Some identities and recurrences relations for the q -Bernoulli and q-Euler polynomials

Veli Kurt*

Abstract

In this article we prove some relations between two-variable q-Bernoulli polynomials and two-variable q-Euler polynomials. By using the equality $e_{q}(z) E_{q}(-z)=1$, we give an identity for the two-variable q Genocchi polynomials. Also, we obtain an identity for the two-variable q-Bernoulli polynomials. Furthermore, we prove two theorems which are analogues of the q-extension Srivastava-Pinter additional theorem.

Keywords: Bernoulli numbers and polynomials, Euler numbers and polynomials, Genocchi polynomials, generating functions, generalized Bernoulli polynomials, generalized Genocchi polynomials, q-Bernoulli polynomials, q-Euler polynomials, q-Genocchi polynomials.
2000 AMS Classification: 11B68, 11B73.

Received: 24.10.2013 Accepted : 17.06.2014 Doi: 10.15672/HJMS.2015449681

1. Introduction Definition and Notation

The classical Bernoulli polynomials $B_{n}(x)$ and the classical Euler polynomials $E_{n}(x)$ are usually defined by means of the following generating functions;

$$
\frac{t}{e^{t}-1} e^{x t}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, \quad|t|<2 \pi
$$

and

$$
\frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}, \quad|t|<\pi
$$

respectively. The corresponding Bernoulli numbers B_{n} and Euler numbers E_{n} are given by

$$
B_{n}:=B_{n}(0)=(-1)^{n} B_{n}(1)=\left(2^{1-n}-1\right)^{-1} B_{n}\left(\frac{1}{2}\right)
$$

[^0]and
$$
E_{n}:=2^{n} E_{n}\left(\frac{1}{2}\right), \quad n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}
$$
respectively.
Many mathematicians investigated these polynomials in ([2]-[17]). They proved some theorems and gave some interesting recurrences relations. Firstly, Carlitz in [2] gave q-Bernoulli polynomials.

In this work we give some recurrences relations and properties for two-variable q Bernoulli polynomials and q-Euler polynomials.

Throughout this paper, we make use of the following notations; \mathbb{N} denotes the set of natural numbers, \mathbb{C} denotes the set of complex numbers and $q \in \mathbb{C}$ with $|q|<1$. The q-basic numbers and q-factorials are defined ([2], [7]-[15]) by

$$
\begin{aligned}
{[a]_{q} } & =\frac{1-q^{a}}{1-q}=1+q+\ldots+q^{a-1}, \quad(q \neq 1), \\
{[n]_{q}!} & =[n]_{q}[n-1]_{q} \ldots[2]_{q}[1]_{q},
\end{aligned}
$$

respectively, where $[0]_{q}!=1$ and $n \in \mathbb{N}, a \in \mathbb{C}$.
The q-binomial formula is defined ([8], [14]) by

$$
(x+y)_{q}^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{\frac{k(k-1)}{2}} x^{n-k} y^{k},
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the q-binomial coefficient (or Gaussian binomial coefficient) given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{n-k}(q ; q)_{k}}=\frac{[n]_{q}!}{[n-k]_{q}![k]_{q}!}
$$

The q-exponential functions are given ([1], [8], [12], [13]) by

$$
e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{[n]_{q}!}=\prod_{k=0}^{\infty} \frac{1}{\left(1-(1-q) q^{k} z\right)}, \quad 0<|q|<1, \quad|z|<\frac{1}{|1-q|}
$$

and

$$
E_{q}(z)=\sum_{n=0}^{\infty} q^{\binom{n}{2}} \frac{z^{n}}{[n]_{q}!}=\prod_{k=0}^{\infty}\left(1+(1-q) q^{k} z\right), \quad 0<|q|<1, \quad z \in \mathbb{C} .
$$

From the last equations, we can easliy see that $e_{q}(z) E_{q}(-z)=1$.
The Jack-derivative D_{q} is defined ([7], [10], [13], [14]) by

$$
D_{q} f(z)=\frac{f(q z)-f(z)}{q z-z}, \quad 0<|q|<1, \quad 0 \neq z \in \mathbb{C} .
$$

The derivative of the product of two functions and the derivative of the division of two functions are given by the following equations in [7], respectively.

