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Abstract

The authors consider the commutativity and associativity of binary
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1. Introduction

Let S be a non-empty set. We recall [1] that a texturing on S is a point separating,
complete, completely distributive lattice S of subsets of S with respect to inclusion,
which contains S, ∅, and for which meet

∧

coincides with intersection
⋂

and finite joins
∨ coincide with unions ∪. Textures first arose in connection with the representation
of Hutton algebras and lattices of L-fuzzy sets in a point-based setting [3], and have
subsequently proved to be a fruitful setting for the investigation of complement-free
concepts in mathematics. The sets

Ps =
⋂

{A ∈ S | s ∈ A}, Qs =
∨

{Pu | u ∈ S, s /∈ Pu}, s ∈ S,

are important in the study of textures, and the following facts concerning these so called
p–sets and q–sets will be used extensively below.

1.1. Lemma. [5, Theorem 1.2]

(1) s /∈ A =⇒ A ⊆ Qs =⇒ s /∈ A♭ for all s ∈ S, A ∈ S.

(2) A♭ = {s | A 6⊆ Qs} for all A ∈ S.

(3) For Ai ∈ S, i ∈ I we have (
∨

i∈I Ai)
♭ =

⋃

i∈I A
♭
i .

(4) A is the smallest element of S containing A♭ for all A ∈ S.
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(5) For A, B ∈ S, if A 6⊆ B then there exists s ∈ S with A 6⊆ Qs and Ps 6⊆ B.

(6) A =
⋂

{Qs | Ps 6⊆ A} for all A ∈ S.

(7) A =
∨

{Ps | A 6⊆ Qs} for all A ∈ S.

Here A♭ is defined by

A♭ =
⋂

{

⋃

{Ai | i ∈ I} | {Ai | i ∈ I} ⊆ S, A =
∨

{Ai | i ∈ I}
}

and known as the core of A ∈ S. The above lemma exposes an important formal duality
in (S, S), namely that between

⋂

and
∨

, Qs and Ps, and Ps 6⊆ A and A 6⊆ Qs. Indeed,
it is to emphasize this duality that we normally write Ps 6⊆ A in preference to s /∈ A.

The simplest example of a texture is the discrete texture (X,P(X)) on X, for which
Px = {x} and Qx = X \ {x}, x ∈ X. This texture is closed under set complementation,
but this is certainly not the case in general. A texture that we will consider in the final
section is the real texture (R,R), where R is the set of real numbers and

R = {(−∞, r) | r ∈ R} ∪ {(−∞, r] | r ∈ R} ∪ {R, ∅}.

For this texture Pr = (−∞, r] and Qr = (−∞, r), r ∈ R.

In the study of textures the ordinary notion of binary relation between sets is replaced
by direlations, which are pairs consisting of a relation and corelation [5]. Defining a
difunction as a special type of direlation, a theory is obtained that resembles in many
respects that of ordinary binary relations and functions between sets. Our aim in this
study is to continue this work by defining di-operations on textures and studying their
commutativity and associativity. In particular a study of di-operations on (R,R) is
presented and applied to the study of spaces of real (bicontinuous) difunctions, that is
difunctions whose range is (R,R).

The reader is referred to [1–7] for background and motivation on textures. For the
benefit of the reader we recall some basic definitions.

For textures (S, S), (T,T) we denote by S⊗T the product texturing of S×T [3]. Thus,
S⊗T consists of arbitrary intersections of sets of the form (A×T )∪(S×B), A ∈ S, B ∈ T.
For s ∈ S, Ps and Qs will always denote the p-sets and q-sets for the texture (S, S), while
for t ∈ T , Pt and Qt will denote the p-sets and q-sets for (T,T). We reserve the notation
P(s,t), Q(s,t), s ∈ S, t ∈ T , for the p-sets, q-sets in (S × T, S ⊗ T). On the other hand,

P (s,t) and Q(s,t) will denote the p-sets and q-sets for the texture (S×T, P(S)⊗T). Hence

(see [5]) we have P (s,t) = {s} × Pt and Q(s,t) = [(S \ {s}) × T ] ∪ [S × Qt]. Likewise,

P (t,s) and Q(t,s) are the p-sets and q-sets for (T × S, P(T ) ⊗ S). It is easy to verify

that P (s,t) 6⊆ Q(s′,t′) ⇐⇒ s = s′ and Pt 6⊆ Qt′ . Again, we will use this fact, and its

companion P (t,s) 6⊆ Q(t′,s′) ⇐⇒ t = t′ and Ps 6⊆ Qs′ , without comment in what follows.
Now let us recall:

1.2. Definition. [5, Definition 2.1] Let (S, S), (T,T) be textures. Then

(1) r ∈ P(S) ⊗ T is called a relation from (S, S) to (T,T) if it satisfies

R1 r 6⊆ Q(s,t), Ps′ 6⊆ Qs =⇒ r 6⊆ Q(s′,t).

R2 r 6⊆ Q(s,t) =⇒ ∃s′ ∈ S such that Ps 6⊆ Qs′ and r 6⊆ Q(s′,t).

(2) R ∈ P(S) ⊗ T is called a corelation from (S, S) to (T,T) if it satisfies

CR1 P (s,t) 6⊆ R,Ps 6⊆ Qs′ =⇒ P (s′,t) 6⊆ R.

CR2 P (s,t) 6⊆ R =⇒ ∃s′ ∈ S such that Ps′ 6⊆ Qs and P (s′,t) 6⊆ R.
(3) A pair (r,R), where r is a relation and R a corelation from (S, S) to (T,T) is

called a direlation from (S, S) to (T,T).
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Normally, relations will be denoted by lower case and corelations by upper case letters,
as in the above definition.

For a general texture (S, S) we define

i = iS =
∨

{P (s,s) | s ∈ S} and I = IS =
⋂

{Q(s,s) | s ∈ S}.

If we note that i 6⊆ Q(s,t) ⇐⇒ Ps 6⊆ Qt and P (s,t) 6⊆ I ⇐⇒ Pt 6⊆ Qs then it is trivial

to verify that i is a relation and I a corelation from (S, S) to (S, S). We refer to (i, I) as
the identity direlation on (S, S).

If (r,R) is a direlation from (S, S) to (T,T), the inverse (r,R)← = (R←, r←) of (r,R)
is the direlation from (T,T) to (S, S) defined by

r← =
⋂

{Q(t,s) | r 6⊆ Q(s,t)}

R← =
∨

{P (t,s) | P (s,t) 6⊆ R}

An important concept for direlations, which we will use extensively in this paper, is that
of composition. We recall the following:

1.3. Definition. [5, Definition 2.13] Let (S, S), (T,T), (U,U) be textures.

(1) If p is a relation from (S, S) to (T,T) and q a relation from (T,T) to (U,U) then
their composition is the relation q ◦ p from (S, S) to (U,U) defined by

q ◦ p =
∨

{P (s,u) | ∃ t ∈ T with p 6⊆ Q(s,t) and q 6⊆ Q(t,u)}.

(2) If P is a corelation from (S, S) to (T,T) and Q a corelation from (T,T) to (U,U)
then their composition is the corelation Q ◦ P from (S, S) to (U,U) defined by

Q ◦ P =
⋂

{Q(s,u) | ∃ t ∈ T with P (s,t) 6⊆ P and P (t,u) 6⊆ Q}.

(3) With p, q; P , Q as above, the composition of the direlations (p, P ), (q,Q) is the
direlation

(q,Q) ◦ (p, P ) = (q ◦ p,Q ◦ P ).

