BINARY DI-OPERATIONS AND SPACES OF REAL DIFUNCTIONS ON A TEXTURE

Lawrence M. Brown* and Ahmet Irkad*

Received 19:03:2008 : Accepted $26: 06: 2008$

Abstract

The authors consider the commutativity and associativity of binary di-operations on a texture and go on to study the space of real difunctions on a texture and the space of bicontinuous real difunctions on a ditopological texture space.

Keywords: Texture, Relation, Corelation, Direlation, Difunction, Commutativity, Associativity, Di-operation, Real difunction.
2000 AMS Classification: 06 D 10, 06 D 99, 06 D 72, 03 E 20, 54 C 08.

1. Introduction

Let S be a non-empty set. We recall [1] that a texturing on S is a point separating, complete, completely distributive lattice \mathcal{S} of subsets of S with respect to inclusion, which contains S, \emptyset, and for which meet \wedge coincides with intersection \bigcap and finite joins \vee coincide with unions \cup. Textures first arose in connection with the representation of Hutton algebras and lattices of \mathbb{L}-fuzzy sets in a point-based setting [3], and have subsequently proved to be a fruitful setting for the investigation of complement-free concepts in mathematics. The sets

$$
P_{s}=\bigcap\{A \in \mathcal{S} \mid s \in A\}, Q_{s}=\bigvee\left\{P_{u} \mid u \in S, s \notin P_{u}\right\}, s \in S \text {, }
$$

are important in the study of textures, and the following facts concerning these so called p -sets and q -sets will be used extensively below.
1.1. Lemma. [5, Theorem 1.2]
(1) $s \notin A \Longrightarrow A \subseteq Q_{s} \Longrightarrow s \notin A^{b}$ for all $s \in S, A \in \mathcal{S}$.
(2) $A^{b}=\left\{s \mid A \nsubseteq Q_{s}\right\}$ for all $A \in \mathcal{S}$.
(3) For $A_{i} \in \mathcal{S}, i \in I$ we have $\left(\bigvee_{i \in I} A_{i}\right)^{b}=\bigcup_{i \in I} A_{i}^{b}$.
(4) A is the smallest element of \mathcal{S} containing A^{b} for all $A \in \mathcal{S}$.

[^0](5) For $A, B \in \mathcal{S}$, if $A \nsubseteq B$ then there exists $s \in S$ with $A \nsubseteq Q_{s}$ and $P_{s} \nsubseteq B$.
(6) $A=\bigcap\left\{Q_{s} \mid P_{s} \nsubseteq A\right\}$ for all $A \in \mathcal{S}$.
(7) $A=\bigvee\left\{P_{s} \mid A \nsubseteq Q_{s}\right\}$ for all $A \in \mathcal{S}$.

Here A^{b} is defined by

$$
A^{b}=\bigcap\left\{\bigcup\left\{A_{i} \mid i \in I\right\} \mid\left\{A_{i} \mid i \in I\right\} \subseteq \mathcal{S}, A=\bigvee\left\{A_{i} \mid i \in I\right\}\right\}
$$

and known as the core of $A \in \mathcal{S}$. The above lemma exposes an important formal duality in (S, \mathcal{S}), namely that between \bigcap and \bigvee, Q_{s} and P_{s}, and $P_{s} \nsubseteq A$ and $A \nsubseteq Q_{s}$. Indeed, it is to emphasize this duality that we normally write $P_{s} \nsubseteq A$ in preference to $s \notin A$.

The simplest example of a texture is the discrete texture $(X, \mathcal{P}(X))$ on X, for which $P_{x}=\{x\}$ and $Q_{x}=X \backslash\{x\}, x \in X$. This texture is closed under set complementation, but this is certainly not the case in general. A texture that we will consider in the final section is the real texture $(\mathbb{R}, \mathcal{R})$, where \mathbb{R} is the set of real numbers and

$$
\mathcal{R}=\{(-\infty, r) \mid r \in \mathbb{R}\} \cup\{(-\infty, r] \mid r \in \mathbb{R}\} \cup\{\mathbb{R}, \emptyset\}
$$

For this texture $P_{r}=(-\infty, r]$ and $Q_{r}=(-\infty, r), r \in \mathbb{R}$.
In the study of textures the ordinary notion of binary relation between sets is replaced by direlations, which are pairs consisting of a relation and corelation [5]. Defining a difunction as a special type of direlation, a theory is obtained that resembles in many respects that of ordinary binary relations and functions between sets. Our aim in this study is to continue this work by defining di-operations on textures and studying their commutativity and associativity. In particular a study of di-operations on $(\mathbb{R}, \mathcal{R})$ is presented and applied to the study of spaces of real (bicontinuous) difunctions, that is difunctions whose range is $(\mathbb{R}, \mathcal{R})$.

