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On M1- and M3-properties in the setting of ordered
topological spaces
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Abstract

In 1961, J. G. Ceder [3] introduced and studied classes of topological
spaces called Mi-spaces (i = 1, 2, 3) and established that metrizable⇒
M1 ⇒ M2 ⇒ M3. He then asked whether these implications are re-
versible. Gruenhage [5] and Junnila [8] independently showed that
M3 ⇒ M2. In this paper, we investigate the M1- and M3- prop-
erties in the setting of ordered topological spaces. Among other re-
sults, we show that if (X,T,≤) is an M1 ordered topological C- and
I-space then the bitopological space (X,T\,T[) is pairwise M1. Here,
T\ := {U ∈ T |U is an upper set} and T[ := {L ∈ T |L is a lower set}.
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1. Introduction
It is a well-known fact that σ-locally finite collections are σ-closure-preserving (see

[5] or [15]). Thus the characterization of metrizable spaces by Bing-Nagata-Smirnov
[15, Theorem 23.9] in terms of σ-locally finite bases motivated Ceder to study spaces
with σ-closure preserving bases. In his paper [3], Ceder gave examples of non-metrizable
M1-spaces and got researchers on their feet by asking whether the implications M1 ⇒
M2 ⇒ M3 are reversible. See the definitions of these concepts at the bottom of the
preliminaries section below. Many researchers have worked on this problem and have
produced a number of partial results but, as far as we know, no general solution yet.
In 1966, C. J. R. Borges [1] reviewed Ceder’s work on M3-spaces and improved some of
his results, and he generally illustrated the importance of M3-spaces and thus renamed
them stratifiable spaces. In 1973, following Ceder’s efforts [3, Theorem 7.6, p. 117], F.
G. Slaughter, Jr established that if f is a closed continuous mapping from a metric space
X onto a topological space Y then Y is an M1-space [14].

2. Preliminaries
Following Priestley [13], we denote the intersection of all lower sets containing a subset

S of an ordered set X by d(S). Dually, the intersection of all upper sets containing S is
denoted by i(S). Then we say that an ordered topological space (X,T,≤) is a C-space if
d(F ) and i(F ) are closed whenever F is a closed subset of X. Similarly, (X,T,≤) is called
an I-space if d(G) and i(G) are open whenever G is an open subset of X. A collection
B of subsets of a topological space (X,T) is said to be T-closure-preserving if for each
subcollection B′ ⊆ B, we have

⋃
B∈B′

B =
⋃

B∈B′
B.

For brevity, we are going to refer to bitopological spaces as bispaces. A bispace (X,T1,T2)
is said to be T1-regular with respect to T2

§ if and only if for each point x ∈ X and each
T1-closed set F with x /∈ F , there are a T1-open set U and a T2-open set V such that
x ∈ U, F ⊆ V and U ∩ V = ∅. Similarly, a bispace (X,T1,T2) is said to be T2-regular
with respect to T1 if and only if for each point x ∈ X and each T2-closed set F with
x /∈ F , there are a T2-open set U and a T1-open set V such that x ∈ U, F ⊆ V and
U ∩ V = ∅. We say that a bispace (X,T1,T2) is pairwise regular if and only if it is both
T1-regular with respect to T2 and T2-regular with respect to T1. We define T\ and T[ like
this: T\ := {U ∈ T |U is an upper set} and T[ := {L ∈ T |L is a lower set}.
Let J be the Euclidean topology on the unit interval [0, 1], carrying its usual order.
A bispace (X,T1,T2) is pairwise completely regular if and only if for each x ∈ X and
each T1-closed set F with x /∈ F , there exists a bicontinuous function f : (X,T1,T2) →
([0, 1], J\, J[) such that f(x) = 1 and f(F ) = {0}; and for each T2-closed set Q with
x /∈ Q, there exists a bicontinuous function g : (X,T1,T2) → ([0, 1], J\, J[) such that
g(x) = 0 and g(Q) = {1} (see [9]).