$$
\begin{align*}
D_{q}\left(\frac{f(z)}{g(z)}\right) & =\frac{g(q z) D_{q} f(z)-f(q z) D_{q} g(z)}{g(z) g(q z)} \tag{1.1}\\
D_{q}(f(z) g(z)) & =f(q z) D_{q} g(z)+g(z) D_{q} f(z)
\end{align*}
$$

Carlitz was the first to extend the classical Bernoulli numbers and polynomials, Euler numbers and polynomials ([2], [3]). Cheon in [5] gave explicit expansions for the classical Bernoulli polynomials and the classical Euler polynomials. Srivastava et al [16] proved some formulae for the Bernoulli polynomials and the Euler polynomials. Also, they gave the addition-formulae between the Bernoulli polynomials and the Euler polynomials. There are numerous recent investigations on the q-Bernoulli polynomials and q-Euler
polynomials by many mathematicians, including as Cenkci et al [4], Choi et al [6], Kim ([8], [9]), Kim et al [10], Luo [11], Luo and Srivastava [12], Srivastava et al ([16], [17]), Tremblay et al [18] and Mahmudov ([13], [14]).

Mahmudov defined and studied properties of the following generalized q-Bernoulli polynomials $\mathfrak{B}_{n, q}^{(\alpha)}(x, y)$ of order α and q-Euler polynomials $\mathfrak{E}_{n, q}^{(\alpha)}(x, y)$ of order α as follows ([13], [14]).

Let $q \in \mathbb{C}, \alpha \in \mathbb{N}$ and $0<|q|<1$. The q-Bernoulli numbers $\mathfrak{B}_{n, q}^{(\alpha)}$ and polynomials $\mathfrak{B}_{n, q}^{(\alpha)}(x, y)$ in x, y of order α are defined by means of the generating functions:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)} \frac{t^{n}}{[n]_{q}!}=\left(\frac{t}{e_{q}(t)-1}\right)^{\alpha}, \quad|t|<2 \pi \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{t}{e_{q}(t)-1}\right)^{\alpha} e_{q}(x t) E_{q}(y t), \quad|t|<2 \pi . \tag{1.3}
\end{equation*}
$$

The q-Euler numbers $\mathfrak{E}_{n, q}^{(\alpha)}$ and polynomials $\mathfrak{E}_{n, q}^{(\alpha)}(x, y)$ in x, y of order α are defined by means of the generating functions:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathfrak{E}_{n, q}^{(\alpha)} \frac{t^{n}}{[n]_{q}!}=\left(\frac{2}{e_{q}(t)+1}\right)^{\alpha}, \quad|t|<\pi \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathfrak{E}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{2}{e_{q}(t)+1}\right)^{\alpha} e_{q}(x t) E_{q}(y t), \quad|t|<\pi . \tag{1.5}
\end{equation*}
$$

The q-Genocchi numbers $\mathfrak{G}_{n, q}^{(\alpha)}$ and polynomials $\mathfrak{G}_{n, q}^{(\alpha)}(x, y)$ in x, y of order α are defined by means of the generating functions:

$$
\sum_{n=0}^{\infty} \mathfrak{G}_{n, q}^{(\alpha)} \frac{t^{n}}{[n]_{q}!}=\left(\frac{2 t}{e_{q}(t)+1}\right)^{\alpha}, \quad|t|<\pi
$$

and

$$
\sum_{n=0}^{\infty} \mathfrak{G}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{2 t}{e_{q}(t)+1}\right)^{\alpha} e_{q}(x t) E_{q}(y t), \quad|t|<\pi
$$

It is obvious that

$$
\begin{aligned}
\lim _{q \rightarrow 1^{-}} \mathfrak{B}_{n, q}^{(\alpha)}(x, y) & =B_{n}^{(\alpha)}(x+y) \\
\lim _{q \rightarrow 1^{-}} \mathfrak{E}_{n, q}^{(\alpha)}(x, y) & =E_{n}^{(\alpha)}(x+y), \\
\lim _{q \rightarrow 1^{-}} \mathfrak{G}_{n, q}^{(\alpha)}(x, y) & =G_{n}^{(\alpha)}(x+y)
\end{aligned}
$$

and

$$
\begin{aligned}
D_{q, x}^{(\alpha)} \mathfrak{B}_{n, q}(x, y) & =[n]_{q} \mathfrak{B}_{n-1, q}^{(\alpha)}(x, y), \quad D_{q, y} \mathfrak{B}_{n, q}^{(\alpha)}(x, y)=[n]_{q} \mathfrak{B}_{n-1, q}^{(\alpha)}(x, q y), \\
D_{q, t} e_{q}(x t) & =x e_{q}(x t), \quad D_{q, t} E_{q}(y t)=y E_{q}(q y t) .
\end{aligned}
$$

