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Abstract 

Details of the reliability and availability aspects of the thermoeconomic methodology 

presented in Part I (Olsommer et al., 1999) are given here in Part II of our series of two 

articles.  These system details cannot be forgotten, particularly if the superconfiguration 

envisioned offers the choice of several technologies for the same function (redundancy) 

or if there are guarantees of availability which must be met.  An original method, which 

is an extension of the event space method, is presented here for automating the reliabil-

ity and/or availability calculations of a repairable system chosen from a flexible struc-

ture of equipment in active and/or passive redundancy, connected in series and/or paral-

lel.  This methodology permits a more realistic evaluation of performance, flows and 

costs at both the structural (synthesis-design) and operational levels and leads, thus, to 

more rational decisions on system synthesis, design and operation.  Results for the ap-

plication of this methodology to a waste incineration cogeneration facility with a gas 

turbine topping cycle are given in Part I (Olsommer et al., 1999). 

Keywords: reliability, availability, Markov chains, energy systems optimization 

 
1. Introduction 

 When the reliability and/or the availability 

of a system must be enhanced or must meet a 

particular goal, it is common practice to place 

several key pieces of equipment in parallel (re-

dundancy). Sometimes it is a matter of meeting a 

given heat demand to be delivered to a district 

heating network within a given period and with a 

minimal probability of not meeting the demand. 

Or it can be a matter of improving the productiv-

ity of a system. In both cases, these considera-

tions have an immediate impact on the costs of the 

system and on its multiple flows (materials, en-

ergy). Furthermore, as soon as one admits that a 

piece of equipment is not perfectly reliable such 

considerations should be taken into account in a 

thermoeconomic analysis and/or optimization. In 

fact, when a system is composed of more than one 

piece of equipment (in series and/or in parallel), a 

comprehensive reliability and/or availability analy-

sis must be completed if one wishes to calculate 

with accuracy the costs, the performance and the 

flows of the system.  
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In the context of simultaneously modeling 

and optimizing from a thermoeconomic stand-

point the structure and operation of a system, 

there is a need for an automated procedure, 

which can deal with systems for which the struc-

ture changes (flexible) with time. Several meth-

ods which could be applicable to such an auto-

mated procedure have been developed (Ville-

meur, 1988). Of these the event space method 

(Roberts, 1964) is well suited for the reliability 

and availability analysis of repairable systems, 

taking into account all possible events of the 

system. The procedure can be easily imple-

mented on a computer when the pieces of equip-

ment are in active redundancy (i.e. no equipment 

is in stand-by1). The method involves construc-

ting a so-called "Markov graph" or event space 

graph from which the reliability and/or availabil-

ity can easily be deduced. Unfortunately, this 

automated procedure cannot be applied in a 

straightforward manner when in addition to ac-

tive redundancy passive redundancy (i.e. a sys-

tem including stand-by equipment) is considered. 

In this case, there are more than two possible 

events for each piece of equipment (actually six), 

leading, a priori, to a more complicated analysis 

with many more possible events2. The methodol-

ogy developed here to overcome this difficulty 

(Olsommer, 1998) is presented below and per-

mits use of a standard binary events-based 

Markov graph for repairable systems with active 

and/or passive redundancy. The algorithm, based 

on a set of rules, can easily be implemented on a 

computer. 

We begin with a definition of important 
concepts of the reliability and availability theory. 

2.  Brief Background on Fundamentals 

 A system consists of several pieces of 

equipment placed in series and/or in parallel. 

Redundancy occurs when the equipment is in 

parallel. Depending on whether or not a piece of 

equipment is supposed to be in operation or in 

stand-by, redundancy is either active or passive, 

respectively. 