It is shown in [5] that the operation of taking the composition of direlations is asso-
ciative, and that the identity direlations are identities for this operation.

The notion of difunction is derived from that of direlation as follows.

1.4. Definition. [5, Definition 2.22] Let (f, F ) be a direlation from (S, S) to (T,T).
Then (f, F ) is called a difunction from (S, S) to (T,T) if it satisfies the following two
conditions.

DF1 For s, s′ ∈ S, Ps 6⊆ Qs′ =⇒ ∃ t ∈ T with f 6⊆ Q(s,t) and P (s′,t) 6⊆ F .

DF2 For t, t′ ∈ T and s ∈ S, f 6⊆ Q(s,t) and P (s,t′) 6⊆ F =⇒ Pt′ 6⊆ Qt.

Difunctions are preserved under composition. It is easy to see that the identity dire-
lation (iS , IS) on (S, S) is in fact a difunction from (S, S) to (S, S). In this context we
refer to (iS , IS) as the identity difunction on (S, S).

Let (f, F ) be a difunction from (S, S) to (T,T), and B ∈ T. Then the inverse image

f←(B) and the inverse co-image F←(B) of B are given by the formulae

(1) f←(B) =
∨

{Ps | ∀ t, f 6⊆ Q(s,t) =⇒ Pt ⊆ B} ∈ S, and

(2) F←(B) =
⋂

{Qs | ∀ t, P (s,t) 6⊆ F =⇒ B ⊆ Qt} ∈ S,

respectively [5, Lemma 2.8] It is shown in [5] that for difunctions these sets coincide for
all B ∈ T and that these inverses preserve arbitrary intersections and joins.
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We conclude by recalling the notion of ditopology. A dichotomous topology, or ditopol-

ogy for short, on a texture (S, S) is a pair (τ, κ) of subsets of S, where the set of open sets

τ satisfies

(1) S, ∅ ∈ τ ,
(2) G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ and
(3) Gi ∈ τ , i ∈ I =⇒

∨

i Gi ∈ τ ,

and the set of closed sets κ satisfies

(1) S, ∅ ∈ κ,
(2) K1, K2 ∈ κ =⇒ K1 ∪K2 ∈ κ and
(3) Ki ∈ κ, i ∈ I =⇒

⋂

Ki ∈ κ.

Hence a ditopology is essentially a “topology” for which there is no a priori relation
between the open and closed sets. The reader is referred to [1,5–8] for some results on
ditopological texture spaces and their relation with fuzzy topologies.

A subset β of τ is called a base of τ if every set in τ can be written as a join of sets in
β, while a subset β of κ is a base of κ if every set in κ can be written as an intersection
of sets in β.

For the real texture (R,R) mentioned above, we may define a natural ditopology (θ, φ),
called the usual ditopology on (R,R), by

θ = {(−∞, s) | s ∈ R} ∪ {R, ∅}, φ = {(−∞, s] | s ∈ R} ∪ {R, ∅}.

Continuity of difunctions is the subject of the following definition.

1.5. Definition. [6, Definition 2.2] Let (Sk, Sk, τk, κk), k = 1, 2, be ditopological texture
spaces and (f, F ) a difunction from (S1, S1) to (S2, S2). Then

(1) (f, F ) is continuous if G ∈ τ2 =⇒ F←(G) ∈ τ1.
(2) (f, F ) is cocontinuous if K ∈ κ2 =⇒ f←(K) ∈ κ1.
(3) (f, F ) is bicontinuous if it is continuous and cocontinuous.

The reader is referred to [8] for terms related to lattice theory that are not defined
here.

2. The commutativity and associativity direlations

In this section we introduce two direlations which will play an important role in the
study of di-operations on a texture.

2.1. Definition. Let (S, S) be a texture.

(1) The direlation (c, C) on (S × S, S ⊗ S) defined by

c =
∨

{P ((s1,s2),(s2,s1)) | s1, s2 ∈ S}

C =
⋂

{Q((s1,s2),(s2,s1)) | s1, s2 ∈ S♭}

is called the commutativity direlation on (S, S).
(2) The direlation (a,A) from (S× (S×S), S⊗ (S⊗ S)) to ((S×S)×S, (S⊗ S)⊗ S)

defined by

a =
∨

{P ((s1,(s2,s3)),((s1,s2),s3)) | s1, s2, s3 ∈ S}

A =
⋂

{Q((s1,(s2,s3)),((s1,s2),s3)) | s1, s2, s3 ∈ S♭}

is called the associativity direlation on (S, S).
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It is easy to verify that (c, C) and (a,A) are indeed direlations. In fact, (c, C) is the
bijective difunction from (S × S, S ⊗ S) to (S × S, S ⊗ S) corresponding, in the sense
of ([7], Lemma 3.8), to the textural isomorphism [1] ϕ : S × S → S × S, (s1, s2) 7→
(s2, s1). Likewise, (a,A) is the bijective difunction corresponding to the isomorphism
ψ : S × (S × S) → (S × S) × S, (s1, (s2, s3)) 7→ ((s1, s2), s3).

2.2. Lemma. Let (c, C) be the commutativity direlation on (S, S). Then c ◦ c = iS×S

and C ◦ C = IS×S.

Proof. To prove the first result it is sufficient to show that c ◦ c 6⊆ Q((s1,s2),(t1,t2)) if and
only if P(s1,s2) 6⊆ Q(t1,t2).

=⇒. We have P ((s1,s2),(t′
1
,t′

2
)) 6⊆ Q((s1,s2),(t1,t2)) so that for some (u1, u2) ∈ S × S,

c 6⊆ Q((s1,s2),(u1,u2)), c 6⊆ Q((u1,u2),(t′
1
,t′

2
)). From here, P(s2,s1) 6⊆ Q(u1,u2) and P(u2,u1) 6⊆

Q(t′
1
,t′

2
). Hence, Ps2

6⊆ Qu1
, Pu1

6⊆ Qt′
2

which gives Ps2
6⊆ Qt′

2
, and Ps1

6⊆ Qu2
, Pu2

6⊆
Qt′

1
, which gives Ps1

6⊆ Qt′
1
. On the other hand P(t′

1
,t′

2
) 6⊆ Q(t1,t2), and we deduce

P(s1,s2) 6⊆ Q(t1,t2), as required.

⇐=. From P(s1,s2) 6⊆ Q(t1,t2) we have Psk
6⊆ Qtk

, so we may take uk ∈ S with
Psk

6⊆ Quk
, Puk

6⊆ Qtk
, k = 1, 2. Also we may take u′k ∈ S satisfying Psk

6⊆ Qu′

k
,

Pu′

k
6⊆ Quk

, k = 1, 2. We see that c 6⊆ Q((s1,s2),(u′

2
,u′

1
)) and c 6⊆ Q((u′

2
,u′

1
),(u1,u2)), whence

P ((s1,s2),(u1,u2)) ⊆ c ◦ c. But P(u1,u2) 6⊆ Q(t1,t2) which gives c ◦ c 6⊆ Q((s1,s2),(t1,t2)), as
required.

The proof of C ◦ C = IS×S is dual to the above. �

2.3. Lemma. Let (a,A) be the associativity direlation on (S, S) and (a,A)← = (A←, a←)
its inverse. Then

(1) A← =
∨

{P (((s1,s2),s3),(s1,(s2,s3))) | s1, s2, s3 ∈ S}.

