\int_{1}^{1} Hacettepe Journal of Mathematics and Statistics

 η Volume 44 (6) (2015), 1391 – 1395

On M_1 - and M_3 -properties in the setting of ordered topological spaces

Hans-Peter A. Künzi^{*} and Zechariah Mushaandja^{†‡}

Abstract

In 1961, J. G. Ceder [3] introduced and studied classes of topological spaces called M_i -spaces (i = 1, 2, 3) and established that $metrizable \Rightarrow M_1 \Rightarrow M_2 \Rightarrow M_3$. He then asked whether these implications are reversible. Gruenhage [5] and Junnila [8] independently showed that $M_3 \Rightarrow M_2$. In this paper, we investigate the M_1 - and M_3 - properties in the setting of ordered topological spaces. Among other results, we show that if (X, \mathcal{T}, \leq) is an M_1 ordered topological C- and I-space then the bitopological space $(X, \mathcal{T}^{\natural}, \mathcal{T}^{\flat})$ is pairwise M_1 . Here, $\mathcal{T}^{\natural} := \{U \in \mathcal{T} \mid U \text{ is an upper set}\}$ and $\mathcal{T}^{\flat} := \{L \in \mathcal{T} \mid L \text{ is a lower set}\}$.

Keywords: C-space, I-space, closure-preserving, (pairwise) M_1 , (pairwise) stratifiable

2000 AMS Classification: 54E20, 54E35, 54E55, 54F05.

Received: 21.01.2014 Accepted: 21.11.2014 Doi: 10.15672/HJMS.2015449680

^{*}Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa

Email : hans-peter.kunzi@uct.ac.za

[†]Department of Mathematical and Statistical Sciences, Botswana International University of Science and Technology (BIUST), Private Bag 16, Palapye, Botswana

 $Email: {\tt mushaandjaz@biust.ac.bw}$

Partially supported by the South African Research Foundation under grant FA2006022300009. $^{\ddagger}\mathrm{Corresponding}$ Author.

1. Introduction

It is a well-known fact that σ -locally finite collections are σ -closure-preserving (see [5] or [15]). Thus the characterization of metrizable spaces by Bing-Nagata-Smirnov [15, Theorem 23.9] in terms of σ -locally finite bases motivated Ceder to study spaces with σ -closure preserving bases. In his paper [3], Ceder gave examples of non-metrizable M_1 -spaces and got researchers on their feet by asking whether the implications $M_1 \Rightarrow M_2 \Rightarrow M_3$ are reversible. See the definitions of these concepts at the bottom of the preliminaries section below. Many researchers have worked on this problem and have produced a number of partial results but, as far as we know, no general solution yet. In 1966, C. J. R. Borges [1] reviewed Ceder's work on M_3 -spaces and improved some of his results, and he generally illustrated the importance of M_3 -spaces and thus renamed them stratifiable spaces. In 1973, following Ceder's efforts [3, Theorem 7.6, p. 117], F. G. Slaughter, Jr established that if f is a closed continuous mapping from a metric space X onto a topological space Y then Y is an M_1 -space [14].

2. Preliminaries

Following Priestley [13], we denote the intersection of all lower sets containing a subset S of an ordered set X by d(S). Dually, the intersection of all upper sets containing S is denoted by i(S). Then we say that an ordered topological space (X, \mathcal{T}, \leq) is a C-space if d(F) and i(F) are closed whenever F is a closed subset of X. Similarly, (X, \mathcal{T}, \leq) is called an I-space if d(G) and i(G) are open whenever G is an open subset of X. A collection \mathcal{B} of subsets of a topological space (X, \mathcal{T}) is said to be \mathcal{T} -closure-preserving if for each subcollection $\mathcal{B}' \subseteq \mathcal{B}$, we have $\bigcup_{B \in \mathcal{B}'} \overline{B} = \bigcup_{B \in \mathcal{B}'} \overline{B}$. For brevity, we are going to refer to bitopological spaces as bispaces. A bispace $(X, \mathcal{T}_1, \mathcal{T}_2)$