2.1 Reliability, availability, maintain-

ability 

The reliability R(t) (Eq. (1)) is measured by 

the probability that an entity E is able to accom-
plish its required function during a given period 
t. The availability A(t) (Eq. (2)) is measured by 

the probability that an entity E is able to accom-
plish its required function at a given time t.  The 
maintainability M(t) (Eq. (3)) is measured by the 

                                                                 
1 Equipment engaged only in case of need. 

2 6
K
 events, with K the number of pieces of equipment. 

probability that the maintenance of an entity E is 
completed at a given time t, knowing that it had 

failed at time t=0.  In equation form, these are 
given by 

R(t)=P[E does not fail over [0,t]] (1) 

A(t)=P[E does not fail at time t] (2) 

M(t)=P[E is repaired over [0,t]] (3) 

 2.2  Stochastic process and Markov chains 

A stochastic process is a mathematical model 

which allows one to associate a random variable Q 
(representing here a system event) to a random 

variable T (representing here the time t). Thus, the 
realization of event Q at time t is a function of the 
history (the trajectory of Q(t)). A stochastic proc-

ess is called Markov when the event Q(tn) is fully 
determined by the preceding event Q(tn-1). It is said 
that all the history is contained in the previous 

event. When all events of a Markov process are 
discrete, this process is called a Markov chain. 
This chain can be represented graphically as a 

Markov graph (or event space graph). The event 
space method (Roberts, 1964) relies on these two 

main assumptions: a Markov process in a discrete 
space. 

2.3  Transition rates (failure and repair 

rates) 

Transition rates express the probability of 
passing from a given event to another during the 
very next time period, knowing that the given 

event existed as such in the previous time period. 

The failure rate λ (Eq. (4)) is defined by the 
limit, provided it exists, of the ratio between the 
conditional probability that the failure instance of 

an entity is included in a given time interval [t, 

t+∆t] and the time interval when ∆t→0.  This 
assumes that the entity has not had a failure over 

[0, t]. In equation form, this is expressed as 

λ(t)=
t

1
lim

0t ∆→∆
 P [E fails between [t, t+∆t],  

 knowing that it has not had  

 any failure over [0,t] ] (4) 

With the help of the conditional probabilities 

theorem, it can be easily shown that the failure rate 

can be expressed as a function of the reliability as 

follows: 

λ(t)=
( ) ( )

( )

( )

( )
0

tR

dt

tdR

tRt

ttRtR
lim

0t
≥

−
=

∆
∆+−

→∆
 (5) 

The repair rate µ (Eq. (6)) is defined by the 

limit (if existing) as ∆t→0 of the ratio between the 

conditional probability that the moment of comple-

tion of an entity’s repair is included in a given time 

interval [t, t+∆t] and the time interval itself. This 

assumes that the entity has failed over [0, t]. Thus, 
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µ(t) =
t

1
lim

0t ∆→∆
 P [E repaired between [t, t+∆t],  

 knowing that it has failed over [0,t] ] (6) 

In a way similar to that for the failure rate, it can 

be shown that the repair rate takes the form 

 µ(t) =

( )

( )
0

tM1

dt

tdM

≥
−

 (7) 

In graphic form, the failure rate of a piece 

of equipment is traditionally represented by a 

curve with a tub shape (see Fig. 1), depicting 

three main periods of its lifetime. They are (i) the 

early period marked by an initial abrupt decrease 

in failure rate (early failures); (ii) the useful life-

time period denoted by a constant failure rate; 

and (iii) the end of life period marked by an 

abrupt increase in the failure rate (wear). When a 

quasi-stationary approximation is used (see Part 

I; Olsommer et al., 1999), the curve of Fig. 1 can 

easily be decomposed into several mean constant 

values. 

λ(t)

t

early

failure

constant

failure rate

wear

failure

 
Figure 1.  Time dependence of failure rate.  

With the preceding definitions, the reliabil-

ity and availability of a piece of equipment can 

be treated provided the following parameters are 

known: 

− operating failure rate (λ); 

− start-up failure rate (γ); 
− stopped failure rate (λs); 

− repair rate (µ). 

TABLE I.  TRANSITION  RATE  ESTIMATORS. 

Estimator Note 

λ
∧

= Nf/Tf 
Nf =  number of failures observed  

 while operating 

Tf = cumulative operating time 

γ
∧

= Nd/Ns 
Nd = number of failures observed  

 at start-up 

Ns =  number of start-ups 

µ
∧

= Nr/Tr 
Nr = number of repairs 

Tr = cumulative repair time 

Note that the stopped failure rate can usually be 

neglected (i.e. λs=0). Estimators for the parameters 

listed above are given in TABLE I. Their values 

can be found in the literature (e.g., Procaccia and 

Aufort, 1995). 