2. Main Theorems

In this section, we give some relations for q-Bernoulli polynomials $\mathfrak{B}_{n, q}^{(\alpha)}(x, y)$ and q-Euler polynomials $\mathfrak{E}_{n, q}^{(\alpha)}(x, y)$. By applying the derivative operator to q-Bernoulli polynomials and q-Euler polynomials, we have recurrences relations for these polynomials.
2.1. Proposition. The generalized q-Bernoulli polynomials satisfy the following relation.

$$
\sum_{l=0}^{n}\left[\begin{array}{c}
n \tag{2.1}\\
l
\end{array}\right]_{q} \mathfrak{B}_{n-l, q}^{(\alpha)}(x, y)-\mathfrak{B}_{n, q}^{(\alpha)}(x, y)=[n]_{q} \mathfrak{B}_{n-1, q}^{(\alpha-1)}(x, y)
$$

Proof. From (1.3), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!} & =\left(\frac{t}{e_{q}(t)-1}\right)^{\alpha} e_{q}(x t) E_{q}(y t) \\
\sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!}\left(e_{q}(t)-1\right) & =t\left(\frac{t}{e_{q}(t)-1}\right)^{\alpha-1} e_{q}(x t) E_{q}(y t) \\
\sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} \frac{t^{n}}{[n]_{q}!}-\sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!} & =t \sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!} .
\end{aligned}
$$

By using Cauchy product and comparing the coefficient of $\frac{t^{n}}{[n]_{q}!}$ we have (2.1).
The following equations can be obtained easily from (1.2)-(1.5).

$$
\begin{align*}
\mathfrak{B}_{n, q}^{(\alpha-\beta)}(x, y) & =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \mathfrak{B}_{k, q}^{(\alpha-\beta)}(0,0)(x+y)_{q}^{n-k}, \tag{2.2}\\
\mathfrak{B}_{n, q}^{(\alpha-\beta)}(x, y) & =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \mathfrak{B}_{k, q}^{(\alpha)}(x, 0) \mathfrak{B}_{n-k, q}^{(-\beta)}(0, y), \tag{2.3}\\
(x+y)_{q}^{n} & =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \mathfrak{E}_{n-k, q}^{(\alpha)}(x, y) \mathfrak{E}_{k, q}^{(-\alpha)}(0,0), \tag{2.4}\\
2 \mathfrak{E}_{n, q}^{(\alpha-1)}(x, y) & =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \mathfrak{E}_{n-k, q}^{(\alpha)}(x, y)+\mathfrak{E}_{n, q}^{(\alpha)}(x, y), \tag{2.5}
\end{align*}
$$

where $\alpha, \beta \in \mathbb{N}$.
2.2. Theorem. The generalized q-Bernoulli polynomials satisfy the following recurrence relation.

$$
\begin{align*}
\mathfrak{B}_{n+1, q}(x, y)= & \mathfrak{B}_{n, q}(x, y)+[n+1]_{q}\left\{q y \mathfrak{B}_{n, q}(q x, y)+q x \mathfrak{B}_{n, q}(x, y)\right\} \tag{2.6}\\
& -\sum_{k=0}^{n+1}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{q} \mathfrak{B}_{k, q}(x, y) q^{k} \mathfrak{B}_{n+1-k, q}(1,0) .
\end{align*}
$$

Proof. In (1.3), for $\alpha=1$, we take the q-Jackson derivative of the generalized q-Bernoulli polynomials $\mathfrak{B}_{n, q}(x, y)$ according to t, then we have

$$
\sum_{n=0}^{\infty} D_{q, t} \mathfrak{B}_{n, q}(x, y) \frac{t^{n}}{[n]_{q}!}=D_{q, t}\left(\frac{t e_{q}(x t) E_{q}(y t)}{e_{q}(t)-1}\right)
$$