For brevity, we are going to refer to bitopological spaces as bispaces. A bispace $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is said to be \mathfrak{T}_1 -regular with respect to \mathfrak{T}_2 [§] if and only if for each point $x \in X$ and each \mathfrak{T}_1 -closed set F with $x \notin F$, there are a \mathfrak{T}_1 -open set U and a \mathfrak{T}_2 -open set V such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$. Similarly, a bispace $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is said to be \mathfrak{T}_2 -regular with respect to \mathfrak{T}_1 if and only if for each point $x \in X$ and each \mathfrak{T}_2 -closed set F with $x \notin F$, there are a \mathfrak{T}_2 -open set V such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$. Similarly, a bispace $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is said to be \mathfrak{T}_2 -regular with respect to \mathfrak{T}_1 if and only if for each point $x \in X$ and each \mathfrak{T}_2 -closed set F with $x \notin F$, there are a \mathfrak{T}_2 -open set U and a \mathfrak{T}_1 -open set V such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$. We say that a bispace $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is pairwise regular if and only if it is both \mathfrak{T}_1 -regular with respect to \mathfrak{T}_2 and \mathfrak{T}_2 -regular with respect to \mathfrak{T}_1 . We define \mathfrak{T}^{\ddagger} and \mathfrak{T}^{\flat} like this: $\mathfrak{T}^{\ddagger} := \{U \in \mathfrak{T} \mid U$ is an upper set $\}$ and $\mathfrak{T}^{\flat} := \{L \in \mathfrak{T} \mid L$ is a lower set $\}$.

Let \mathcal{J} be the Euclidean topology on the unit interval [0,1], carrying its usual order. A bispace $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is *pairwise completely regular* if and only if for each $x \in X$ and each \mathfrak{T}_1 -closed set F with $x \notin F$, there exists a bicontinuous function $f: (X, \mathfrak{T}_1, \mathfrak{T}_2) \to ([0,1], \mathcal{J}^{\natural}, \mathcal{J}^{\flat})$ such that f(x) = 1 and $f(F) = \{0\}$; and for each \mathfrak{T}_2 -closed set Q with $x \notin Q$, there exists a bicontinuous function $g: (X, \mathfrak{T}_1, \mathfrak{T}_2) \to ([0,1], \mathcal{J}^{\natural}, \mathcal{J}^{\flat})$ such that g(x) = 0 and $g(Q) = \{1\}$ (see [9]).

Furthermore, recall that a topological space X is called an M_1 -space if it is regular and has a σ -closure preserving base. In a bispace setting we follow Gutierrez and Romaguera [6] and say that a bispace $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is \mathfrak{T}_1 - M_1 with respect to \mathfrak{T}_2 if and only if it is \mathfrak{T}_1 regular with respect to \mathfrak{T}_2 and there exists a base of \mathfrak{T}_1 which is \mathfrak{T}_2 - σ -closure preserving. A \mathfrak{T}_2 - M_1 with respect to \mathfrak{T}_1 bispace is defined similarly. Then a bispace $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is said to be pairwise M_1 if and only if it is both \mathfrak{T}_1 - M_1 with respect to \mathfrak{T}_2 and \mathfrak{T}_2 - M_1 with respect to \mathfrak{T}_1 .

1392

[§]Alternatively, some authors say that in the bispace $(X, \mathfrak{T}_1, \mathfrak{T}_2)$, the topology \mathfrak{T}_1 is regular with respect to \mathfrak{T}_2 whenever the condition given above holds.

We also need the notion of stratifiability. A bispace $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is said to be *pairwise* semi-stratifiable if and only if for each \mathfrak{T}_i -closed set $F \subseteq X$ there exists a sequence of \mathfrak{T}_j -open sets $(F_n)_{n \in \mathbb{N}}$ satisfying the following two conditions $(i, j \in \{1, 2\} \text{ and } i \neq j)$: (i) If $F \subseteq K$ then $F_n \subseteq K_n$ for all $n \in \mathbb{N}$; (ii) $F = \bigcap_{n=1}^{\infty} F_n$. If, in addition, we also have (iii) $F = \bigcap_{n=1}^{\infty} cl_{\mathfrak{T}_i}F_n$, then $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is said to be *pairwise stratifiable*. It has been established that a bispace is pairwise M_3 if and only if it is pairwise stratifiable [6, Proposition 1(b)]. Hence the terms pairwise stratifiable and pairwise M_3 shall be used exchangeably below.