The reader is referred to $[1-7]$ for background and motivation on textures. For the benefit of the reader we recall some basic definitions.

For textures $(S, \mathcal{S}),(T, \mathcal{T})$ we denote by $\mathcal{S} \otimes \mathcal{T}$ the product texturing of $S \times T$ [3]. Thus, $\mathcal{S} \otimes \mathcal{T}$ consists of arbitrary intersections of sets of the form $(A \times T) \cup(S \times B), A \in \mathcal{S}, B \in \mathcal{T}$. For $s \in S, P_{s}$ and Q_{s} will always denote the p-sets and q-sets for the texture (S, \mathcal{S}), while for $t \in T, P_{t}$ and Q_{t} will denote the p-sets and q-sets for (T, \mathcal{T}). We reserve the notation $P_{(s, t)}, Q_{(s, t)}, s \in S, t \in T$, for the p-sets, q-sets in $(S \times T, \mathcal{S} \otimes \mathcal{T})$. On the other hand, $\bar{P}_{(s, t)}$ and $\bar{Q}_{(s, t)}$ will denote the p-sets and q-sets for the texture $(S \times T, \mathcal{P}(S) \otimes \mathcal{T})$. Hence (see [5]) we have $\bar{P}_{(s, t)}=\{s\} \times P_{t}$ and $\bar{Q}_{(s, t)}=[(S \backslash\{s\}) \times T] \cup\left[S \times Q_{t}\right]$. Likewise, $\bar{P}_{(t, s)}$ and $\bar{Q}_{(t, s)}$ are the p-sets and q-sets for $(T \times S, \mathcal{P}(T) \otimes \mathcal{S})$. It is easy to verify that $\bar{P}_{(s, t)} \nsubseteq \bar{Q}_{\left(s^{\prime}, t^{\prime}\right)} \Longleftrightarrow s=s^{\prime}$ and $P_{t} \nsubseteq Q_{t^{\prime}}$. Again, we will use this fact, and its companion $\bar{P}_{(t, s)} \nsubseteq \bar{Q}_{\left(t^{\prime}, s^{\prime}\right)} \Longleftrightarrow t=t^{\prime}$ and $P_{s} \nsubseteq Q_{s^{\prime}}$, without comment in what follows. Now let us recall:
1.2. Definition. [5, Definition 2.1] Let $(S, \mathcal{S}),(T, \mathcal{T})$ be textures. Then
(1) $r \in \mathcal{P}(S) \otimes \mathcal{T}$ is called a relation from (S, \mathcal{S}) to (T, \mathcal{T}) if it satisfies $R 1 r \nsubseteq \bar{Q}_{(s, t)}, P_{s^{\prime}} \nsubseteq Q_{s} \Longrightarrow r \nsubseteq \bar{Q}_{\left(s^{\prime}, t\right)}$.
$R 2 r \nsubseteq \bar{Q}_{(s, t)} \Longrightarrow \exists s^{\prime} \in S$ such that $P_{s} \nsubseteq Q_{s^{\prime}}$ and $r \nsubseteq \bar{Q}_{\left(s^{\prime}, t\right)}$.
(2) $R \in \mathcal{P}(S) \otimes \mathcal{T}$ is called a corelation from (S, \mathcal{S}) to (T, \mathcal{T}) if it satisfies CR1 $\bar{P}_{(s, t)} \nsubseteq R, P_{s} \nsubseteq Q_{s^{\prime}} \Longrightarrow \bar{P}_{\left(s^{\prime}, t\right)} \nsubseteq R$. $C R 2 \bar{P}_{(s, t)} \nsubseteq R \Longrightarrow \exists s^{\prime} \in S$ such that $P_{s^{\prime}} \nsubseteq Q_{s}$ and $\bar{P}_{\left(s^{\prime}, t\right)} \nsubseteq R$.
(3) A pair (r, R), where r is a relation and R a corelation from (S, \mathcal{S}) to (T, \mathcal{T}) is called a direlation from (S, \mathcal{S}) to (T, \mathcal{T}).