(2) a← =
⋂

{Q(((s1,s2),s3),(s1,(s2,s3))) | s1, s2, s3 ∈ S♭}.

(3) a ◦A← = i(S×S)×S and A ◦ a← = I(S×S)×S.

(4) A← ◦ a = iS×(S×S) and a← ◦A = IS×(S×S).

Proof. (1) Denote the right hand side by r and suppose first that A← 6⊆ r. Then we

have P ((s1,(s2,s3)),((t1,t2),t3)) 6⊆ A with P (((t1,t2),t3),(s1,(s2,s3))) 6⊆ r. By the definition
of A we have P((t1,t2),t3) 6⊆ Q((s1,s2),s3), whence Ptk

6⊆ Qsk
for k = 1, 2, 3. Hence

Psk
⊆ Ptk

, k = 1, 2, 3, so P (((t1,t2),t3),(s1,(s2,s3))) ⊆ P (((t1,t2),t3),(t1,(t2,t3))) ⊆ r, which is a
contradiction.

Conversely, if r 6⊆ A← we have P (((s1,s2),s3),(s1,(s2,s3))) 6⊆ Q(((s1,s2),s3),(t1,(t2,t3))) sat-

isfying P (((s1,s2),s3),(t1,(t2,t3))) 6⊆ A←. Then P ((t1,(t2,t3)),((s1,s2),s3)) 6⊆ A since Psk
6⊆

Qtk
, k = 1, 2, 3, and we obtain the contradiction P (((s1,s2),s3),(t1,(t2,t3))) ⊆ A← by [5,

Lemma 2.4 (1)].

(2) Dual to (1).

(3) We need only show a ◦A← = i, since then A ◦ a← = (a ◦A←)← = i← = I.

Suppose first that a ◦ A← 6⊆ i. Then we have sk, tk ∈ S, k = 1, 2, 3 so that a ◦ A← 6⊆
Q(((s1,s2),s3),((t1,t2),t3)) and P (((s1,s2),s3),((t1,t2),t3))) 6⊆ i. Now we have t′k ∈ S, k =

1, 2, 3, so that P (((s1,s2),s3),((t′
1
,t′

2
),t′

3
)) 6⊆ Q(((s1,s2),s3),((t1,t2),t3)) and uk ∈ S, k = 1, 2, 3

with A← 6⊆ Q(((s1,s2),s3),(u1,(u2,u3))) and a 6⊆ Q(((u1,(u2,u3)),((t′
1
,t′

2
),t′

3
)). By (1) and the

definition of a we deduce Psk
6⊆ Quk

, Puk
6⊆ Qt′

k
for k = 1, 2, 3. Also, Pt′

k
6⊆ Qtk

,

so Psk
6⊆ Qtk

and hence Ptk
⊆ Psk

, k = 1, 2, 3. But now P (((s1,s2),s3),((t1,t2),t3)) ⊆

P (((s1,s2),s3),((s1,s2),s3)) ⊆ i, which is a contradiction. This shows that a ◦A← ⊆ i.
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Now suppose that i 6⊆ a◦A←. Then we have sk, tk ∈ S for which i 6⊆ Q(((s1,s2),s3),((t1,t2),t3))

and P (((s1,s2),s3),((t1,t2),t3)) 6⊆ a ◦ A←. The first gives us Psk
6⊆ Qtk

, k = 1, 2, 3.
Choose uk ∈ S, k = 1, 2, 3 satisfying Psk

6⊆ Quk
and Puk

6⊆ Qtk
. Then by (1),

A← 6⊆ Q(((s1,s2),s3),(u1,(u2,u3))) and by the definition of a, a 6⊆ Q((u1,(u2,u3)),((t1,t2),t3)).

Hence P (((s1,s2),s3),((t1,t2),t3)) ⊆ a ◦ A←, which is a contradiction. This verifies that
i ⊆ a ◦A←, as required.

(4) Dual to (3). �

3. Commutativity and associativity of di-operations

Let us begin by making precise the notion of di-operation on a texture (S, S).

3.1. Definition. Let (S, S) be a texture. Then a difunction (�,�) from (S × S, S ⊗ S)
to (S, S) is called a (binary) di-operation on (S, S).

In this section we define the commutativity and associativity of di-operations in terms
of the commutativity and associativity direlations. However, the definitions do not rely
on the fact that a di-operation is a difunction and so we will define these concepts for
general direlations from (S × S, S ⊗ S) to (S, S).

3.2. Definition. Let (r,R) be a direlation from (S × S, S ⊗ S) to (S, S). Then

(1) r is commutative if r = r ◦ c.
(2) R is commutative if R = R ◦ C.
(3) (r,R) is commutative if r and R are commutative. In particular a binary di-

operation (�,�) on (S, S) is commutative if it is commutative as a direlation
from (S × S, S ⊗ S) to (S, S).

In this definition (c, C) is the commutativity direlation on (S, S). The above definition
gives rise to the following commutative diagram.

(S × S, S ⊗ S)
(c,C)

//

(r,R)

��

(S × S, S ⊗ S)

(r,R)

vvll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

(S, S)

The definition of associativity requires a notion of product for direlations. This is detailed
in the next lemma.

3.3. Lemma. Let (Sk, Sk), (Tk,Tk) be textures and (rk, Rk) direlations from (Sk, Sk) to

(Tk,Tk), k = 1, 2. Then

(1) r1 × r2 =
∨

{P ((s1,s2),(t1,t2)) | rk 6⊆ Q(sk,tk), k = 1, 2} is a relation from (S1 ×

S2, S1 ⊗ S2) to (T1 × T2,T1 ⊗ T2).

(2) R1 × R2 =
⋂

{Q((s1,s2),(t1,t2)) | P (sk,tk) 6⊆ Rk, k = 1, 2} is a corelation from

(S1 × S2, S1 ⊗ S2) to (T1 × T2,T1 ⊗ T2).
(3) (r1, R1) × (r2, R2) = (r1 × r2, R1 × R2) is a direlation from (S1 × S2, S1 ⊗ S2)

to (T1 × T2,T1 ⊗ T2). In particular, if (rk, Rk), k = 1, 2 are difunctions then

(r1, R1) × (r2, R2) is a difunction.

Proof. Straightforward. �

Now we may give:

3.4. Definition. Let (r,R) be a direlation from (S × S, S ⊗ S) to (S, S). Then

(1) r is called associative if r ◦ (i× r) = r ◦ (r × i) ◦ a.
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(2) R is called associative if R ◦ (I ×R) = R ◦ (R× I) ◦A.
(3) (r,R) is called associative if r and R are associative. In particular a binary

di-operation (�,�) on (S, S) is associative if it is associative as a direlation from
(S × S, S ⊗ S) to (S, S).

In this definition (a,A) is the associativity direlation and (i, I) the identity direlation
on (S, S). The associativity of (r,R) may be illustrated by the following commutative
diagram.

(S × (S × S), S ⊗ (S ⊗ S)
(a,A)

//

(i×r,I×R)

��

((S × S) × S, (S ⊗ S) ⊗ S)

(r×i,R×I)

tthh
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

(S × S, S ⊗ S)

It will be useful to have point-based characterizations of commutativity and associativity,
and these are the subject of the following two theorems.

3.5. Theorem. Let (r,R) be a direlation from (S × S, S ⊗ S) to (S, S).

(1) r is commutative if and only if

r 6⊆ Q((s1,s2),s) ⇐⇒ r 6⊆ Q((s2,s1),s) ∀ s1, s2, s ∈ S.