3. Closure-Preserving Collections

In this section we prove some facts about closure-preserving collections which are interesting in their own right, and we will apply them in the next section. As usual, \overline{A} and $cl_{\mathcal{T}^{\sharp}}A$ denote the closure of A in (X, \mathcal{T}) , and in \mathcal{T}^{\sharp} respectively.

1. Lemma. If (X, \mathcal{T}, \leq) is an ordered topological *C*-space and $A \subseteq X$ then $cl_{\mathcal{T}^{\natural}}A = d(\overline{A}) = d(\overline{d(A)}).$

Proof. Let A be a subset of an ordered topological C-space (X, \mathfrak{T}, \leq) . Then $d(\overline{A})$ is closed. Since $A \subseteq \overline{A} \subseteq d(\overline{A})$, $A \subseteq d(\overline{A})$. Then we have

$$d(\overline{A}) \subseteq d(\overline{d(A)}) \subseteq cl_{\mathfrak{I}^{\natural}} \left(cl_{\mathfrak{I}^{\natural}}(cl_{\mathfrak{I}^{\natural}}(A)) \right) = cl_{\mathfrak{I}^{\natural}}(A) \subseteq cl_{\mathfrak{I}^{\natural}}(d(\overline{A})) = d(\overline{A}),$$

the last equality because $d(\overline{A})$ is a closed lower set given that X is a C-space. Therefore the result holds.

A similar argument proves the following:

2. Lemma. If (X, \mathfrak{T}, \leq) is an ordered topological *C*-space and $A \subseteq X$ then $cl_{\mathfrak{T}^{\flat}}A = i(\overline{A}) = i(\overline{i(A)}).$

1. Proposition. If (X, \mathfrak{T}, \leq) is an ordered topological *C*- and *I*-space and \mathcal{B} is an open and closure-preserving collection in (X, \mathfrak{T}) then $\mathcal{B}_d = \{d(B) \mid B \in \mathcal{B}\}$ is an open collection in $(X, \mathfrak{T}^{\flat})$ which is closure-preserving in $(X, \mathfrak{T}^{\flat})$.

Proof. Suppose (X, \mathfrak{T}, \leq) is an ordered topological C- and I-space. Let \mathfrak{B} be an open and closure-preserving collection in (X, \mathfrak{T}) . Since X is an I-space, d(B) is an open lower set for each $B \in \mathfrak{B}$. Hence \mathfrak{B}_d is open in $(X, \mathfrak{T}^{\flat})$. It remains to show that \mathfrak{B}_d is closure-preserving in $(X, \mathfrak{T}^{\flat})$. Note that the operator d commutes with set union. Let $\mathfrak{B}' \subseteq \mathfrak{B}$. Then by Lemma 1, we get

$$cl_{\mathfrak{T}^{\natural}}\left(\bigcup_{B\in\mathfrak{B}'}d(B)\right) = d\left(\overline{\bigcup_{B\in\mathfrak{B}'}d(B)}\right) = d\left(\overline{d(\bigcup_{B\in\mathfrak{B}'}B)}\right) = d\left(\overline{\bigcup_{B\in\mathfrak{B}'}B}\right)$$
$$= d\left(\bigcup_{B\in\mathfrak{B}'}\overline{B}\right) = \bigcup_{B\in\mathfrak{B}'}d(\overline{B}) = \bigcup_{B\in\mathfrak{B}'}d(\overline{d(B)}) = \bigcup_{B\in\mathfrak{B}'}cl_{\mathfrak{T}^{\natural}}d(B). \text{ So,}$$

$$cl_{\mathfrak{T}^{\natural}}(\bigcup_{B\in\mathfrak{B}'}d(B))=\bigcup_{B\in\mathfrak{B}'}cl_{\mathfrak{T}^{\natural}}d(B). \text{ Hence } \mathfrak{B}_d \text{ is closure-preserving in } (X,\mathfrak{T}^{\natural}).$$

Similarly, the following result emerges.