3. Event Space Method for Systems with Ac-

tive Redundancy 

 Let a system be composed of a set of K com-

ponents, placed in series and/or active redundancy. 

Each component has two possible events 

(operation (0) and breakdown (1)). Thus, the num-

ber of possible events is 2K. The transition rates 

between each event are functions of the transition 

rates (λ, µ). This information can be depicted in a 

Markov graph (see Fig. 2). Each cell represents an 

event and is named a summit (V), while each arrow 

represents a transition rate and is named an edge 

(→). Events are grouped in columns defined by the 

number of broken-down pieces of equipment (e.g., 

the middle column has one broken-down piece of 

equipment while those to the left and right have 

zero and two, respectively). Thus the Markov 

graph of a system of K components is made of K 

+1 columns (see Fig. 2). It is important to note that 

there is no edge between event "1" (00) and "4" 

(11) since the probability of having two transitions 

at a time is of magnitude dt2 and can be neglected 

(Pagès and Gondran, 1980). 

1 0

0 01 1

0 1

“1”

“2”

“3”“4”

λ
4,2

µ
2,4

λ
4,3

µ
3,4

µ
1,2

λ
2,1

λ
3,1

µ
1,3

 
 Figure 2.  Markov graph for availability 
analysis of a system with two repairable pieces of 

equipment (1=operation, 0=breakdown).3 

 3.1  System's state equations 

Let aij be the transition rate between events i 

and j. In order to calculate the probability Pi(t+dt) 

of an event i at time (t+dt), there are two possibili-

ties: 

(i) If the system was in event i at time t, it must 

have stayed in that event. The associated 

probability is given by 

                                                                 
3 Note that this graph can also be used for reliability analysis 

by noting (based on the definition of reliability) that the system 

cannot return from a breakdown event. If the breakdown event 

occur when both pieces of equipment are broken-down (event 

"1"), it follows that one has to suppress all edges emanating 

from event "1" (00). 
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 1−∑
≠

I

ij

ij dta  (8) 

(ii) If the system was in event j at time t, then 
the transition inevitably occurred. The prob-

ability is 

 aji  dt (9) 

Thus, the probability Pi(t+dt) can be expressed 

as the sum of the possible probabilities given 
above, i.e.  

P i(t+dt) =  P[the system is in i at (t)  

 and stays in i at (t+dt)] + 

 ∑
≠

I

ij

P [the system is in j at (t)  

     and in i at (t+dt) ] (10) 

By setting ∑
≠

−=
I

ij

ijii aa , the system's state equa-

tions become 

∑
=

=
I

1j

jij
i a)t(
dt

)t(d
P

P
 ∀i = 1,2,..,I (11) 

When initial conditions are known and aji are 
fixed values, the system of equations (Eq. (11)) 
can be integrated. Each function is formed by an 

unsteady component and by a stationary compo-
nent. In practice, the unsteady component tends 
rapidly towards zero and the system thus tends 

towards the stationary solution denoted by Pi(∞). 

In this case, Eq. (11) can be reduced to a ho-
mogenous system of equations, i.e. 

∑
=

∞
I

1j

jij a)(P = 0 ∀i = 1,..,I (12) 

This system can easily be solved by any linear 
algebra algorithm, taking into account the addi-
tional condition that 

 1)(

I

1j

j =∞∑
=

P  (13) 

Laplace’s method (Pagès and Gondran, 1980) 
allows one to express the solution of Eqs. (12) 

and (13) as the ratio of the determinant of the 

transition rate matrix4 A (where except for line i 

which is replaced by a one, the last column is 
replaced by a column of zeros) to the determi-

nant of A (where the last column is replaced by a 

column of ones). In equation form this is ex-
pressed as  

                                                                 
4 Matrix of size IxI composed of the transition rates aij. 
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L
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K

L
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K

P  (14) 

When the transition rates are constant and the 
Markov graph has been established, the above 

system of homogenous equations (Eq. (14)) 

determines the asymptotic (t→∞) availability 
and/or reliability of systems composed of equip-
ment in series and/or parallel and in active redun-

dancy. 