Furthermore, recall that a topological space X is called an M1-space if it is regular and
has a σ-closure preserving base. In a bispace setting we follow Gutierrez and Romaguera
[6] and say that a bispace (X,T1,T2) is T1-M1 with respect to T2 if and only if it is T1-
regular with respect to T2 and there exists a base of T1 which is T2-σ-closure preserving.
A T2-M1 with respect to T1 bispace is defined similarly. Then a bispace (X,T1,T2) is
said to be pairwise M1 if and only if it is both T1-M1 with respect to T2 and T2-M1 with
respect to T1.

§Alternatively, some authors say that in the bispace (X, T1, T2), the topology T1 is regular
with respect to T2 whenever the condition given above holds.
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We also need the notion of stratifiability. A bispace (X,T1,T2) is said to be pairwise
semi-stratifiable if and only if for each Ti-closed set F ⊆ X there exists a sequence of
Tj-open sets (Fn)n∈N satisfying the following two conditions ( i, j ∈ {1, 2} and i 6= j ):
(i) If F ⊆ K then Fn ⊆ Kn for all n ∈ N ; (ii) F =

⋂∞
n=1 Fn. If, in addition, we also

have (iii) F =
⋂∞

n=1 clTiFn, then (X,T1,T2) is said to be pairwise stratifiable. It has
been established that a bispace is pairwise M3 if and only if it is pairwise stratifiable [6,
Proposition 1(b)]. Hence the terms pairwise stratifiable and pairwise M3 shall be used
exchangeably below.

3. Closure-Preserving Collections
In this section we prove some facts about closure-preserving collections which are

interesting in their own right, and we will apply them in the next section. As usual, A
and clT\A denote the closure of A in (X,T), and in T\ respectively.

1. Lemma. If (X,T,≤) is an ordered topological C-space and A ⊆ X then
clT\A = d(A) = d(d(A)).

Proof. Let A be a subset of an ordered topological C-space (X,T,≤). Then d(A) is
closed. Since A ⊆ A ⊆ d(A), A ⊆ d(A). Then we have

d(A) ⊆ d(d(A)) ⊆ clT\ (clT\(clT\(A))) = clT\(A) ⊆ clT\(d(A)) = d(A),

the last equality because d(A) is a closed lower set given that X is a C-space. Therefore
the result holds. 2

A similar argument proves the following:

2. Lemma. If (X,T,≤) is an ordered topological C-space and A ⊆ X then
clT[A = i(A) = i(i(A)). 2

1. Proposition. If (X,T,≤) is an ordered topological C- and I-space and B is an open
and closure-preserving collection in (X,T) then Bd = {d(B) |B ∈ B} is an open collection
in (X,T[) which is closure-preserving in (X,T\).

Proof. Suppose (X,T,≤) is an ordered topological C- and I-space. Let B be an
open and closure-preserving collection in (X,T). Since X is an I-space, d(B) is an open
lower set for each B ∈ B. Hence Bd is open in (X,T[). It remains to show that Bd is
closure-preserving in (X,T\). Note that the operator d commutes with set union. Let
B′ ⊆ B. Then by Lemma 1, we get

clT\

( ⋃
B∈B′

d(B)

)
= d

( ⋃
B∈B′

d(B)

)
= d

(
d(
⋃

B∈B′
B)

)
= d

( ⋃
B∈B′

B

)

= d

( ⋃
B∈B′

B

)
=

⋃
B∈B′

d(B) =
⋃

B∈B′
d(d(B)) =

⋃
B∈B′

clT\d(B). So,

clT\(
⋃

B∈B′
d(B)) =

⋃
B∈B′

clT\d(B). Hence Bd is closure-preserving in (X,T\). 2

Similarly, the following result emerges.

2. Proposition. If (X,T,≤) is an ordered topological C- and I-space and B is an open
and closure-preserving collection in (X,T) then Bi = {i(B) |B ∈ B} is an open collection
in (X,T\) which is closure-preserving in (X,T[). 2
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4. On Pairwise M1- versus Pairwise M3- (Stratifiable) Bispaces
In 1986, A. Gutierrez and S. Romaguera [6] introduced the concepts of pairwise Mi-

spaces into the theory of bispaces as a generalization of Ceder’s Mi-spaces (i=1,2,3).
We recall the following nice result.