(2) R is commutative if and only if

P ((s1,s2),s) 6⊆ R ⇐⇒ P ((s2,s1),s) 6⊆ R ∀ s1, s2, s ∈ S.

Proof. Straightforward. �

3.6. Theorem. Let (r,R) be a direlation from (S × S, S ⊗ S) to (S, S).

(1) r is associative if and only if the following are equivalent ∀ s1, s2, s3, w ∈ S.

(i) There exists u ∈ S with r 6⊆ Q((s1,s2),u) and r 6⊆ Q((u,s3),w).

(ii) There exists v ∈ S with r 6⊆ Q((s2,s3),v) and r 6⊆ Q((s1,v),w).

(2) R is associative if and only if the following are equivalent ∀ s1, s2, s3, w ∈ S.

(i) There exists u ∈ S with P ((s1,s2),u) 6⊆ R and P ((u,s3),w) 6⊆ R.

(ii) There exists v ∈ S with P ((s2,s3),v) 6⊆ R and P ((s1,v),w) 6⊆ R.

Proof. We outline the proof of (1), leaving the proof of the dual result (2) to the reader.

Suppose first that r ◦ (r × i) ◦ a ⊆ r ◦ (i × r). Given s1, s2, s3, w ∈ S, suppose we

have u ∈ S satisfying r 6⊆ Q((s1,s2),u) and r 6⊆ Q((u,s3),w). It may be verified that

r ◦ (r × i) ◦ a 6⊆ Q((s1,(s2,s3)),w). Hence, by hypothesis, r ◦ (i × r) 6⊆ Q((s1,(s2,s3)),w).

Now we have w′ ∈ S with Pw′ 6⊆ Qw and t′, v′ ∈ S satisfying i× r 6⊆ Q((s1,(s2,s3)),(t′,v′))

and r 6⊆ Q((t′,v′),w′). Hence for some t, v ∈ S with P(t,v) 6⊆ Q(t′,v′) we have i 6⊆ Q(s1,t)

and r 6⊆ Q((s2,s3),v). We see that P(s1,v) 6⊆ Q(t′,v′), whence r 6⊆ Q((s1,v),w′) by R1,

and so r 6⊆ Q((s1,v),w) since Qw ⊆ Qw′ . This verifies (ii), and we have established that

(i) =⇒ (ii).

Conversely, suppose that (i) =⇒ (ii) but that r ◦ (r × i) ◦ a 6⊆ r ◦ (i × r). We have

s1, s2, s3, w ∈ S with P ((s1,(s2,s3)),w) 6⊆ r ◦ (i × r), so that a 6⊆ Q((s1,(s2,s3)),((s′
1
,s′

2
),s′

3
)),

r × i 6⊆ Q(((s′
1
,s′

2
),s′

3
),(u′,t′)) and r 6⊆ Q((u′,t′),w) for some s′1, s

′

2, s
′

3, u
′, t′ ∈ S. We deduce

Psk
6⊆ Qs′

k
, k = 1, 2, 3, so we may write r × i 6⊆ Q(((s′

1
,s2),s3),(u′,t′)) by definition, and

then we have u, t ∈ S with P(u,t) 6⊆ Q(u′,t′), r 6⊆ Q((s′
1
,s2),u) and i 6⊆ Q(s3,t). This gives

P(u,s3) 6⊆ Q(u′,t′), whence r 6⊆ Q((u,s3),w) by R1. By hypothesis we now have v ∈ S
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satisfying r 6⊆ Q((s2,s3),v) and r 6⊆ Q((s′
1
,v),w). Now we have v′ ∈ S with Pv′ 6⊆ Qv and

r 6⊆ Q((s2,s3),v′). Also we may take s′′1 ∈ S satisfying Ps1
6⊆ Qs′′

1
and Ps′′

1
6⊆ Qs′

1
, whence

i 6⊆ Q(s1,s′′
1
). This now gives P ((s1,(s2,s3)),(s′′

1
,v′)) ⊆ i×r and so i×r 6⊆ Q((s1,(s2,s3)),(s′

1
,v)).

With r 6⊆ Q((s′
1
,v),w) this gives the contradiction P ((s1,(s2,s3)),w) ⊆ r ◦ (i × r), and we

have established r ◦ (r × i) ◦ a ⊆ r ◦ (i× r).

Using Lemma 2.3 (1) we may verify in the same way that (ii) =⇒ (i) is equivalent
to r ◦ (i × r) ◦ A← ⊆ r ◦ (r × i), and this is equivalent to r ◦ (i × r) ⊆ r ◦ (r × i) ◦ a by
Lemma 2.3 (4). This completes the proof of (1). �

4. Operations on direlations and difunctions

Now let (rk, Rk), k = 1, 2 be direlations from (S, S) to (T,T) and suppose (�,�) is
a binary di-operation on (T,T). We wish to apply (�,�) to obtain a new direlation
from (S, S) to (T,T). We begin by defining a direlation (r1, R1) · (r2, R2) from (S, S) to
(T × T,T ⊗ T).

4.1. Lemma. Let (rk, Rk), k = 1, 2 be direlations from (S, S) to (T,T). Then

(1) r1 · r2 =
∨

{P (s,(t1,t2)) | ∃u ∈ S with Ps 6⊆ Qu, r1 6⊆ Q(u,t1), r2 6⊆ Q(u,t2)} is a

relation from (S, S) to (T × T,T ⊗ T).

(2) R1 · R2 =
⋂

{Q(s,(t1,t2)) | ∃u ∈ S with Pu 6⊆ Qs, P (u,t1) 6⊆ R1, P (u,t2) 6⊆ R2} is

a corelation from (S, S) to (T × T,T ⊗ T).
(3) If (fk, Fk), k = 1, 2 are difunctions from (S, S) to (T,T) then the direlation

(f1, F1) · (f2, F2) = (f1 · f2, F1 ·F2) is a difunction from (S, S) to (T × T,T ⊗ T).

Proof. Straightforward. �

It will be noted that (f1, F1) · (f2, F2) is a special case of the difuncton 〈(fj , Fj)〉
considered in [6, Theorem 3.10].

4.2. Proposition. Let (rk, Rk), k = 1, 2 be direlations from (S, S) to (T,T) and (c, C)
the commutativity direlation on (T,T). Then

(r2, R2) · (r1, R1) = (c, C) ◦ ((r1, R1) · (r2, R2)).

Proof. We establish r2 · r1 = c ◦ (r1 · r2), leaving the dual result R2 ·R1 = C ◦ (R1 ·R2)
to the reader.

First suppose that r2 · r1 6⊆ c ◦ (r1 · r2). Then we have s ∈ S, t1, t2 ∈ T with

r2 · r1 6⊆ Q(s,(t1,t2)) and P (s,(t1,t2)) 6⊆ c ◦ (r1 · r2). Now we may take t′1, t
′

2 ∈ T satisfying

P (s,(t′
1
,t′

2
)) 6⊆ Q(s,(t1,t2)) for which we have u ∈ S with Ps 6⊆ Qu, r2 6⊆ Q(u,t′

1
) and

r1 6⊆ Q(u,t′
2
). Finally, take v1, v2 ∈ T satisfying r2 6⊆ Q(u,v1), Pv1

6⊆ Qt′
1

and r1 6⊆

Q(u,v2), Pv2
6⊆ Qt′

2
. Now P (s,(v2,v1)) ⊆ r1 · r2 and so r1 · r2 6⊆ Q(s,(t′

2
,t′

1
)). On the other

hand, P ((t′
2
,t′

1
),(t′

1
,t′

2
)) 6⊆ Q((t′

2
,t′

1
),(t1,t2)) and so c 6⊆ Q((t′

2
,t′

1
),(t1,t2)), which implies that

P (s,(t1,t2)) ⊆ c ◦ (r1 · r2). This contradiction establishes r2 · r1 ⊆ c ◦ (r1 · r2).