4.  Event Space Method Extended to Passive 

Redundancy 

 When considering active redundancy com-

bined with passive, six possible events can occur 

for each component (see TABLE II). The construc-

tion of the Markov graph is, thus, more compli-

cated, since it can contain 6K events. For this rea-

son, the usual way to do it is to do it "manually" 

for each system configuration (Alvi, 1993). In an 

optimization procedure, this is impractical. An 

alternative consists in automatically constructing 

the graph as it was done for active redundancy 

only, resulting in a 6K events graph. For practical 

reasons, this is not acceptable for systems with a 

large number of components. What is needed is an 

algorithm able to reduce the size of matrix A and 

to automatically construct the Markov graph. 

In complex systems, when a piece of equip-

ment breaks down, the measures that have to be 

taken are usually dictated by predefined proce-

dures (decision tree, automated procedures) called 

emergency procedures. Depending on the preced-

ing event, these procedures must indicate, for ex-

ample, if a particular stand-by piece of equipment 

must be engaged or not. 

TABLE II.  ACTIVE AND PASSIVE REDUNDANCIES: 

POSSIBLE EVENTS. 

Redundancy Description VE 

active breakdown 0 

active operating 1 

passive waiting, broken-down 2 

passive waiting, ready to operate 3 

passive engaged, breaks down 4 

passive engaged, starts 5 
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 4.1  Problem definition 

Let N be the maximum number of pieces of 

equipment possible in the superconfiguration at 

time t. When all pieces of equipment are defined 

by an independent structural variable5, this num-
ber can be identified in the optimization proce-
dure by inspecting the binary and integer compo-

nents of vector w(1,..,ΝΝΝΝ) (see Part I; Olsommer 

et al., 1999). If wn= 0, the corres-ponding piece 

of equipment does not exist. A similar inspection 
of the binary components of the operational in-

dependent vector x(1,.., ΝΝΝΝ) permits one to de-

termine if the corresponding piece of equipment 
is active or passive in the corresponding se-
quence. It is active if xn= 1 and passive if xn= 0. 

Thus, vector w determines the number K of 

pieces of equipment effectively present and vec-

tor x their type of redundancy (active or passive). 

In order to construct the Markov graph and 

its associated transition rate matrix A, two sepa-

rate parts of A will be considered: one for the 
failure analysis and the second for the repair 
analysis. Before proceeding, however, the fol-

lowing notation is adopted:  

− the prefix "binary" or the subscript "B" will 
be added for active redundancy (event, ta-

ble); 

− the prefix "integer" or the subscript "E" will 
be added for passive redundancy (event, ta-
ble). 

 4.2  Markov graph and transition 

rate matrix A (failures): 

The proposed algorithm consists of four 

main steps: (i) to construct the binary events 

table (FB) and to sort it; (ii) to construct the inte-

ger events table (FE) and the associated Markov 

graph; (iii) to construct the transition rate matrix 

(A); and (iv) to resolve possible conflicts which 

can occur in the construction of (FB). These steps 

are outlined below. 

(i)  Binary events table: 

Let K be the number of pieces of equip-

ment. Thus, there are I=2K binary events. The 

binary events table FB (Eq. (15)) is obtained by: 

− associating with each number i ∈{1,.., I} 

(denoted #D) the binary number (ÿÿ-

noteÿÿ#B) equivalentn o i-1 as well as H, 

the numprr eduiÿÿlent to the sum (bit by 

bit) of the corresponding binary number 

(#B); 

− sorting the table according to both crite-
ria: 
1. H decreasing; 

                                                                 
5 Note that each piece of equipment is not necessarily de-

fined by a structural or  operational independent variable. 

2. #D decreasing. 

FB = {#D,   #B,   H} (15) 

where H will be named "number of ones". Note 
that event i=I, always has H= K and that FB is 

fictive in the sense that it is only helpful to the 

calculus of the integer events table (FE). Note also 
that in Markov graphs, columns of events are com-
posed of identical "number of ones" (H). 

(ii)  Integer events table and the Markov 
graph: 

The integer events table (Eq. (16)) is defined 

as a binary table in which binary events (#B) are 
replaced by integer events (#E), i.e. 