By using the equalities (1.1) in the last expression we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} D_{q, t} \mathfrak{B}_{n, q}(x, y) \frac{t^{n}}{[n]_{q}!} \\
& \quad=\frac{\left(e_{q}(q x t)-1\right) D_{q, t}\left[t e_{q}(x t) E_{q}(y t)\right]-q t e_{q}(q x t) E_{q}(q y t) D_{q, t}\left[e_{q}(t)-1\right]}{\left(e_{q}(t)-1\right)\left(e_{q}(q t)-1\right)}, \\
& \sum_{n=0}^{\infty} \frac{1}{[n+1]_{q}} \mathfrak{B}_{n+1, q}(x, y) \frac{t^{n}}{[n]_{q}!}=\sum_{n=0}^{\infty} q y \mathfrak{B}_{n, q}(q x, q y)+q x \mathfrak{B}_{n, q}(x, y) \frac{t^{n}}{[n]_{q}!} \\
& \quad+\frac{1}{[n+1]_{q}}\left\{\mathfrak{B}_{n, q}(x, y)+\sum_{k=0}^{n+1}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{q} \mathfrak{B}_{k, q}(x, y) q^{k} \mathfrak{B}_{n+1-k, q}(1,0) \frac{t^{n}}{[n]_{q}!}\right\} .
\end{aligned}
$$

Comparing the coefficient of $\frac{t^{n}}{[n]_{q}!}$ we obtain (2.6).
2.3. Theorem. The generalized q-Euler polynomials $\mathfrak{E}_{n, q}(x, y)$ satisfy the following relation.

$$
\begin{aligned}
\mathfrak{E}_{n+1, q}(x, y) & =[n+1]_{q} \\
& \times\left\{y \mathfrak{E}_{n, q}(q x, q y)+x \mathfrak{E}_{n, q}(x, y)-\frac{1}{4} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \mathfrak{E}_{k, q}(x, y) q^{k} \mathfrak{E}_{n-k, q}(1,0)\right\}
\end{aligned}
$$

Proof. In (1.5), for $\alpha=1$, by using the equalities (1.1), the proof can be obtained.
2.4. Theorem. There is the following relation.

$$
\mathfrak{B}_{n, q}^{(\alpha)}(x, y)=\frac{m^{-n}}{[n+1]_{q}} \sum_{k=0}^{n+1}\left[\begin{array}{c}
n+1 \tag{2.7}\\
k
\end{array}\right]_{q}\left\{\left[\mathfrak{B}_{k, q}^{(\alpha)}\left(\frac{1}{m}, 0\right)-\mathfrak{B}_{k, q}^{(\alpha)}(0,0)\right] \mathfrak{B}_{n+1-k, q}(x, y) m^{k}\right\} .
$$

Proof. From (1.2), we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)} \frac{t^{n}}{[n]_{q}!}=\left(\frac{t}{e_{q}(t)-1}\right)^{\alpha} \frac{e_{q}\left(\frac{t}{m}\right)-1}{\frac{t}{m}} \frac{\frac{t}{m}}{e_{q}\left(\frac{t}{m}\right)-1} \\
& \quad=\frac{m}{t}\left\{\left(\frac{t}{e_{q}(t)-1}\right)^{\alpha} e_{q}\left(\frac{t}{m}\right) \frac{\frac{t}{m}}{e_{q}\left(\frac{t}{m}\right)-1}-\left(\frac{t}{e_{q}(t)-1}\right)^{\alpha} \frac{\frac{t}{m}}{e_{q}\left(\frac{t}{m}\right)-1}\right\} \\
& \quad=\frac{m}{t} \sum_{n=0}^{\infty}\left[\mathfrak{B}_{n, q}^{(\alpha)}\left(\frac{1}{m}, 0\right)-\mathfrak{B}_{n, q}^{(\alpha)}(0,0)\right] \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)}(0,0) \frac{t^{n}}{m^{n}[n]_{q}!} .
\end{aligned}
$$