3. Proposition. ([10]) If (X,T,≤) is a stratifiable ordered topological C-space then the
bispace (X,T\,T[) is pairwise stratifiable. 2

The reader is referred to [7] for the definition and basic properties of monotonically
normal spaces. For these in the bispace setting, see [12]. It is known that a (bi) space
is (pairwise) stratifiable if and only if it is (pairwise) semi-stratifiable and (pairwise)
monotonically normal. K. Li and F. Lin showed that one can relax the assumption of
the above proposition and obtain:

4. Proposition. ([11]) If (X,T,≤) is a monotonically normal ordered topological C-
space then the bispace (X,T\,T[) is pairwise monotonically normal. 2

We are now ready to present the following observation.

1. Theorem. If (X,T,≤) is an M1 ordered topological C- and I-space then the bispace
(X,T\,T[) is pairwise M1.

Proof. Let (X,T,≤) be an M1 ordered topological C- and I-space. We first show
that (X,T\,T[) is pairwise regular. Let x ∈ X, and F ⊆ X be a closed lower set such
that x /∈ F . Then G := X \ F is a open neighbourhood of x. Since (X,T,≤) is M1, it is
regular. Hence there exists an open neighbourhood H of x such that H ⊆ G. Since X
is an I-space, the upper set U = i(H) is an open neighbourhood of x. By Lemma 2, we
have

U = i(H) ⊆ i(i(H)) = i(H) ⊆ i(G) = G.

Since X is a C-space, i(H) is closed and hence V := X \ i(H) is an open lower set
containing F and U ∩ V = ∅. Thus the bispace (X,T\,T[) is T\-regular with respect to
T[. Similarly, one can easily show that (X,T\,T[) is T[-regular with respect to T\ and
hence pairwise regular. Since (X,T,≤) is anM1-space, T has a σ-closure-preserving base,
say B. Let B =

⋃
n∈N

Bn where each Bn is a T-closure-preserving subcollection of B. Now

we need to produce σ-closure-preserving bases for T\ and T[. Let Dn = {d(B) |B ∈ Bn }
and put D =

⋃
n∈N

Dn. Then D is a base for T[ which is, by Proposition 1, σ-closure-

preserving in T\. Similarly, let In = {i(B) |B ∈ Bn} and I =
⋃

n∈N
In. Then I is a base for

T\ which is, by Proposition 2, σ-closure-preserving in T[. Hence the bispace (X,T\,T[) is
T\-M1 with respect to T[ and T[-M1 with respect to T\. Therefore (X,T\,T[) is pairwise
M1. 2.

Since every pairwise M1-bispace is pairwise stratifiable [6], we get:

1. Corollary. If (X,T,≤) is an M1 ordered topological C- and I-space then the bispace
(X,T\,T[) is pairwise stratifiable. 2

Finally, we briefly turn our minds to the following result involving countability. Recall
that a bispace (X,T1,T2) is doubly first countable if both topologies T1 and T2 are first
countable (see for instance J. Deak [4]).

5. Proposition. ([10]) If (X,T,≤) is a first countable ordered topological I-space then
(X,T\,T[) is doubly first countable. 2
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Since any metric space is first countable and stratifiable, the following fact follows
immediately and it fits in here.

2. Corollary. If (X,T,≤) is a metrizable ordered topological C- and I-space then
(X,T\,T[) is pairwise M1 (and thus pairwise stratifiable) and doubly first countable.

2

Remark. As mentioned in the introduction above, F. G. Slaughter, Jr showed that if
f is a closed continuous mapping from a metric space X onto the space Y , then Y is an
M1-space [14, Theorem 6]. It is therefore natural to wonder whether, in the same vein,
the assumption of the above theorem can be relaxed without destroying the theorem in
the sense that the bispace (X,T\,T[) is pairwiseM1 whenever (X,T,≤) is anM1 ordered
topological C-space.
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