FE = {#D,   #E,   H} (16) 

where #E is found by replacing each component 
(i.e. corresponding to each piece of equipment) of 

#B by the corresponding integer event ∈{0,..,5} 
using the procedure described below. 

For the failure graph, construction proceeds 

from left to right and by decreasing #D. Based on 
the assumption that only one piece of equipment 
can breakdown at any one time (see above), a 

transition can only take place between two events 
for which  the H of the event of origin is greater 
than the one for the summit event (Horigin > Hsummit). 

The method consists of skimming through FB from 
top to bottom and determining for each event of 

origin if one can connect it to each summit event 
meeting the above criterion (Horigin > Hsummit). If the 
answer is yes, the integer event of the summit has 

to be determined with the help of the set of rules 
described below (R.1 – R.9). The binary and inte-
ger events can be denoted as a table VB and VE, 

respectively, equal to the second column #B and 
#E, respectively, in tables FB and FE, respectively. 
For example, VE(i,k) represents the integer event 

of the k
th
 piece of equipment of the i

th
 event. The 

rules needed to determine the integer event are as 
follow:  

1. Event i = I = 2k
  
: Is the corresponding piece of 

equipment ν in active or in passive redun-
dancy? Apply rule R.1. 

For k =1,.., K , 

if xν=1, then VE(I, k)=1  (i.e. active) 

if xν=0, then VE(I, k)=3  (i.e. passive) 

R.1 

2. For each event i ≤ I = 2k (VE(i)): For each 

event j of VB(j) (with k =1,..,K) meeting crite-

rion Horigin > Hsummit, test if the couple6 

<VE(i)→VB(j)> meets following criteria: a 

piece of equipment cannot return from a break-

                                                                 
6 Here, <VE(i,k)→VB(j,k)> has integer event VE for its origin 

and the binary event VB for its summit. 
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down event to a operating event7; note that 

the number of transitions from operating 

events (1 or 5 in TABLE II) to breakdown 

events can not exceed 1. Apply rules (R.2a 

and R.2b). 

For <VE(i, k)→VB(j, k)>, κ =1,..., K , 

there is no transition <0→1>, 

there is no transition <2→1>, 

there is no transition <4→1>. 

R.2a 

For <VE(i, k)→VB(j, k)>, k =1,...,K , 

 the number of transitions <1→0>  

+ the number of transitions <5→0> ≤ 1. 

R.2b 

If rule R.2a or rule R.2b is violated, then 

there is no possibility of an edge between 

both events <VE(i)→VB(j)>. Thus, one must 
go to next event j and start again. If both R.2a 
and R.2b are satisfied, then an edge can exist.  

In this case, begin with the calculation of the 
integer event of summit VB(j) of the couple 

<VE(i)→VB(j)> as follows: 

Calculation of VE(j, k ): For each k =1,...,K 

(i.e. for each piece of equipment) of the inte-
ger event of origin VE(i, k ), do the follow-

ing: 

a) If the equipment is active (VE(i, k )= 0 or 

1), then the binary event of the summit 
VB(j, k) is not modified (rule R.3). 

For <VE(i, k)→VB(j, k)>,  
if VE(i, k) = 0 or 1, then VE(j, k) = VB(j, 

k). 

R.3 

b) If the equipment is passive (VE(i, k)= 

2,3,4 or 5), then the integer event of the 
summit VB(j, k) depends on both the in-

teger event of origin VE(i, k) and the 

emergency procedure.  The latter is de-
scribed as follows: 

I. If equipment k is not engaged and is 

broken-down (VE(i, k)=2), then it 

stays in the same event (rule R.4). Note 

that the transition <2→1> has already 
been eliminated by rule (R.2a). 

For <VE(i, k)→VB(j, k)>,  
if VE(i, k) = 2, then VE(j, k) = 2. 

R.4 

II. If equipment k has been engaged and 

has broken-down (VE(i, k)=4), then it 

stays in the same event (rule R.5). Note 

that the transition <4→1> has already 
been eliminated by rule (R.2a). 

For <VE(i, k)→VB(j, k)>,  
if VE(i, k) = 4, then VE(j, k) = 4. 