Using the Cauchy product and comparing the coefficient of $\frac{t^{n}}{[n]_{q}!}$ we obtain (2.7).
2.5. Theorem. The generalized q-Euler numbers $\mathfrak{E}_{n, q}^{(\alpha)}(0,0)$ satisfy the following relation.

$$
\mathfrak{E}_{n, q}^{(\alpha)}=\frac{1}{2[n+1]_{q}} \sum_{k=0}^{n+1}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{q}\left\{\left[\mathfrak{E}_{k, q}^{(\alpha)}\left(\frac{1}{m}, 0\right)+\mathfrak{E}_{k, q}^{(\alpha)}(0,0)\right] \mathfrak{G}_{n+1-k, q}(0,0) m^{k-n}\right\} .
$$

3. Some Relations Between the q-Bernoulli Polynomials and q Euler Polynomials

In this section, we prove an interesting relationship between the q-Bernoulli polynomials $\mathfrak{B}_{n, q}^{(\alpha)}(x, y)$ of order α and q-Euler polynomials $\mathfrak{E}_{n, q}^{(\alpha)}(x, y)$ of order α.
3.1. Theorem. There is the following relation between the q-Euler polynomials and q-Bernoulli polynomials.

$$
\mathfrak{B}_{n, q}^{(\alpha)}(x, y)=\frac{1}{2} \sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{3.1}\\
k
\end{array}\right]_{q}\left\{\sum_{r=0}^{p}\left[\begin{array}{l}
p \\
r
\end{array}\right]_{q} \mathfrak{B}_{r, q}^{(\alpha)}(x, 0) m^{r-n}+\mathfrak{B}_{n-k, q}^{(\alpha)}(x, 0) m^{-k}\right\} \mathfrak{E}_{k, q}(0, m y) .
$$

Proof. From (1.3), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)}(x, y) & \frac{t^{n}}{[n]_{q}!}=\frac{2}{e_{q}(t)+1} E_{q}\left(m y \frac{t}{m}\right) \frac{e_{q}\left(\frac{t}{m}\right)+1}{2}\left(\frac{t}{e_{q}(t)-1}\right)^{\alpha} e_{q}(x t) \\
= & \frac{1}{2} \frac{2}{e_{q}\left(\frac{t}{m}\right)+1} E_{q}\left(m y \frac{t}{m}\right) e_{q}\left(\frac{t}{m}\right)\left(\frac{t}{e_{q}(t)-1}\right)^{\alpha} e_{q}(x t) \\
& +\frac{1}{2} \frac{2}{e_{q}\left(\frac{t}{m}\right)+1} E_{q}\left(m y \frac{t}{m}\right)\left(\frac{t}{e_{q}\left(\frac{t}{m}\right)-1}\right)^{\alpha} e_{q}(x t) \\
= & \frac{1}{2} \sum_{n=0}^{\infty} \mathfrak{E}_{n, q}(0, m y) \frac{t^{n}}{m^{n}[n]_{q}!} \sum_{n=0}^{\infty} \frac{t^{n}}{m^{n}[n]_{q}!} \sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)}(x, 0) \frac{t^{n}}{[n]_{q}!} \\
& +\frac{1}{2} \sum_{n=0}^{\infty} \mathfrak{E}_{n, q}(0, m y) \frac{t^{n}}{m^{n}[n]_{q}!} \sum_{n=0}^{\infty} \mathfrak{B}_{n, q}^{(\alpha)}(x, 0) \frac{t^{n}}{[n]_{q}!} \\
= & \frac{1}{2}\left[\sum_{n=0}^{\infty} \mathfrak{E}_{n, q}(0, m y) \frac{t^{n}}{m^{n}[n]_{q}!}\right] \\
& \times\left[\sum_{p=0}^{\infty} \sum_{r=0}^{p}\left[\begin{array}{l}
p \\
r
\end{array}\right]_{q} \mathfrak{B}_{r, q}^{(\alpha)}(x, 0) m^{r-p} \frac{t^{p}}{[p]_{q}!}+\sum_{p=0}^{\infty} \mathfrak{B}_{p, q}^{(\alpha)}(x, 0) \frac{t^{p}}{[p]_{q}!}\right] .
\end{aligned}
$$