Normally, relations will be denoted by lower case and corelations by upper case letters, as in the above definition.

For a general texture (S, \mathcal{S}) we define

$$
i=i_{S}=\bigvee\left\{\bar{P}_{(s, s)} \mid s \in S\right\} \text { and } I=I_{S}=\bigcap\left\{\bar{Q}_{(s, s)} \mid s \in S\right\}
$$

If we note that $i \nsubseteq \bar{Q}_{(s, t)} \Longleftrightarrow P_{s} \nsubseteq Q_{t}$ and $\bar{P}_{(s, t)} \nsubseteq I \Longleftrightarrow P_{t} \nsubseteq Q_{s}$ then it is trivial to verify that i is a relation and I a corelation from (S, \mathcal{S}) to (S, \mathcal{S}). We refer to (i, I) as the identity direlation on (S, \mathcal{S}).

If (r, R) is a direlation from (S, \mathcal{S}) to (T, \mathcal{T}), the inverse $(r, R)^{\leftarrow}=\left(R^{\leftarrow}, r^{\leftarrow}\right)$ of (r, R) is the direlation from (T, \mathcal{T}) to (S, \mathcal{S}) defined by

$$
\begin{aligned}
r^{\leftarrow} & =\bigcap\left\{\bar{Q}_{(t, s)} \mid r \nsubseteq \bar{Q}_{(s, t)}\right\} \\
R^{\leftarrow} & =\bigvee\left\{\bar{P}_{(t, s)} \mid \bar{P}_{(s, t)} \nsubseteq R\right\}
\end{aligned}
$$

An important concept for direlations, which we will use extensively in this paper, is that of composition. We recall the following:
1.3. Definition. [5, Definition 2.13] Let $(S, \mathcal{S}),(T, \mathcal{T}),(U, \mathcal{U})$ be textures.
(1) If p is a relation from (S, \mathcal{S}) to (T, \mathcal{T}) and q a relation from (T, \mathcal{T}) to (U, \mathcal{U}) then their composition is the relation $q \circ p$ from (S, \mathcal{S}) to (U, \mathcal{U}) defined by
$q \circ p=\bigvee\left\{\bar{P}_{(s, u)} \mid \exists t \in T\right.$ with $p \nsubseteq \bar{Q}_{(s, t)}$ and $\left.q \nsubseteq \bar{Q}_{(t, u)}\right\}$.
(2) If P is a corelation from (S, \mathcal{S}) to (T, \mathcal{T}) and Q a corelation from (T, \mathcal{T}) to (U, \mathcal{U}) then their composition is the corelation $Q \circ P$ from (S, \mathcal{S}) to (U, \mathcal{U}) defined by
$Q \circ P=\bigcap\left\{\bar{Q}_{(s, u)} \mid \exists t \in T\right.$ with $\bar{P}_{(s, t)} \nsubseteq P$ and $\left.\bar{P}_{(t, u)} \nsubseteq Q\right\}$.
(3) With $p, q ; P, Q$ as above, the composition of the direlations $(p, P),(q, Q)$ is the direlation

$$
(q, Q) \circ(p, P)=(q \circ p, Q \circ P)
$$

It is shown in [5] that the operation of taking the composition of direlations is associative, and that the identity direlations are identities for this operation.

The notion of difunction is derived from that of direlation as follows.
1.4. Definition. [5, Definition 2.22] Let (f, F) be a direlation from (S, \mathcal{S}) to (T, \mathcal{T}). Then (f, F) is called a difunction from (S, \mathcal{S}) to (T, \mathcal{T}) if it satisfies the following two conditions.

DF1 For $s, s^{\prime} \in S, P_{s} \nsubseteq Q_{s^{\prime}} \Longrightarrow \exists t \in T$ with $f \nsubseteq \bar{Q}_{(s, t)}$ and $\bar{P}_{\left(s^{\prime}, t\right)} \nsubseteq F$.
$D F 2$ For $t, t^{\prime} \in T$ and $s \in S, f \nsubseteq \bar{Q}_{(s, t)}$ and $\bar{P}_{\left(s, t^{\prime}\right)} \nsubseteq F \Longrightarrow P_{t^{\prime}} \nsubseteq Q_{t}$.
Difunctions are preserved under composition. It is easy to see that the identity direlation $\left(i_{S}, I_{S}\right)$ on (S, \mathcal{S}) is in fact a difunction from (S, \mathcal{S}) to (S, \mathcal{S}). In this context we refer to $\left(i_{S}, I_{S}\right)$ as the identity difunction on (S, \mathcal{S}).