R.5 

                                                                 
7 Note that at this point, only the failure graph has been 

considered. The repair graph will be treated below. 

III. If equipment k has been engaged and 

has started (VE(i, k)=5), then it can 

break down or stay in operation (rule 

R.6).  

For <VE(i, k)→VB(j, k)>,  
if VE(i, k) = 5 and VB(j, k) = 0,  

then VE(j, k) = 4, 

if VE(i, k) = 5 and VB(j, k) = 1,  

then VE(j, k) = 5. 

R.6 

IV. If equipment k is waiting and ready to 

operate (VE(i, k)=3), then look at the 

emergency procedure. If  k has been 

engaged, it can break down or start (rule 

R.7a). If it has not been engaged, it can 

break down or stay in readiness to 

operate (rule R.7b).  

For <VE(i, k)→VB(j, k)>,  
if VE(i, k)= 3 and equipment j must be  

   engaged, 

        if VB(j, k) = 0, then VE(j, k) =4, 

        if VB(j, k) = 1, then VE(j, k) =5. 

R.7a 

For <VE(i, k)→VB(j, k)>,  
if VE(i, k)=3 and equipment j has not  

   been engaged, 

        if VB(j, k) = 0, then VE(j, k) =2, 

        if VB(j, k) = 1, then VE(j, k) =3. 

R.7b 

At this point, FE and the failure Markov graph 

can be constructed. It still remains to calculate the 

weight (or transition rate) aij of each edge and 

resolve possible conflicts. 

(iii) Transition rate matrix (A): 

Assuming that the transition rates are inde-

pendent of the event and based on the aforemen-

tioned assumptions, the contribution τk  for each 

possible transition is summarized in TABLE III. 

The weight of each edge is found by multiplying 

the K transition rate contributions as follows: 

 ∏
=

τ=
K

k

k

1

ija  (17) 

(iv) Possible conflicts: 

In some cases, it is possible that the calcula-

tion of an integer event VE(j, k) can lead to dif-

ferent values through different edges (ways). This 

happens sometimes with events VE(j, k)=2 and 

VE(j, k)=4. In this case, event VE(j, k)=4 

supersedes the former (rule R.8). Note that it can 

easily be shown that this conflict does not affect 

the numerical results of the availability or reliabil-

ity analysis at all, but only the Markov graph rep-

resentation. 

For <VE(i, k)→VE(j, k)>, k =1,..,K 
if VE(j, k)= 2 or 4 differs from another 

edge, 

R.8 
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        then VE(j, k) = 4 

At this point, FE, and both the failure 

Markov graph and A are fully defined. What 

remains is to complete the Markov graph and the 

transition rate matrix A for repairs. 

TABLE III.   TRANSITION RATE τk FOR EACH 

TRANSITION. 

Transition 

<VE(i, k)→VE(j, k)> 

Transition rate  
τk 

<0→0> 1 

<1→0> λk 

<1→1> 1 

<2→2> 1 

<2→4> 1 

<3→2> 0 

<3→3> 1 

<3→4> γ k 

<3→5> 1-γ k 

<4→4> 1 

<5→4> λ k 

<5→5> 1 

4.3  Markov graph and transition rate 

matrix A (repairs): 

Assuming that only one piece of equipment 

can be repaired at a time, the repair Markov 

graph can easily be built from the binary events 

table (FB) as follows: 

  For each event (VB(i)): For each event 

VB(j), the couple <VB(i)→VB(j)> has an 

edge if the criterion Horigin<Hsummit is met and 

if one and only one piece of equipment of 

event VB(i) is repaired (rule R.9). 

For <VB(i, k)→VB(j, k)>, k =1,..,K 
if H(i) < H(j)  

and if the transition number <0→1> = 1, 

        then there is an edge. 

R.9 

The weight of edge aij is given by the repair 

rate (µk) of the corresponding repaired piece of 

equipment, i.e. 

 aij = µk (18) 

At this point, the Markov graph and A are 

fully defined. The asymptotic probabilities 

(Pi(∞), i=1,..,I with I=2K ) can easily be deduced 

through Eq. (14). 