Comparing the coefficient of $\frac{t^{n}}{[n]_{q}!}$ we obtain

$$
\mathfrak{B}_{n, q}^{(\alpha)}(x, y)=\frac{1}{2} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}\left\{\sum_{r=0}^{p}\left[\begin{array}{c}
p \\
r
\end{array}\right]_{q} \operatorname{mathfrak} B_{r, q}^{(\alpha)}(x, 0) m^{r-n}+\mathfrak{B}_{n-k, q}^{(\alpha)}(x, 0) m^{-k}\right\} \mathfrak{E}_{k, q}(0, m y) .
$$

3.2. Theorem. There is the following relation between the q-Bernoulli polynomials and q-Euler polynomials.

$$
\begin{aligned}
\mathfrak{E}_{n, \varphi}^{(\alpha)}(x(-2) y) & =\frac{m}{[n+1]_{q}} \sum_{k=0}^{n+1}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{q} \\
& \times\left\{\sum_{r=0}^{n+1-k}\left[\begin{array}{c}
n+1-k \\
r
\end{array}\right]_{q} \mathfrak{E}_{r, q}^{(\alpha)}(x, 0) m^{r-n-1}-\mathfrak{E}_{n+1-k, q}^{(\alpha)}(x, 0) m^{-k}\right\} \mathfrak{B}_{k, q}(0, m y) .
\end{aligned}
$$

Proof. From (1.5), we write

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathfrak{E}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!}=\frac{\frac{t}{m}}{e_{q}\left(\frac{t}{m}\right)-1} E_{q}\left(m y \frac{t}{m}\right) \frac{e_{q}\left(\frac{t}{m}\right)-1}{\frac{t}{m}}\left(\frac{2}{e_{q}(t)+1}\right)^{\alpha} e_{q}(x t) \\
& =\frac{m}{t} \sum_{n=0}^{\infty} \mathfrak{B}_{n, q}(0, m y) \frac{t^{n}}{m^{n}[n]_{q}!} \sum_{n=0}^{\infty} \frac{t^{n}}{m^{n}[n]_{q}!} \sum_{n=0}^{\infty} \mathfrak{E}_{n, q}^{(\alpha)}(x, 0) \frac{t^{n}}{[n]_{q}!} \\
& \quad-\frac{m}{t} \sum_{n=0}^{\infty} \mathfrak{B}_{n, q}(0, m y) \frac{t^{n}}{m^{n}[n]_{q}!} \sum_{n=0}^{\infty} \mathfrak{E}_{n, q}^{(\alpha)}(x, 0) \frac{t^{n}}{[n]_{q}!} \\
& =\frac{m}{t} \sum_{k=0}^{\infty} \mathfrak{B}_{k, q}(0, m y) \frac{t^{k}}{m^{k}[k]_{q}!}\left\{\sum_{p=0}^{\infty} \sum_{r=0}^{p}\left[\begin{array}{c}
p \\
r
\end{array}\right]_{q} \mathfrak{E}_{r, q}^{(\alpha)}(x, 0) m^{r-p}-\mathfrak{E}_{r, q}^{(\alpha)}(x, 0)\right\} \frac{t^{p}}{[p]_{q}!} .
\end{aligned}
$$

Using the Cauchy product and comparing the the coefficient of $\frac{t^{n}}{[n]_{q}!}$ we obtain (3.2).
3.3. Corollary. The following relations holds

$$
\mathfrak{B}_{n, q}^{(\alpha)}=\frac{1}{[n+1]_{q}} \sum_{k=0}^{n+1}\left[\begin{array}{c}
n+1 \tag{3.3}\\
k
\end{array}\right]_{q} m^{k-n}\left\{\mathfrak{B}_{k, q}^{(\alpha)}\left(\frac{1}{m}, 0\right)+\mathfrak{B}_{k, q}^{(\alpha)}(0,0)\right\} \mathfrak{E}_{n+1-k, q}(0,0)
$$

and

$$
\mathfrak{E}_{n, q}^{(\alpha)}=\frac{1}{[n+1]_{q}} \sum_{k=0}^{n+1}\left[\begin{array}{c}
n+1 \tag{3.4}\\
k
\end{array}\right]_{q} m^{k-n}\left\{\mathfrak{E}_{k, q}^{(\alpha)}\left(\frac{1}{m}, 0\right)-\mathfrak{E}_{k, q}^{(\alpha)}(0,0)\right\} \mathfrak{B}_{n+1-k, q}^{(\alpha)}(0,0) .
$$