To obtain the reverse inclusion, interchange r1 and r2 in the above, and compose each
side with c. According to [5, Proposition 2.17], we have

c ◦ (r1 · r2) ⊆ c ◦ (c ◦ (r2 · r1)) = (c ◦ c) ◦ (r2 · r1).

But c ◦ c = iT×T by Lemma 2.2, and we obtain c ◦ (r1 · r2) ⊆ r2 · r1 as required. �

4.3. Proposition. Let (rk, Rk), k = 1, 2, 3 be direlations from (S, S) to (T,T) and (a,A)
the associativity direlation on (T,T). Then

((r1, R1) · (r2, R2)) · (r3, R3) = (a,A) ◦ [(r1, R1) · ((r2, R2) · (r3, R3))].



Binary Di-Operations 33

Proof. We verify (r1 · r2) · r3 = a ◦ (r1 · (r2 · r3)), leaving the proof of the dual result
(R1 ·R2) ·R3 = A ◦ (R1 · (R2 ·R3)) to the reader.

First suppose (r1 · r2) · r3 6⊆ a ◦ (r1 · (r2 · r3)). Then we have s ∈ S, t′k ∈ T , k = 1, 2, 3

with (r1 · r2) · r3 6⊆ Q(s,((t′
1
,t′

2
),t′

3
)) and P (s,((t′

1
,t′

2
),t′

3
)) 6⊆ a ◦ (r1 · (r2 · r3)). Now we have

tk ∈ T , k = 1, 2, 3 with P (s,((t1,t2),t3)) 6⊆ Q(s,((t′
1
,t′

2
),t′

3
)) for which there exists u ∈ S

satisfying Ps 6⊆ Qu, r1 · r2 6⊆ Q(u,(t1,t2)) and r3 6⊆ Q(u,t3). Now we have v1, v2 ∈ T with

P (u,(v1,v2)) 6⊆ Q(u,(t1,t2)) for which there exists w ∈ S satisfying Pu 6⊆ Qw, r1 6⊆ Q(w,v1)

and r2 6⊆ Q(w,v2). Choose u′ ∈ S satisfying Ps 6⊆ Qu′ and Pu′ 6⊆ Qu. Then:

(i) r1 6⊆ Q(u′,v1).

(ii) r2 6⊆ Q(u,v2). Choose v′2 ∈ T satisfying r2 6⊆ Q(u,v′

2
) and P (u,v′

2
) 6⊆ Q(u,v2).

(iii) r3 6⊆ Q(u,t3). Choose v3 ∈ T satisfying r3 6⊆ Q(u,v3) and P (u,v3) 6⊆ Q(u,t3) and

then v′3 ∈ T with r3 6⊆ Q(u,v′

3
) and P (u,v′

3
) 6⊆ Q(u,v3).

From (iii) and (ii) we see P (u′,(v′

2
,v′

3
)) ⊆ r2 · r3, whence r2 · r3 6⊆ Q(u′,(v2,v3)). Together

with (i) this gives P (s,(u1,(u2,u3))) ⊆ r1 · (r2 · r3), and hence r1 · (r2 · r3) 6⊆ Q(s,(t1,(t2,t3))).

On the other hand P ((t1,(t2,t3)),((t1,t2),t3)) ⊆ a. Hence a 6⊆ Q((t1,(t2,t3)),((t′
1
,t′

2
),t′

3
)), which

leads to the contradiction P (s,((t′
1
,t′

2
),t′

3
)) ⊆ a ◦ (r1 · (r2 · r3)). This proves the inclusion

(r1 · r2) · r3 ⊆ a ◦ (r1 · (r2 · r3)).

In view of Lemma 2.3 (1) an exactly analogous argument shows that r1 · (r2 · r3) ⊆
A← ◦ ((r1 · r2) · r3). Composing each side with a now gives

a ◦ (r1 · (r2 · r3)) ⊆ (a ◦A←) ◦ ((r1 · r2) · r3) = i ◦ ((r1 · r2) · r3) = (r1 · (r2 · r3)),

by Lemma 2.3 (3). Combined with the previous inclusion this gives (r1 · r2) · r3 = a ◦ (r1 ·
(r2 · r3)), as required. �

4.4. Proposition. Let (rk, Rk) be direlations from (Sk, Sk) to (Tk,Tk) and (pk, Pk)
direlations from (S, S) to (Sk, Sk), k = 1, 2. Then

[(r1, R1)× (r2, R2)]◦ [(p1, P1) · (p2, P2)] = [(r1, R1)◦ (p1, P1)] · [(r2, R2)◦ (p2, P2)].

Proof. We establish (r1 × r2) ◦ (p1 · p2) = (r1 ◦ p1) · (r2 ◦ p2), leaving the proof of the dual
result (R1 ×R2) ◦ (P1 · P2) = (R1 ◦ P1) · (R2 ◦ P2) to the reader.

Suppose (r1 ×r2)◦ (p1 ·p2) 6⊆ (r1 ◦p1) · (r2 ◦p2). Then we have s ∈ S, tk ∈ Tk, k = 1, 2

with P (s,(t1,t2)) 6⊆ (r1 ◦p1) · (r2 ◦p2) and sk ∈ Sk, k = 1, 2 so that p1 ·p2 6⊆ Q(s,(s1,s2)) and

r1 × r2 6⊆ Q((s1,s2),(t1,t2)). Now we have s′k ∈ Sk, k = 1, 2 with P (s,(s′
1
,s′

2
)) 6⊆ Q(s,(s1,s2))

and u ∈ S satisfying Ps 6⊆ Qu so that pk 6⊆ Q(u,s′
k
), k = 1, 2. Also we have vk ∈ Tk,

k = 1, 2 so that P ((s1,s2),(v1,v2)) 6⊆ Q((s1,s2),(t1,t2)) and rk 6⊆ Q(sk,vk), k = 1, 2. Since

Ps′
k
6⊆ Qsk

we have rk 6⊆ Q(s′
k

,vk), so P (u,vk) ⊆ rk ◦ pk, k = 1, 2. But now P (s,(t1,t2)) ⊆

(r1 ◦ p1) · (r2 ◦ p2), which is a contradiction.

Now suppose (r1 ◦ p1) · (r2 ◦ p2) 6⊆ (r1 × r2) ◦ (p1 · p2). Then we have tk ∈ Tk with

P (s,(t1,t2)) 6⊆ (r1 × r2) ◦ (p1 · p2), for which there exists Ps 6⊆ Qu so that rk ◦ pk 6⊆ Q(u,tk),

k = 1, 2. Now we have t′k ∈ Tk with P (u,t′
k
) 6⊆ Q(u,tk) for which there exists sk ∈ Sk with

pk 6⊆ Q(u,sk) and rk 6⊆ Q(sk,t′
k
), k = 1, 2. Choose s′k ∈ Sk, k = 1, 2 satisfying pk 6⊆ Q(u,s′

k
)

and P (u,s′
k
) 6⊆ Q(u,sk). Now we have P (s,(s′

1
,s′

2
)) ⊆ p1 · p2 and so p1 · p2 6⊆ Q(s,(s1,s2)).