5. Exact Costs and Flows 

 Consider a system of order K and assume 

that a quasi-stationary approximation can be 

made and that the solution of Eq. (11) rapidly 

tends towards a stationary solution (asymptotic 

probabilities). Then, the exact costs and flows 

(materials, energy) are easily calculated by consid-

ering each event and weighting the cost or flow 

with the asymptotic probability Pi(∞) (Eqs (19) 

and (20)). 
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6. Application: Influence of Availability 

Analysis on Thermoeconomics 

 Consider the availability analysis of the su-

perconfiguration depicted in Fig. 1 appearing in 

Part I (Olsommer et al., 1999).  

 6.1  Problem definition 

In addition to the aforementioned assump-

tions, the following assumptions are made: 

− the RH, T1, T2, C1, C2 and DH are much 

more reliable than the F1, F2, F3, GT and AB 

(Procaccia and Aufort, 1995); 

− the pumps (P) are already doubled or tripled 

and are, thus, perfectly reliable; 

− the furnaces (F1, F2, F3) are always, when 

present, active pieces of equipment (i.e. they 

are much too expensive to be passive). 

Thus, the availability depends only on the furnaces 

(F1, F2, F3), the gas turbine (GT) and the auxiliary 

boiler (AB). 

The minimum availability limit on heat deliv-

ery to the district heating network (ADH) has been 

fixed at 99.9 (%). Below this value, the objective 

function has been penalized (see TABLE V in Part 

I (Olsommer et al., 1999). The maximum opera-

tional load of the furnaces has been set at 110 % 

and at 100 % for the GT and AB. For sanitary and 

security reasons, the maximum storage period in 

the waste pit has been set to four days for each 

sequence, assuming that each furnace does not 

break down more than once per season (4 months; 

SAIOD, 1997). 

For each sequence (k = 1,…,K), the problem 

is defined by the structural vector wk = (wF1, wF2, 

wF3, wGT, wAB)k and the operational vector xk = 

(xF1, xF2, xF3, xGT, xAB)k. Note that based on the 

acquisition date of each piece of equipment, the 

structure of the system can vary with the sequence 

k (flexible structure in time). Transition rate esti-

mators (see TABLE IV) have been assumed iden-

tical over each sequence.  
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TABLE IV.  TRANSITION RATE ESTIMATORS  

(Procaccia and Aufort, 1995; SAIOD, 1997). 

Equip-

ment 

Operating failure 

λ
∧

 

Start-up failure 

γ
∧

 

Repair 

µ
∧

 

F1,F2,F3 497e-6 100e-3 1/180 

GT 1400e-6 15e-3 1/21 

AB 220e-6 5e-3 1/82 

The emergency procedures can easily be 
implemented and are as follow: 

− F1: If F2 or F3 or F2 and F3 are broken-

down, then run F1 up to its maximum load. 

− F2: If F1 or F3 or F1 and F3 are broken-
down, then run F2 up to its maximum load. 

− F3: If F1 or F2 or F1 and F2 are broken-

down, then run F3 up to its maximum load. 

− GT: If F1, F2 and F3 are broken-down, 
then start the GT and run it up to its 
maximum load if it is waiting or let it 

operate at its chosen operating load if it is 
in operation. 

− AB: If F1, F2 and F3 are broken-down and 
the GT is broken-down or has broken down 

when started, then start the AB and run it up 
to its maximum load if it is waiting or let it 

operate at its chosen operating load if it is 
in operation. 

 6.2  Numerical results 

Figure 3 shows the results of the influence 

of availability on the overall costs (Ctpn) with 

respect to the number of furnaces in redundance. 

Although this particular example does not result 

from an optimization but a parametric sensitivity 

study, it illustrates quite well that without an 

availability analysis: 

− the overall costs are far from their exact 
value; 

− the optimal structure would not be the right 

one. 

1 furnace 2 furnaces 3 furnaces

222

230

240

Ctpn

(CHF/ton)

With availability analysis

Without availability analysis

 

 Figure 3.  Influence of availability analysis and 

redundancy on the overall costs of a waste in-

cineration power plant with cogeneration and a 

topping-cycle. 