Let (f, F) be a difunction from (S, \mathcal{S}) to (T, \mathcal{T}), and $B \in \mathcal{T}$. Then the inverse image $f^{\leftarrow}(B)$ and the inverse co-image $F^{\leftarrow}(B)$ of B are given by the formulae
(1) $f^{\leftarrow}(B)=\bigvee\left\{P_{s} \mid \forall t, f \nsubseteq \bar{Q}_{(s, t)} \Longrightarrow P_{t} \subseteq B\right\} \in \mathcal{S}$, and
(2) $F^{\leftarrow}(B)=\bigcap\left\{Q_{s} \mid \forall t, \bar{P}_{(s, t)} \nsubseteq F \Longrightarrow B \subseteq Q_{t}\right\} \in \mathcal{S}$,
respectively [5, Lemma 2.8] It is shown in [5] that for difunctions these sets coincide for all $B \in \mathcal{T}$ and that these inverses preserve arbitrary intersections and joins.

We conclude by recalling the notion of ditopology. A dichotomous topology, or ditopology for short, on a texture (S, \mathcal{S}) is a pair (τ, κ) of subsets of \mathcal{S}, where the set of open sets τ satisfies
(1) $S, \emptyset \in \tau$,
(2) $G_{1}, G_{2} \in \tau \Longrightarrow G_{1} \cap G_{2} \in \tau$ and
(3) $G_{i} \in \tau, i \in I \Longrightarrow \bigvee_{i} G_{i} \in \tau$,
and the set of closed sets κ satisfies
(1) $S, \emptyset \in \kappa$,
(2) $K_{1}, K_{2} \in \kappa \Longrightarrow K_{1} \cup K_{2} \in \kappa$ and
(3) $K_{i} \in \kappa, i \in I \Longrightarrow \bigcap K_{i} \in \kappa$.

Hence a ditopology is essentially a "topology" for which there is no a priori relation between the open and closed sets. The reader is referred to $[1,5-8]$ for some results on ditopological texture spaces and their relation with fuzzy topologies.

A subset β of τ is called a base of τ if every set in τ can be written as a join of sets in β, while a subset β of κ is a base of κ if every set in κ can be written as an intersection of sets in β.

For the real texture $(\mathbb{R}, \mathcal{R})$ mentioned above, we may define a natural ditopology (θ, ϕ), called the usual ditopology on $(\mathbb{R}, \mathcal{R})$, by

$$
\theta=\{(-\infty, s) \mid s \in \mathbb{R}\} \cup\{\mathbb{R}, \emptyset\}, \phi=\{(-\infty, s] \mid s \in \mathbb{R}\} \cup\{\mathbb{R}, \emptyset\}
$$

Continuity of difunctions is the subject of the following definition.
1.5. Definition. [6, Definition 2.2] Let $\left(S_{k}, \mathcal{S}_{k}, \tau_{k}, \kappa_{k}\right), k=1,2$, be ditopological texture spaces and (f, F) a difunction from $\left(S_{1}, \mathcal{S}_{1}\right)$ to $\left(S_{2}, \mathcal{S}_{2}\right)$. Then
(1) (f, F) is continuous if $G \in \tau_{2} \Longrightarrow F^{\leftarrow}(G) \in \tau_{1}$.
(2) (f, F) is cocontinuous if $K \in \kappa_{2} \Longrightarrow f^{\leftarrow}(K) \in \kappa_{1}$.
(3) (f, F) is bicontinuous if it is continuous and cocontinuous.

The reader is referred to [8] for terms related to lattice theory that are not defined here.