On the other hand P ((s1,s2),(t′
1
,t′

2
)) ⊆ r1 × r2 and so r1 × r2 6⊆ Q((s1,s2),(t1,t2)). But now

P (s,(t1,t2)) ⊆ (r1 × r2) ◦ (p1 · p2), which is a contradiction. �
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4.5. Corollary. Let (rk, Rk), k = 1, 2, 3 be direlations from (S, S) to (T,T), (i, I) the

identity and (c, C) the commutativity direlation on (T,T). Then

((i, I) × (c, C)) ◦ ((r1, R1) · ((r2, R2) · (r3, R3))) = (r1, R1) · ((r3, R3) · (r2, R2)),

((c, C) × (i, I)) ◦ (((r1, R1) · (r2, R2)) · (r3, R3)) = ((r2, R2) · (r1, R1)) · (r3, R3).

Proof. (i× c) ◦ (r1 · (r2 · r3)) = (i ◦ r1) · (c ◦ (r2 · r3)) = r1 · (r3 · r2) by Proposition 4.4, [5,
Proposition 2.17 (1)] and Proposition 4.2. The remaining equalities are proved likewise.

�

We will also find the following result useful when we come to discuss continuity.

4.6. Lemma. Let (rk, Rk) be direlations from (S, S) to (Tk,Tk), k = 1, 2. Then, for

A1 ∈ T1,

(1) If r←2 (∅) = ∅ then (r1 · r2)
←(A1 × T2) = r←1 (A1),

(2) If R←2 (T2) = S then (R1 ·R2)
←(A1 × T2) = R←1 (A1).

Proof. We establish (1), the proof of (2) being dual.

Suppose first that (r1 ·r2)
←(A1×T2) 6⊆ r←1 (A1). Now we have s ∈ S with Ps 6⊆ r←1 (A1)

for which r1 · r2 6⊆ Q(s,(t1,t2)) =⇒ P(t1,t2) ⊆ A1 × T2 =⇒ Pt1 ⊆ A1. Let us take u ∈ S

with Ps 6⊆ Qu and Pu 6⊆ r←1 (A1), whence we have t1 ∈ T1 with r1 6⊆ Q(u,t1) and Pt1 6⊆ A1.

Also, Pu 6⊆ ∅ = r←2 (∅), by hypothesis, so we have t2 ∈ T2 satisfying r2 6⊆ Q(u,t2). We may

now deduce r1 ·r2 6⊆ Q(s,(t1,t2)), and the above implications now lead to the contradiction
Pt1 ⊆ A1.

On the other hand, suppose r←1 (A1) 6⊆ (r1 · r2)
←(A1 × T2). Then we have s ∈ S with

Ps 6⊆ (r1 · r2)
←(A1 × T2) for which r1 6⊆ Q(s,t) =⇒ Pt ⊆ A1. Now we have tk ∈ Tk,

k = 1, 2 with r1 · r2 6⊆ Q(s,(t1,t2)) and P(t1,t2) 6⊆ A1 × T2, i.e. Pt1 6⊆ A1. Hence we have

t′k ∈ Tk, k = 1, 2, with P(t′
1
,t′

2
) 6⊆ Q(t1,t2) and rk 6⊆ Q(u,t′

k
), k = 1, 2. In particular we

deduce r1 6⊆ Q(s,t1) and hence the contradiction Pt1 ⊆ A1 from the above implication. �

Naturally, the corresponding results for A2 ∈ T2 also hold. If we note that the
hypotheses of the above lemma are satisfied for difunctions [5, Proposition 2.28(1c)],
while inverse images preserve meet and join, the following corollary is immediate:

4.7. Corollary. Let (f, F ), (g,G) be difunctions from (S, S) to (T1,T1), (T2,T2), respec-

tively, A ∈ T1 and B ∈ T2. Then,

(1) (f · g)←((A× T2) ∩ (T1 ×B)) = f←(A) ∩ g←(B).
(2) (F ·G)←((A× T2) ∪ (T1 ×B)) = F←(A) ∪G←(B).

Let us now make precise the notion of applying a di-operation to direlations.

4.8. Definition. Let (rk, Rk), k = 1, 2 be direlations from (S, S) to (T,T) and (�,�) a
di-operation on (T,T). Then the result of applying (�,�) to (r1, R1) and (r2, R2) is the
direlation (r1, R1)(�,�)(r2, R2) = (r1�r2, R1�R2) from (S, S) to (T,T) defined by

(r1, R1)(�,�)(r2, R2) = (�,�) ◦ ((r1, R1) · (r2, R2)).

When (f, F ) and (g,G) are difunctions from (S, S) to (T,T), (f�g, F�G) is also a difunc-
tion from (S, S) to (T,T). This follows from Lemma 4.1 (3) and the fact that difunctions
are closed under composition ([6], Proposition 2.28(2)).

The following lemma gives formulae for directly calculating r1�r2 and R1�R2.
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4.9. Lemma. With the notation as in Definition 4.8,

r1�r2 =
∨

{P (s,t) | ∃u ∈ S, Ps 6⊆ Qu and t1, t2 ∈ T with rk 6⊆ Q(u,tk), k = 1, 2

and � 6⊆ Q((t1,t2),t)},

R1�R2 =
⋂

{Q(s,t) | ∃u ∈ S, Pu 6⊆ Qs and t1, t2 ∈ T with P (u,tk) 6⊆ Rk, k = 1, 2

and P ((t1,t2),t) 6⊆ �}.

Proof. Immediate �

In case (�,�) is commutative or associative we have the following.

4.10. Theorem. Let (S, S), (T,T) be textures and (�,�) a binary di-operation on (T,T).

(1) If (�,�) is commutative then

(r1, R1)(�,�)(r2, R2) = (r2, R2)(�,�)(r1, R1)

for all direlations (rk, Rk), k = 1, 2 from (S, S) to (T,T).
(2) If (�,�) is associative then

(r1, R1)(�,�)((r2, R2)(�,�)(r3, R3)) = ((r1, R1)(�,�)(r2, R2))(�,�)(r3, R3)

for all direlations (rk, Rk), k = 1, 2, 3 from (S, S) to (T,T).

Proof. (1). By Definition 4.8 we have r2�r1 = � ◦ (r2 · r1) = � ◦ c ◦ (r1 · r2) by Propo-
sition 4.2, where c is the commutativity relation on (T,T). Since � is commutative we
now have r2�r1 = � ◦ (r1 · r2) = r1�r2, as required.

The proof of R2�R1 = R1�R2 is similar.

(2). Applying Definition 4.8, and letting i be the identity relation on (T,T) we have
(r1�r2)�r3 = � ◦ ((� ◦ (r1 · r2)) · (i ◦ r3)) = � ◦ (� × i) ◦ ((r1 · r2) · r3) by Proposition 4.4.
If a is the associativity relation on (T,T), Proposition 4.3 now gives (r1�r2)�r3 = � ◦
(� × i) ◦ a ◦ (r1 · (r2 · r3)) = � ◦ (i × �) ◦ (r1 · (r2 · r3)), since � is associative. Applying
Proposition 4.4 again finally gives (r1�r2)�r3 = � ◦ ((i ◦ r1) · (� ◦ (r2 · r3)) = r1�(r2�r3),
as required.