Figures 4 and 5 show detailed results of the avail-

ability analysis for the global optimum solution of 

the application presented in Part I (Olsommer et 

al., 1999). This solution is composed of only one 

furnace (F1), the gas turbine (GT) and the auxiliary 

boiler (AB). Figures 4a,b show the Markov graphs 

and their associated asymptotic probabilities for 

the optimal system of each sequence. Looking at 

Tables VIII, IX in Part I (Olsommer et al., 1999), 

it can easily be shown that the only event for which 

the heat demand cannot be fulfilled is the one when 

all the equipment is broken-down (event "1"). In 

both cases (see Fig. 4a,b), the DH availability 

constraint is never violated (Fig. 4a: ADH = 1 – 

1.8e-5 ≥ 0.999; Fig. 4b: ADH = 1 – 4.1e-5 ≥ 0.999). 

Note that events "1" and "2" of Fig. 4b represent 

the unavailability of a system composed only of the 

F1 and the GT in active redundancy. In this case, 

the constraints would have been violated (Fig. 4b: 

ADH = 1 – (4.1e-5+2.3e-3) < 0.999). This explains 

why the optimization chose the configuration with 

at least three steam sources.  

Figures 5a,b show a comparison of the opti-

mal costs at the structural and operational levels 

with and without availability analysis8. At the 

structural level, the costs (Ctpn) are underestimated 

by more than 18 CHF/ton. At the operational level, 

the error is between 5 % and 10 %. 

7. Conclusion 

 In the context of system integration, a com-

prehensive reliability and/or availability analysis 

leads to a more realistic evaluation of the perform-

ance, flows and costs of a given system by ac-

counting for all possible intermediate events. The 

method developed and presented in this paper can 

be easily implemented on a computer and used in 

an optimization procedure. It permits one to treat 

systems with multiple events (6 in this case) with 

the number of mathematical operations identical to 

a procedure for a system with only two events. 

With realistic assumptions, this method can deal 

with complex systems with a flexible structure in 

time and composed of equipment placed in series 

and/or in parallel and in active and/or passive 

redundance. 

Results show that the availability analysis has 

a significant influence on both structural and op-

erational decisions and that neglecting such a com-

prehensive analysis can lead to important errors. 

                                                                 
8 Note that the results without availability analysis are based 

on the same optimal independent structural and operational 

variable sets (w, x) as those with availability analysis. 
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 (a) F1 and GT active, AB in passive redun-

dance (sequences 2,3,4,5,6,8,9,11,12). 
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 (b) F1, GT and AB in active redundance 

(sequences 1,7,10). 

 Figure 4.  Optimal solution: Markov graphs and asymptotic probabilities (Πi(∞)) for each of the 

K=12 sequences of the application (see Part I (Olsommer et al., 1999)). 
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(a) Structural level (L1): objective function (Ctpn). (b) Operational level (L2): objective function ( kC& ). 

Figure 5.  Optimal solution: Influence of availability analysis on the costs. 

Nomenclature 

A availability (-) 

A transition rate matrix 

aij transition rate of matrix A 

AB auxiliary boiler 

C aero-condenser 

C cost 

CHF Swiss Franc 

DH heat exchanger for district heating 

E entity 

F furnace plus steam generator 

FB binary events table 

FE integer events table 

GT gas turbine 

H "number of ones" in #B 

I,i Number, index of event(s) 

i index for origin 

j index for summit 

K, k number, index of sequence(s) 

K , k number, index of equipment 

M mid-season 

M maintainability (-) 

N maximum number of pieces of equip-

ment in the superconfiguration 

P probability(-) 

Q random variable 

R reliability (-) 

S summer 

T turbine 

t time (s) 

V summit, event 

W winter 

w structural (synthesis-design) independ-

ent variable set  

x operational independent variable set 

#B binary representation of a binary event 

#D decimal number 

#E integer representation of an integer 

event 

→ edge 

Greek Symbols 

Φ& , Φ  flux, quantity 

λ operating failure rate (1/s) 

λs stopped failure rate (1/s) 

γ start-up failure rate (-) 

µ repair rate (1/s) 

τ transition rate  
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Subscripts and Superscripts 

B binary  

E integer 

tpn total present net 

^ estimator 
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