2. Proposition. If (X, \mathfrak{T}, \leq) is an ordered topological *C*- and *I*-space and \mathcal{B} is an open and closure-preserving collection in (X, \mathfrak{T}) then $\mathcal{B}_i = \{i(B) | B \in \mathcal{B}\}$ is an open collection in $(X, \mathfrak{T}^{\natural})$ which is closure-preserving in $(X, \mathfrak{T}^{\flat})$.

4. On Pairwise M_1 - versus Pairwise M_3 - (Stratifiable) Bispaces

In 1986, A. Gutierrez and S. Romaguera [6] introduced the concepts of pairwise M_i -spaces into the theory of bispaces as a generalization of Ceder's M_i -spaces (i=1,2,3). We recall the following nice result.

3. Proposition. ([10]) If (X, \mathcal{T}, \leq) is a stratifiable ordered topological C-space then the bispace $(X, \mathcal{T}^{\ddagger}, \mathcal{T}^{\flat})$ is pairwise stratifiable.

The reader is referred to [7] for the definition and basic properties of monotonically normal spaces. For these in the bispace setting, see [12]. It is known that a (bi) space is (pairwise) stratifiable if and only if it is (pairwise) semi-stratifiable and (pairwise) monotonically normal. K. Li and F. Lin showed that one can relax the assumption of the above proposition and obtain:

4. Proposition. ([11]) If (X, \mathcal{T}, \leq) is a monotonically normal ordered topological C-space then the bispace $(X, \mathcal{T}^{\natural}, \mathcal{T}^{\flat})$ is pairwise monotonically normal.

We are now ready to present the following observation.

1. Theorem. If (X, \mathcal{T}, \leq) is an M_1 ordered topological C- and I-space then the bispace $(X, \mathcal{T}^{\natural}, \mathcal{T}^{\flat})$ is pairwise M_1 .

Proof. Let (X, \mathfrak{T}, \leq) be an M_1 ordered topological C- and I-space. We first show that $(X, \mathfrak{T}^{\natural}, \mathfrak{T}^{\flat})$ is pairwise regular. Let $x \in X$, and $F \subseteq X$ be a closed lower set such that $x \notin F$. Then $G := X \setminus F$ is a open neighbourhood of x. Since (X, \mathfrak{T}, \leq) is M_1 , it is regular. Hence there exists an open neighbourhood H of x such that $\overline{H} \subseteq G$. Since X is an I-space, the upper set U = i(H) is an open neighbourhood of x. By Lemma 2, we have

$$\overline{U} = \overline{i(H)} \subseteq i(\overline{i(H)}) = i(\overline{H}) \subseteq i(G) = G.$$

Since X is a C-space, $i(\overline{H})$ is closed and hence $V := X \setminus i(\overline{H})$ is an open lower set containing F and $U \cap V = \emptyset$. Thus the bispace $(X, \mathcal{T}^{\natural}, \mathcal{T}^{\flat})$ is \mathcal{T}^{\natural} -regular with respect to \mathcal{T}^{\flat} . Similarly, one can easily show that $(X, \mathcal{T}^{\natural}, \mathcal{T}^{\flat})$ is \mathcal{T}^{\flat} -regular with respect to \mathcal{T}^{\natural} and hence pairwise regular. Since (X, \mathcal{T}, \leq) is an M_1 -space, \mathcal{T} has a σ -closure-preserving base, say \mathcal{B} . Let $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ where each \mathcal{B}_n is a \mathcal{T} -closure-preserving subcollection of \mathcal{B} . Now we need to produce σ -closure-preserving bases for \mathcal{T}^{\natural} and \mathcal{T}^{\flat} . Let $\mathcal{D}_n = \{d(B) \mid B \in \mathcal{B}_n\}$ and put $\mathcal{D} = \bigcup_{n \in \mathbb{N}} \mathcal{D}_n$. Then \mathcal{D} is a base for \mathcal{T}^{\flat} which is, by Proposition 1, σ -closure-

preserving in \mathcal{I}^{\natural} . Similarly, let $\mathcal{I}_n = \{i(B) \mid B \in \mathcal{B}_n\}$ and $\mathcal{I} = \bigcup_{n \in \mathbb{N}} \mathcal{I}_n$. Then \mathcal{I} is a base for

 \mathfrak{T}^{\sharp} which is, by Proposition 2, σ -closure-preserving in \mathfrak{T}^{\flat} . Hence the bispace $(X, \mathfrak{T}^{\sharp}, \mathfrak{T}^{\flat})$ is $\mathfrak{T}^{\sharp}-M_1$ with respect to \mathfrak{T}^{\flat} . Therefore $(X, \mathfrak{T}^{\sharp}, \mathfrak{T}^{\flat})$ is pairwise M_1 . \Box .