The proof of (R1�R2)�R3 = R1�(R2�R3) is similar.
�

Now let (τ1, κ1) be a ditopology on (S1, S1) and (τ2, κ2) a ditopology on (S2, S2). We
denote by (τ2

2 , κ
2
2) the product ditopology [6] on (S2 × S2, S2 ⊗ S2). Hence, a base for τ2

2

consists of elements of S2 ⊗ S2 of the form (G × S2) ∩ (S2 × H) = G × H, G,H ∈ τ2,
while a base for κ2

2 consists of elements of the form (F × S2) ∪ (S2 ×K), F,K ∈ κ2. Let
us first note the following:

4.11. Lemma. With the notation above, let the difunctions (f, F ), (g,G) from (S1, S1)
to (S2, S2) be (τ1, κ1)–(τ2, κ2) bicontinuous. Then (f, F ) · (g,G) is (τ1, κ1)–(τ2

2 , κ
2
2) bi-

continuous.

Proof. For G,H ∈ τ2 we have (f · g)←(G × H) = (f · g)←((G × S2) ∩ (S2 × H)) =
f←(G) ∩ g←(H) ∈ τ1, by Corollary 4.7 (1). Since inverse images preserve join this
is sufficient to show (τ1, κ1)-(τ

2
2 , κ

2
2) continuity. Cocontinuity is proved likewise using

Corollary 4.7 (2). �

4.12. Definition. The di-operation (�,�) is called bicontinuous on (S2, S2, τ2, κ2) if it
is bicontinuous as a difunction from (S2 × S2, S2 ⊗ S2, τ

2
2 , κ

2
2) to (S2, S2, τ2, κ2).

The following result in now a trivial consequence of Lemma 4.11 and the fact that the
composition of two bicontinuous difunctions is bicontinuous ([7], Lemma 2.3 (2)).
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4.13. Theorem. With the notation as above, let (�,�) be a bicontinous di-operation on

(S2, S2, τ2, κ2) and let (f, F ), (g,G) be bicontinuous difunctions from (S1, S1, τ1, κ1) to

(S2, S2, τ2, κ2). Then (f, F )(�,�)(g,G) is also a bicontinuous difunction from (S1, S1, τ1, κ1)
to (S2, S2, τ2, κ2).

5. Real di-Operations and real difunctions

In this section we begin by considering certain natural di-operations on the real texture
(R,R). This texture is clearly closed under arbitrary unions, and is therefore a plain
texture [5]. It follows that the product texture (R × R,R ⊗ R) is also plain. We require
the following result which characterizes difunctions on a plain texture in terms of ordinary
(point) functions.

5.1. Theorem. Let (S, S) be a plain texture and (f, F ) a difunction from (S, S) to (T,T).
Then there exists a point function ϕ from S to T satisfying the conditions

(1) Ps′ ⊆ Ps =⇒ Pϕ(s) 6⊆ Qϕ(s′),

(2) f =
∨

{P (s,ϕ(s)) | s ∈ S}, F =
⋂

{Q(s,ϕ(s)) | s ∈ S}, and

(3) f←(B) = F←(B) = ϕ−1(B) for all B ∈ T.

Conversely, if ϕ is any point function from S to T satisfying (1), then setting f =
∨

{P (s,ϕ(s)) | s ∈ S}, F =
⋂

{Q(s,ϕ(s)) | s ∈ S} defines a difunction (f, F ) satisfying

f←(B) = F←(B) = ϕ−1(B) for all B ∈ T.

Proof. Clear from [5, Proposition 3.7] and [6, Lemma 3.8], since for a plain texture the
conditions (b) and (c) mentioned there are automatically satisfied. �

We may apply this theorem to any di-operation (�,�) on (R,R) since this is just a
difunction from the plain texture (R × R,R ⊗R) to (R,R). Hence, bearing in mind that
for the texture (R × R,R ⊗ R) we have P(s1,s2) = {(r1, r2) | rk ≤ sk, k = 1, 2}, while
for (R,R), Ps = {r | r ≤ s} and Qs = {r | r < s}, we see that (�,�) is equivalent, in
the sense described in Theorem 5.1, to a point function ϕ : R × R → R satisfying the
monotonicity property

MP : s′k ≤ sk, k = 1, 2 =⇒ ϕ(s′1, s
′

2) ≤ ϕ(s1, s2).

The following relations hold between (�,�) and ϕ.

5.2. Theorem. Let (�,�) and ϕ be related as above. Then

(1) (�,�) is commutative if and only if ϕ is commutative as a binary point operation

on R.

(2) (�,�) is associative if and only if ϕ is associative as a binary point operation on

R.

(3) Consider the usual ditopology

θ = {(−∞, s) | s ∈ R} ∪ {R, ∅}, φ = {(−∞, s] | s ∈ R} ∪ {R, ∅}

on (R,R) and the product ditopology on (R × R,R ⊗ R). Then (�,�) is bicon-

tinuous if and only if ϕ satisfies the following conditions.

(a) If s1, s2, s ∈ R satisfy ϕ(s1, s2) < s then there exist r1, r2 ∈ R satisfying

sk < rk, k = 1, 2, and ϕ(r1, r2) < s.
(b) If s1, s2, s ∈ R satisfy ϕ(s1, s2) > s then there exist r1, r2 ∈ R satisfying

sk > rk, k = 1, 2, and ϕ(r1, r2) > s.

Proof. (1) Immediate from Theorem 3.5.

(2) Suppose that ϕ is associative. We first establish (i) =⇒ (ii) for � in Theo-

rem 3.6 (1). Take s1, s2, s3, w ∈ R and suppose we have u ∈ R with � 6⊆ Q((s1,s2),u) and
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� 6⊆ Q((u,s3),w). Then u ≤ ϕ(s1, s2) and w ≤ ϕ(u, s3). By MP we see w ≤ ϕ(u, s3) ≤

ϕ(ϕ(s1, s2), s3) = ϕ(s1, ϕ(s2, s3)), since ϕ is associative. If we set v = ϕ(s2, s3) ∈ R we

see that � 6⊆ Q((s2,s3),v) and � 6⊆ Q((s1,v),w), which verifies (ii). The proof of (ii) =⇒ (i)

is similar, and likewise (i) ⇐⇒ (ii) for � in Theorem 3.6 (2). Hence (�,�) is associative.

Suppose now that � is associative. If ϕ(s1, ϕ(s2, s3)) < ϕ(ϕ(s1, s2), s3), set u =
ϕ(s1, s2) ∈ R and take w ∈ R with ϕ(s1, ϕ(s2, s3)) < w < ϕ(ϕ(s1, s2), s3). Then � 6⊆
Q((s1,s2),u) and � 6⊆ Q((u,s3),w), so by Theorem 3.6 (1) there exists v ∈ R with � 6⊆

Q((s2,s3),v) and � 6⊆ Q((s1,v),w). Now v ≤ ϕ(s2, s3) and w ≤ ϕ(s1, v) ≤ ϕ(s1, ϕ(s2, s3))

by MP, which is a contradiction. In the same way ϕ(ϕ(s1, s2), s3) < ϕ(s1, ϕ(s2, s3)) also
leads to a contradiction, and we have established that ϕ is associative. We may also
establish the associativity of ϕ from that of �.

(3) By Theorem 5.1 we need only consider the inverse image with respect to ϕ. How-
ever, (a) is equivalent to

(s1, s2) ∈ (−∞, r1) × (−∞, r2) ⊆ ϕ−1((−∞, s)),

and hence to the continuity of (�,�). Likewise, (b) is equivalent to

(s1, s2) /∈ ((−∞, r1] × R) ∪ (R × (−∞, r2]) ⊇ ϕ−1((−∞, s]),

and hence to the cocontinuity of (�,�). �

We now give the examples of di-operations on (R,R) promised earlier.