2. The commutativity and associativity direlations

In this section we introduce two direlations which will play an important role in the study of di-operations on a texture.
2.1. Definition. Let (S, \mathcal{S}) be a texture.
(1) The direlation (c, C) on $(S \times S, \mathcal{S} \otimes \mathcal{S})$ defined by

$$
\begin{aligned}
c & =\bigvee\left\{\bar{P}_{\left(\left(s_{1}, s_{2}\right),\left(s_{2}, s_{1}\right)\right)} \mid s_{1}, s_{2} \in S\right\} \\
C & =\bigcap\left\{\bar{Q}_{\left(\left(s_{1}, s_{2}\right),\left(s_{2}, s_{1}\right)\right)} \mid s_{1}, s_{2} \in S^{b}\right\}
\end{aligned}
$$

is called the commutativity direlation on (S, \mathcal{S}).
(2) The direlation (a, A) from $(S \times(S \times S), \mathcal{S} \otimes(\mathcal{S} \otimes \mathcal{S}))$ to $((S \times S) \times S,(\mathcal{S} \otimes \mathcal{S}) \otimes \mathcal{S})$ defined by
$a=\bigvee\left\{\bar{P}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right),\left(\left(s_{1}, s_{2}\right), s_{3}\right)\right)} \mid s_{1}, s_{2}, s_{3} \in S\right\}$
$A=\bigcap\left\{\bar{Q}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right),\left(\left(s_{1}, s_{2}\right), s_{3}\right)\right)} \mid s_{1}, s_{2}, s_{3} \in S^{b}\right\}$
is called the associativity direlation on (S, S).

It is easy to verify that (c, C) and (a, A) are indeed direlations. In fact, (c, C) is the bijective difunction from $(S \times S, \mathcal{S} \otimes \mathcal{S})$ to $(S \times S, \mathcal{S} \otimes \mathcal{S})$ corresponding, in the sense of ([7], Lemma 3.8), to the textural isomorphism [1] $\varphi: S \times S \rightarrow S \times S,\left(s_{1}, s_{2}\right) \mapsto$ $\left(s_{2}, s_{1}\right)$. Likewise, (a, A) is the bijective difunction corresponding to the isomorphism $\psi: S \times(S \times S) \rightarrow(S \times S) \times S,\left(s_{1},\left(s_{2}, s_{3}\right)\right) \mapsto\left(\left(s_{1}, s_{2}\right), s_{3}\right)$.
2.2. Lemma. Let (c, C) be the commutativity direlation on (S, S). Then $c \circ c=i_{S \times S}$ and $C \circ C=I_{S \times S}$.

Proof. To prove the first result it is sufficient to show that $c \circ c \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\right)}$ if and only if $P_{\left(s_{1}, s_{2}\right)} \nsubseteq Q_{\left(t_{1}, t_{2}\right)}$.
\Longrightarrow. We have $\bar{P}_{\left(\left(s_{1}, s_{2}\right),\left(t_{1}^{\prime}, t_{2}^{\prime}\right)\right)} \notin \bar{Q}_{\left(\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\right)}$ so that for some $\left(u_{1}, u_{2}\right) \in S \times S$, $c \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right),\left(u_{1}, u_{2}\right)\right)}, c \nsubseteq \bar{Q}_{\left(\left(u_{1}, u_{2}\right),\left(t_{1}^{\prime}, t_{2}^{\prime}\right)\right)}$. From here, $P_{\left(s_{2}, s_{1}\right)} \nsubseteq Q_{\left(u_{1}, u_{2}\right)}$ and $P_{\left(u_{2}, u_{1}\right)} \nsubseteq$ $Q_{\left(t_{1}^{\prime}, t_{2}^{\prime}\right)}$. Hence, $P_{s_{2}} \nsubseteq Q_{u_{1}}, P_{u_{1}} \nsubseteq Q_{t_{2}^{\prime}}$ which gives $P_{s_{2}} \nsubseteq Q_{t^{\prime}}$, and $P_{s_{1}} \nsubseteq Q_{u_{2}}, P_{u_{2}} \nsubseteq$ $Q_{t_{1}^{\prime}}$, which gives $P_{s_{1}} \nsubseteq Q_{t_{1}^{\prime}}$. On the other hand $P_{\left(t_{1}^{\prime}, t_{2}^{\prime}\right)} \nsubseteq Q_{\left(t_{1}, t_{2}\right)}$, and we deduce $P_{\left(s_{1}, s_{2}\right)} \notin Q_{\left(t_{1}, t_{2}\right)}$, as required.
\Longleftarrow. From $P_{\left(s_{1}, s_{2}\right)} \nsubseteq Q_{\left(t_{1}, t_{2}\right)}$ we have $P_{s_{k}} \nsubseteq Q_{t_{k}}$, so we may take $u_{k} \in S$ with $P_{s_{k}} \nsubseteq Q_{u_{k}}, P_{u_{k}} \notin Q_{t_{k}}, k=1,2$. Also we may take $u_{k}^{\prime} \in S$ satisfying $P_{s_{k}} \notin Q_{u_{k}^{\prime}}$, $P_{u_{k}^{\prime}} \nsubseteq Q_{u_{k}}, k=1,2$. We see that $c \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right),\left(u_{2}^{\prime}, u_{1}^{\prime}\right)\right)}$ and $c \nsubseteq \bar{Q}_{\left(\left(u_{2}^{\prime}, u_{1}^{\prime}\right),\left(u_{1}, u_{2}\right)\right)}$, whence $\bar{P}_{\left(\left(s_{1}, s_{2}\right),\left(u_{1}, u_{2}\right)\right)} \subseteq c \circ c$. But $P_{\left(u_{1}, u_{2}\right)} \nsubseteq Q_{\left(t_{1}, t_{2}\right)}$ which gives $c \circ c \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\right)}$, as required.