Since every pairwise M_1 -bispace is pairwise stratifiable [6], we get:

1. Corollary. If (X, \mathcal{T}, \leq) is an M_1 ordered topological C- and I-space then the bispace $(X, \mathcal{T}^{\natural}, \mathcal{T}^{\flat})$ is pairwise stratifiable. \Box

Finally, we briefly turn our minds to the following result involving countability. Recall that a bispace $(X, \mathcal{T}_1, \mathcal{T}_2)$ is doubly first countable if both topologies \mathcal{T}_1 and \mathcal{T}_2 are first countable (see for instance J. Deak [4]).

5. Proposition. ([10]) If (X, \mathcal{T}, \leq) is a first countable ordered topological *I*-space then $(X, \mathcal{T}^{\natural}, \mathcal{T}^{\flat})$ is doubly first countable.

1394

Since any metric space is first countable and stratifiable, the following fact follows immediately and it fits in here.

2. Corollary. If (X, \mathfrak{T}, \leq) is a metrizable ordered topological *C*- and *I*-space then $(X, \mathfrak{T}^{\natural}, \mathfrak{T}^{\flat})$ is pairwise M_1 (and thus pairwise stratifiable) and doubly first countable.

Remark. As mentioned in the introduction above, F. G. Slaughter, Jr showed that if f is a closed continuous mapping from a metric space X onto the space Y, then Y is an M_1 -space [14, Theorem 6]. It is therefore natural to wonder whether, in the same vein, the assumption of the above theorem can be relaxed without destroying the theorem in the sense that the bispace $(X, \mathcal{T}^{\natural}, \mathcal{T}^{\flat})$ is pairwise M_1 whenever (X, \mathcal{T}, \leq) is an M_1 ordered topological C-space.

Acknowledgement

The authors are grateful to the anonymous referee for a number of useful comments and suggestions. The corresponding author acknowledges support from BIUST.

References

- [1] Borges C. J. R., On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
- [2] Burgess D. C. J. and Fitzpatrick M., On separation axioms for certain types of ordered topological spaces, Math. Proc. Camb. Phil. Soc. 82 (1977), 59–65.
- [3] Ceder J. G., Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105–126.
- [4] J. Deák, Short notes on quasi-uniform spaces. II: Doubly uniformly strict extentions, Acta Math. Hungar. 69 (4) (1995), 347-357.
- [5] Gruenhage G., Stratifiable spaces are M_2 , Topology Proc. 1 (1976), 221–226.
- [6] Gutierrez A. and Romaguera S., On pairwise stratifiable spaces (in Spanish), Rev. Roumaine Math. Pures Appl. 31 (1986), 141–150.
- [7] Heath R. W., Lutzer D.J. and Zenor P.L., Monotonically normal spaces, Trans. Amer. Math. Soc. 178, (1973), 481-493.
- [8] Junnila H. J. K., Neighbornets, Pacific J. Math. 76 (1978), 83–108.
- [9] Künzi H.-P. A., Completely regular ordered spaces, Order 7 (1990), 283–293.
- [10] Künzi H.-P. A. and Mushaandja Z., Topological ordered C-(resp. I-) spaces and generalized metric spaces, Topology and its Applications 156, No. 18 (2009), 2914-2922.
- [11] Li K. and Lin F., On pairwise semi-stratifiable spaces, J. Math. Research with Appl. Vol 33, No. 5 (2013), 607-615.
- [12] Marín J. and Romaguera S., Pairwise monotonically normal spaces, Comment. Math. Univ. Carolinae 32, 3 (1991), 567–579.
- [13] Priestley H. A., Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507–530.
- [14] Slaughter Jr F. G., The closed image of a metrizable space is M_1 , Proc. Amer. Math. Soc. **37**, No. 1 (1973), 309–314.
- [15] Willard S., General Topology, Addison-Wesley Series in Mathematics, 1970.