3.4. Corollary. From (3.3) and (3.4), we have

$$
\begin{aligned}
\left\{\mathfrak{B}_{k, q}^{(\alpha)}\left(\frac{1}{m}, 0\right)+\mathfrak{B}_{k, q}^{(\alpha)}\right. & (0,0)\} \mathfrak{E}_{n+1-k, q}(0,0) \mathfrak{E}_{n, q}^{(\alpha)}(0,0) \\
& =\left\{\mathfrak{E}_{k, q}^{(\alpha)}\left(\frac{1}{m}, 0\right)-\mathfrak{E}_{k, q}^{(\alpha)}(0,0)\right\} \mathfrak{B}_{n+1-k, q}^{(\alpha)}(0,0) \mathfrak{B}_{n, q}^{(\alpha)}(0,0)
\end{aligned}
$$

4. Acknowledgements

The present study was supported by the Scientific Research Project Administration of Akdeniz University.

References

[1] Andrews GE, Askey R and Roy R, Special Functions, vol 71, Cambridge University Press, Cambridge.
[2] Carlitz L: q-Bernoulli numbers and polynomials, Duke Math. J., 15(1948) 987-1050.
[3] Carlitz L: Eulerian numbers and polynomials, Math. Magazine, 32(1959), 247-260.
[4] Cenkci M, Kurt V, Rim SH, Simsek Y: On (i, q) Bernoulli and Euler numbers, Appl. Math. Letter, 21(2008), 706-711.
[5] Cheon GS: A note on the Bernoulli and Euler polunomials, Appl. Math. Letter, 16(2003), 365-368.
[6] Choi J, Anderson PJ, Srivastava HM: Some q-extensions of the Apostol-Bernoulli and Apstol-Euler polynomials of order n and the multiple Hurwitz zeta function, App. Math. Compute., 199(2008), 723-737.
[7] Kac V, Cheung P: Quantum calculus, Springer-Verlag, 2002.
[8] Kim T: Some formulae for the q-Bernoulli and Euler polynomial of higher order, J. Math. Anal. Appl., 273(2002), 236-242.
[9] Kim T: , q-Extension of the Euler Formula and Trigonometric Functions, Russian J. Math. Phys. 14(3)(2007), 275-278.
[10] Kim D, Kurt B, Kurt V: Some Identities on the Generalized q-Bernoulli, q-Euler and q-Genocchi polynomials, Abstract and Applied Analysis, Article ID 293532, 2013, pp.6, http://dx.doi.org/10.1155/2013/293532.
[11] Luo Q-M : Some results for the q-Bernoulli and q-Euler polynomials, J. Math. Anal. Appl. 363(2010), 7-18.
[12] Luo Q-M, Srivastava HM: q-extensions of some relationships between the Bernoulli and Euler polynomials, Taiwanese J. Math. 15(2011), 241-257.
[13] Mahmudov NI: q-analogues of the Bernoulli and Genocchi polynomials and the SrivastavaPinter addition theorems, Discrete Dynamics in nature and society, 2012, Article ID 169348, Doi:10.1155/2012/169348.
[14] Mahmudov NI: On a class of q-Bernoulli and q-Euler polynomials, Adv. in Diff. Equa., 2013:108 doi:10.1186/1687-1847-2013-108.
[15] Mansour T, Schark M: The commutation relation $x y=q y x+h f(y)$ and Newton' s binomial formula, Ramanujan J., 25(3)(2011), 405-445. doi:10.1007/s11139-011-9295-0.
[16] Srivastava HM, Choi J: Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, London 2001.
[17] Srivastava HM, Pinter A: Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Letter, 17(2004), 375-380.
[18] Tremblay R, Gaboury S, Fegure BJ: A new class of generalized Apostol-Bernoulli polynomials and some analogues of the Srivastava-Pinter addition theorem, Appl. Math. Letter, 24(2011), 1888-1893.

[^0]: *Department of Mathematics, Faculty of Science, University of Akdeniz, TR-07058 Antalya, Turkey.
 Email: vkurt@akdeniz.edu.tr