The proof of $C \circ C=I_{S \times S}$ is dual to the above.
2.3. Lemma. Let (a, A) be the associativity direlation on (S, S) and $(a, A)^{\leftarrow}=\left(A^{\leftarrow}, a^{\leftarrow}\right)$ its inverse. Then
(1) $A^{\leftarrow}=\bigvee\left\{\bar{P}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(s_{1},\left(s_{2}, s_{3}\right)\right)\right)} \mid s_{1}, s_{2}, s_{3} \in S\right\}$.
(2) $a^{\leftarrow}=\bigcap\left\{\bar{Q}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(s_{1},\left(s_{2}, s_{3}\right)\right)\right)} \mid s_{1}, s_{2}, s_{3} \in S^{b}\right\}$.
(3) $a \circ A^{\leftarrow}=i_{(S \times S) \times S}$ and $A \circ a^{\leftarrow}=I_{(S \times S) \times S}$.
(4) $A^{\leftarrow} \circ a=i_{S \times(S \times S)}$ and $a^{\leftarrow} \circ A=I_{S \times(S \times S)}$.

Proof. (1) Denote the right hand side by r and suppose first that $A^{\leftarrow} \nsubseteq r$. Then we have $\bar{P}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right),\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)} \nsubseteq A$ with $\bar{P}_{\left(\left(\left(t_{1}, t_{2}\right), t_{3}\right),\left(s_{1},\left(s_{2}, s_{3}\right)\right)\right)} \nsubseteq r$. By the definition of A we have $P_{\left(\left(t_{1}, t_{2}\right), t_{3}\right)} \nsubseteq Q_{\left(\left(s_{1}, s_{2}\right), s_{3}\right)}$, whence $P_{t_{k}} \nsubseteq Q_{s_{k}}$ for $k=1,2,3$. Hence $P_{s_{k}} \subseteq P_{t_{k}}, k=1,2,3$, so $\bar{P}_{\left(\left(\left(t_{1}, t_{2}\right), t_{3}\right),\left(s_{1},\left(s_{2}, s_{3}\right)\right)\right)} \subseteq \bar{P}_{\left(\left(\left(t_{1}, t_{2}\right), t_{3}\right),\left(t_{1},\left(t_{2}, t_{3}\right)\right)\right)} \subseteq r$, which is a contradiction.

Conversely, if $r \not \subset A^{\leftarrow}$ we have $\bar{P}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(s_{1},\left(s_{2}, s_{3}\right)\right)\right)} \nsubseteq \bar{Q}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(t_{1},\left(t_{2}, t_{3}\right)\right)\right)}$ satisfying $\bar{P}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(t_{1},\left(t_{2}, t_{3}\right)\right)\right)} \nsubseteq A^{\leftarrow}$. Then $\bar{P}_{\left(\left(t_{1},\left(t_{2}, t_{3}\right)\right),\left(\left(s_{1}, s_{2}\right), s_{3}\right)\right)} \nsubseteq A$ since $P_{s_{k}} \not \subset$ $Q_{t_{k}}, k=1,2,3$, and we obtain the contradiction $\bar{P}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(t_{1},\left(t_{2}, t_{3}\right)\right)\right)} \subseteq A^{\leftarrow}$ by [5, Lemma 2.4 (1)].
(2) Dual to (1).
(3) We need only show $a \circ A^{\leftarrow}=i$, since then $A \circ a^{\leftarrow}=\left(a \circ A^{\leftarrow}\right)^{\leftarrow}=i^{\leftarrow}=I$.

