,
1 ≤ r < s ≤ n, in view of (1.5) and (1.6), is

fX(s,n,m,k)|X(r,n,m,k)(y|x) =
Cs−1

(s− r − 1)!Cr−1

× [hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1

[F̄ (x)]γr+1
f(y). x < y (4.1)

4.1. Theorem. Let X be a non-negative random variable having an absolutely continuous
distribution function F (x) with F (0) = 0 and 0 < F (x) < 1 for all x > 0, then
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E[X(s, n,m, k)|X(r, n,m, k) = x] = σ

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p

×
s−r∏
j=1

( γr+j
γr+j − p/α

)
(4.2)

if and only if

F̄ (x) =
(

1 +
{x
σ

}β)−α
, x ≥ 0, α, σ > 0, β > 1.

Proof From (4.1), we have

E[X(s, n,m, k)|X(r, n,m, k) = x] =
Cs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

×
∫ ∞
x

y
[
1−

( F̄ (y)

F̄ (x)

)m+1]s−r−1( F̄ (y)

F̄ (x)

)γs−1 f(y)

F̄ (x)
dy. (4.3)

By setting u = F̄ (y)

F̄ (x)
=
(

1+(x/σ)β

1+(y/σ)β

)α
from (1.2) in (4.3), we obtain

E[X(s, n,m, k)|X(r, n,m, k) = x] =
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

×
∫ 1

0

[{1 + (x/σ)β}u−1/α − 1]1/βuγs−1(1− um+1)s−r−1du

=
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p

×
∫ 1

0

uγs−(p/α)−1(1− um+1)s−r−1du (4.4)

Again by setting t = um+1 in (4.4), we get

E[X(s, n,m, k)|X(r, n,m, k) = x]

=
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p

×
∫ 1

0

t
k−(p/α)
m+1

+n−s−1(1− t)s−r−1dt

=
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p

×
Γ
(
k−(p/α)
m+1

+ n− s
)

Γ(s− r)

Γ
(
k−(p/α)
m+1

+ n− r
)

=
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p

× (m+ 1)s−rΓ(s− r)∏s−r
j=1(γr+j − (p/α))

and hence the relation in (4.2).
To prove sufficient part, we have from (4.1) and (4.2)

Cs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

∫ ∞
x

y[(F̄ (x))m+1 − (F̄ (y))m+1]s−r−1
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×[F̄ (y)]γs−1f(y)dy = [F̄ (x)]γr+1Hr(x), (4.8)

where

Hr(x) = σ

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p
s−r∏
j=1

( γr+j
γr+j − p/α

)
.

Differentiating (4.5) both sides with respect to x and rearranging the terms, we get

− Cs−1[F̄ (x)]mf(x)

(s− r − 2)!Cr−1(m+ 1)s−r−2

∫ ∞
x

y[(F̄ (x))m+1 − (F̄ (y))m+1]s−r−2

×[F̄ (y)]γs−1f(y)dy = H ′r(x)[F̄ (x)]γr+1 − γr+1Hr(x)[F̄ (x)]γr+1−1f(x)

or

−γr+1Hr+1(x)[F̄ (x)]γr+2+mf(x)

= H ′r(x)[F̄ (x)]γr+1 + γr+1Hr(x)[F̄ (x)]γr+1−1f(x).

Therefore,
f(x)

F̄ (x)
= − H ′r(x)

γr+1[Hr+1(x)−Hr(x)]
=

αβ(x/σ)β−1

σ[1 + (x/σ)β ]

which proves that

F̄ (x) =
(

1 +
{x
σ

}β)−α
, x ≥ 0, α, σ > 0, β > 1.

Remark For m = 0, k = 1 and m = −1, k = 1, we obtain the characterization results
of the type II exponentiated log-logistic distribution based on order statistics and record
values respectively.

5. Applications
In this Section, we suggest some applications based on moments discussed in Section 2.

Order statistics, record values and their moments are widely used in statistical inference
[see for example Balakrishnan and Sandhu [11], Sultan and Moshref [38] and Mahmoud
et al. [31], among several others].
i) Estimation: The moments of order statistics and record values given in Section 2
can be used to obtain the best linear unbiased estimate of the parameters of the type
II exponentiated log-logistic distribution. Some works of this nature based on gos have
been done by Ahsanullah and habibullah [6], Malinowska et al. [32] and Burkchat et al.
[16].
ii) Characterization: The type II exponentiated log-logistic distribution given in (1.2)
can be characterized by using recurrence of single moment of gos as follows:

Let L(a, b) stand for the space of all integrable functions on (a, b) . A sequence
(fn) ⊂ L(a, b) is called complete on L(a, b) if for all functions g ∈ L(a, b) the condition∫ b

a

g(x)fn(x)dx = 0, n ∈ N,

implies g(x) = 0 a.e. on (a, b). We start with the following result of Lin [30].

Proposition 5.1 Let n0 be any fixed non-negative integer, −∞ ≤ a < b ≤ ∞ and
g(x) ≥ 0 an absolutely continuous function with g′(x) 6= 0 a.e. on (a, b) . Then the
sequence of functions {(g(x))ne−g(x), n ≥ n0} is complete in L(a, b) iff g(x) is strictly
monotone on (a, b).
Using the above Proposition we get a stronger version of Theorem 2.4.
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5.1. Theorem. A necessary and sufficient conditions for a random variable X to be
distributed with pdf given by (1.1) is that

(
1− σj

αβγr

)
E[Xj(r, n,m, k)] = E[Xj(r − 1, n,m, k)]

+
jσβ+1

αβγr
E[Xj−β(r, n,m, k)]. (5.1)

Proof The necessary part follows immediately from (2.14) on the other hand if the
recurrence relation (5.1) is satisfied then on using (1.5), we have

Cr−1

(r − 1)!

∫ ∞
0

xj [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx

=
Cr−1

γr(r − 2)!

∫ ∞
0

xj [F̄ (x)]γr+mf(x)gr−2
m (F (x))dx

+
σjCr−1

αβγr(r − 1)!

∫ ∞
0

xj [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx

+
jσβ+1Cr−1

αβγr(r − 1)!

∫ ∞
0

xj−β [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx. (5.2)

Integrating the first integral on the right-hand side of the above equation by parts and
simplifying the resulting expression, we get

jCr−1

γr(r − 1)!

∫ ∞
0

xj−1[F̄ (x)]γr−1gr−1
m (F (x))

×
{
F̄ (x)− σx

αβ
f(x)− σβ+1

αβxβ−1
f(x)

}
dx = 0.

It now follows from Proposition 5.1, we get

αβF̄ (x) = σ[1 + (x/σ)β ]xf(x),

which proves that f(x) has the form (1.1).

6. Concluding Remarks
In the study presented above, we established some new explicit expressions and re-

currence relations between the single and product moments of gos from the type II
exponentiated log-logistic distribution. In addition ratio and inverse moments of type
II exponentiated log-logistic distribution are also established. Further, the conditional
expectation of gos is used to characterize the distribution.
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