5.3. Example. (1) Let ϕ(s1, s2) = s1+s2, s1, s2 ∈ R. Clearly ϕ satisfies MP and is
commutative and associative as a binary point operation on R. Also, it is trivial
to verify conditions (a) and (b) of Theorem 5.2 (3). Hence, by Theorem 5.1,

+ =
∨

{P ((s1,s2),s1+s2) | s1, s2 ∈ R},

+ =
⋂

{Q((s1,s2),s1+s2) | s1, s2 ∈ R},

define a bicontinous di-operation ( + , + ) on (R,R).
(2) Let ϕ(s1, s2) = max(s1, s2), s1, s2 ∈ R. Clearly ϕ satisfies MP and is commuta-

tive and associative as a binary point operation on R. Also, it is trivial to verify
conditions (a) and (b) of Theorem 5.2 (3). Hence, by Theorem 5.1,

∨ =
∨

{P ((s1,s2),s1∨s2) | s1, s2 ∈ R},

∨ =
⋂

{Q((s1,s2),s1∨s2) | s1, s2 ∈ R},

define a bicontinous di-operation ( ∨ , ∨ ) on (R,R).
(3) Let ϕ(s1, s2) = min(s1, s2), s1, s2 ∈ R. Clearly ϕ satisfies MP and is commuta-

tive and associative as a binary point operation on R. Also, it is trivial to verify
conditions (a) and (b) of Theorem 5.2 (3). Hence, by Theorem 5.1,

∧ =
∨

{P ((s1,s2),s1∧s2) | s1, s2 ∈ R},

∧ =
⋂

{Q((s1,s2),s1∧s2) | s1, s2 ∈ R},

define a bicontinous di-operation ( ∧ , ∧ ) on (R,R).
(4) The point function ϕ(s1, s2) = s1s2 does not define a di-operation on (R,R) in

the above sense since ϕ does not satisfy MP.

Now let (S, S) be a texture with ditopology (τ, κ). We denote by DF(S, S) the set

DF(S, S) = {(f, F ) | (f, F ) : (S, S) → (R,R), is a difunction}

of real difunctions on (S, S), and by BDF(S, S, τ, κ) the set

BDF(S, S, τ, κ) = {(f, F ) ∈ DF(S, S) | (f, F ), (τ, κ) − (θ, φ) bicontinuous}



38 L. M. Brown, A. Irkad

of bicontinuous real difunctions on (S, S, τ, κ).

If (�,�) is a binary di-operation on (R,R, θ, φ) then we may apply (�,�) to (f, F ), (g,G)
in DF(S, S) to give the element (f, F )(�,�)(g,G) of DF(S, S). That is, (�,�) induces a
binary operation on the set DF(S, S), which is commutative and associative if and only if
(�,�) is. Likewise it induces a binary operation on the set BDF(S, S, τ, κ). Moreover, if
ϕ is the point function corresponding to (�,�) as described above, then from Lemma 4.9,
Theorem 5.1 and the fact that (R×R,R⊗R) is plain, we may easily deduce the following
formulae for f�g and F�G.

(a) f�g =
∨

{P (s,ϕ(r1,r2)) | ∃Ps 6⊆ Qu with f 6⊆ Q(u,r1) and g 6⊆ Q(u,r2)}.

(b) F�G =
⋂

{Q(s,ϕ(r1,r2)) | ∃Pu 6⊆ Qs with P (u,r1) 6⊆ F and P (u,r2) 6⊆ G}.

If we consider the di-operations ( ∨ , ∨ ), ( ∧ , ∧ ) and ( + , + ) on the sets DF(S, S) and
BDF(S, S, τ, κ) we obtain the following.

5.4. Theorem. Let (S, S) be a texture and (τ, κ) a ditopology on (S, S). Then

(1) The spaces (DF(S, S), ( ∧ , ∧ ), ( ∨ , ∨ )) and (BDF(S, S, τ, κ), ( ∧ , ∧ ), ( ∨ , ∨ )) are

distributive lattices.

(2) For all (f, F ), (g,G), (h,H) in DF(S, S) or BDF(S, S, τ, κ) we have

(i) (f + (g ∧h), F + (G∧H)) = ((f +g) ∧ (f +h), (F +G)∧ (F +H)), and

(ii) (f + (g ∨h), F + (G∨H)) = ((f +g) ∨ (f +h), (F +G)∨ (F +H)).

Proof. (1). Bearing in mind that the di-operations ( ∨ , ∨ ) and ( ∧ , ∧ ) are commutative
and associative, it will be sufficient to verify the following equalities and define the
required partial order ≤ on DF(S, S) or BDF(S, S, τ, κ) by one of the equivalent conditions
(f, F ) ≤ (g,G) ⇐⇒ (f ∧g, F ∧G) = (f, F ) or (f, F ) ≤ (g,G) ⇐⇒ (f ∨g, F ∨G) =
(g,G):

(i) (f ∧f, F ∧F ) = (f, F ) and (f ∨f, F ∨F ) = (f, F ).
(ii) (f ∧ (f ∨g), F ∧ (F ∨G)) = (f, F ).
(iii) (f ∨ (g ∧h), F ∨ (G∧H)) = ((f ∨g) ∧ (f ∨h), (F ∨G)∧ (F ∨H)).

Here, (f, F ), (g,G) and (h,H) are arbitrary elements of the space concerned. We will
verify (ii), leaving the remaining equalities to the interested reader.

Firstly, f ∧ (f ∨g) ⊆ f is trivial, so suppose f 6⊆ f ∧ (f ∨g). Then we have s ∈ S

and r1 ∈ R satisfying f 6⊆ Q(s,r1) and P (s,r1) 6⊆ f ∧ (f ∨g). By R2 we have u ∈ S with

Ps 6⊆ Qu and f 6⊆ Q(u,r1). Take u′ ∈ S with Ps 6⊆ Qu′ and Pu′ 6⊆ Qu. Since g←(∅) = ∅

we have r2 ∈ R with g 6⊆ Q(u,r2) and Pr1
6= ∅ so by formula (a) above for � = ∨ we

have P (u′,r1∨r2) ⊆ f ∨g, whence f ∨g 6⊆ Q(u′,r1∨r2) since (R,R) is plain. On the other

hand f 6⊆ Q(u′,r1) by R1, so by formula (a) above for � = ∧ we have P (s,r1∧(r1∨r2)) ⊆

f ∧ (f ∨g). Since r1 ∧ (r1 ∨ r2) = r1 we obtain the contradiction P (s,r1) ⊆ f ∧ (f ∨g).

This verifies f = f ∧ (f ∨g), and the proof of F = F ∧ (F ∨G) is dual to this. This
establishes (ii) as required.

(2). Much as in the proof of (ii) above, this reduces to the equalities r + (r1 ∧ r2) =
(r + r1) ∧ (r + r2) and r + (r1 ∨ r2) = (r + r1) ∨ (r + r2), which hold trivially in R. �

The lattice (BDF(S, S, τ, κ), ( ∧ , ∧ ), ( ∨ , ∨ )) has already found applications in the
work of F. Yıldız on real dicompactness of ditopological texture spaces [9], see also, for
example [11]. When (S, S) is plain, Theorem 5.1 may be used to represent the elements
of DF(S, S) and of BDF(S, S, τ, κ) as real-valued point functions on S. The reader is
referred to [10] for a discussion of the general case.
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