Suppose first that $a \circ A^{\leftarrow} \nsubseteq i$. Then we have $s_{k}, t_{k} \in S, k=1,2,3$ so that $a \circ A^{\leftarrow} \nsubseteq$ $\bar{Q}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)}$ and $\bar{P}_{\left.\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)\right)} \nsubseteq i$. Now we have $t_{k}^{\prime} \in S, k=$ $1,2,3$, so that $\bar{P}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right), t_{3}^{\prime}\right)\right)} \notin \bar{Q}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)}$ and $u_{k} \in S, k=1,2,3$ with $A^{\leftarrow} \nsubseteq \bar{Q}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(u_{1},\left(u_{2}, u_{3}\right)\right)\right)}$ and $a \nsubseteq \bar{Q}_{\left(\left(\left(u_{1},\left(u_{2}, u_{3}\right)\right),\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right), t_{3}^{\prime}\right)\right)\right.}$. By (1) and the definition of a we deduce $P_{s_{k}} \nsubseteq Q_{u_{k}}, P_{u_{k}} \nsubseteq Q_{t_{k}^{\prime}}$ for $k=1,2,3$. Also, $P_{t_{k}^{\prime}} \nsubseteq Q_{t_{k}}$, so $P_{s_{k}} \nsubseteq Q_{t_{k}}$ and hence $P_{t_{k}} \subseteq P_{s_{k}}, k=1,2,3$. But now $\bar{P}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)} \subseteq$ $\bar{P}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(\left(s_{1}, s_{2}\right), s_{3}\right)\right)} \subseteq i$, which is a contradiction. This shows that $a \circ A^{\leftarrow} \subseteq i$.

Now suppose that $i \nsubseteq a \circ A^{\leftarrow}$. Then we have $s_{k}, t_{k} \in S$ for which $i \nsubseteq \bar{Q}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)}$ and $\bar{P}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)} \nsubseteq a \circ A^{\leftarrow}$. The first gives us $P_{s_{k}} \nsubseteq Q_{t_{k}}, k=1,2,3$. Choose $u_{k} \in S, k=1,2,3$ satisfying $P_{s_{k}} \nsubseteq Q_{u_{k}}$ and $P_{u_{k}} \nsubseteq Q_{t_{k}}$. Then by (1), $A^{\leftarrow} \nsubseteq \bar{Q}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(u_{1},\left(u_{2}, u_{3}\right)\right)\right)}$ and by the definition of $a, a \nsubseteq \bar{Q}_{\left(\left(u_{1},\left(u_{2}, u_{3}\right)\right),\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)}$. Hence $\bar{P}_{\left(\left(\left(s_{1}, s_{2}\right), s_{3}\right),\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)} \subseteq a \circ A^{\leftarrow}$, which is a contradiction. This verifies that $i \subseteq a \circ A^{\leftarrow}$, as required.
(4) Dual to (3).

3. Commutativity and associativity of di-operations

Let us begin by making precise the notion of di-operation on a texture (S, \mathcal{S}).
3.1. Definition. Let (S, S) be a texture. Then a difunction (\squarefrom $(S \times S, \mathcal{S} \otimes \mathcal{S})$ to (S, \mathcal{S}) is called a (binary) di-operation on (S, \mathcal{S}).

In this section we define the commutativity and associativity of di-operations in terms of the commutativity and associativity direlations. However, the definitions do not rely on the fact that a di-operation is a difunction and so we will define these concepts for general direlations from $(S \times S, \mathcal{S} \otimes \mathcal{S})$ to (S, \mathcal{S}).
3.2. Definition. Let (r, R) be a direlation from $(S \times S, \mathcal{S} \otimes \mathcal{S})$ to (S, \mathcal{S}). Then
(1) r is commutative if $r=r \circ c$.
(2) R is commutative if $R=R \circ C$.
(3) (r, R) is commutative if r and R are commutative. In particular a binary dioperation (\square, \square) on $(S, \mathcal{S}$) is commutative if it is commutative as a direlation from $(S \times S, \mathcal{S} \otimes \mathcal{S})$ to (S, \mathcal{S}).

In this definition (c, C) is the commutativity direlation on (S, \mathcal{S}). The above definition gives rise to the following commutative diagram.

The definition of associativity requires a notion of product for direlations. This is detailed in the next lemma.
3.3. Lemma. Let $\left(S_{k}, S_{k}\right),\left(T_{k}, \mathcal{T}_{k}\right)$ be textures and $\left(r_{k}, R_{k}\right)$ direlations from $\left(S_{k}, S_{k}\right)$ to $\left(T_{k}, \mathcal{T}_{k}\right), k=1,2$. Then
(1) $r_{1} \times r_{2}=\bigvee\left\{\bar{P}_{\left(\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\right)} \mid r_{k} \not \subset \bar{Q}_{\left(s_{k}, t_{k}\right)}, k=1,2\right\}$ is a relation from $\left(S_{1} \times\right.$ $\left.S_{2}, S_{1} \otimes \mathcal{S}_{2}\right)$ to $\left(T_{1} \times T_{2}, \mathcal{T}_{1} \otimes \mathcal{T}_{2}\right)$.
(2) $R_{1} \times R_{2}=\bigcap\left\{\bar{Q}_{\left(\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\right)} \mid \bar{P}_{\left(s_{k}, t_{k}\right)} \nsubseteq R_{k}, k=1,2\right\}$ is a corelation from $\left(S_{1} \times S_{2}, \mathcal{S}_{1} \otimes \mathcal{S}_{2}\right)$ to $\left(T_{1} \times T_{2}, \mathcal{T}_{1} \otimes \mathcal{T}_{2}\right)$.
(3) $\left(r_{1}, R_{1}\right) \times\left(r_{2}, R_{2}\right)=\left(r_{1} \times r_{2}, R_{1} \times R_{2}\right)$ is a direlation from $\left(S_{1} \times S_{2}, \mathcal{S}_{1} \otimes \mathcal{S}_{2}\right)$ to ($T_{1} \times T_{2}, \mathcal{T}_{1} \otimes \mathcal{T}_{2}$). In particular, if $\left(r_{k}, R_{k}\right), k=1,2$ are difunctions then $\left(r_{1}, R_{1}\right) \times\left(r_{2}, R_{2}\right)$ is a difunction.

Proof. Straightforward.
Now we may give:
3.4. Definition. Let (r, R) be a direlation from $(S \times S, \mathcal{S} \otimes \mathcal{S})$ to (S, \mathcal{S}). Then
(1) r is called associative if $r \circ(i \times r)=r \circ(r \times i) \circ a$.
(2) R is called associative if $R \circ(I \times R)=R \circ(R \times I) \circ A$.
(3) (r, R) is called associative if r and R are associative. In particular a binary di-operation ($\square, \square)$ on (S, S) is associative if it is associative as a direlation from $(S \times S, \mathcal{S} \otimes \mathcal{S})$ to (S, \mathcal{S}).
In this definition (a, A) is the associativity direlation and (i, I) the identity direlation on (S, \mathcal{S}). The associativity of (r, R) may be illustrated by the following commutative diagram.

It will be useful to have point-based characterizations of commutativity and associativity, and these are the subject of the following two theorems.
3.5. Theorem. Let (r, R) be a direlation from $(S \times S, \mathcal{S} \otimes \mathcal{S})$ to (S, S).
(1) r is commutative if and only if
$r \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right), s\right)} \Longleftrightarrow r \nsubseteq \bar{Q}_{\left(\left(s_{2}, s_{1}\right), s\right)} \forall s_{1}, s_{2}, s \in S$.
(2) R is commutative if and only if

$$
\bar{P}_{\left(\left(s_{1}, s_{2}\right), s\right)} \nsubseteq R \Longleftrightarrow \bar{P}_{\left(\left(s_{2}, s_{1}\right), s\right)} \nsubseteq R \forall s_{1}, s_{2}, s \in S .
$$

Proof. Straightforward.
3.6. Theorem. Let (r, R) be a direlation from $(S \times S, \mathcal{S} \otimes \mathcal{S})$ to (S, \mathcal{S}).
(1) r is associative if and only if the following are equivalent $\forall s_{1}, s_{2}, s_{3}, w \in S$.
(i) There exists $u \in S$ with $r \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right), u\right)}$ and $r \nsubseteq \bar{Q}_{\left(\left(u, s_{3}\right), w\right)}$.
(ii) There exists $v \in S$ with $r \nsubseteq \bar{Q}_{\left(\left(s_{2}, s_{3}\right), v\right)}$ and $r \nsubseteq \bar{Q}_{\left(\left(s_{1}, v\right), w\right)}$.
(2) R is associative if and only if the following are equivalent $\forall s_{1}, s_{2}, s_{3}, w \in S$.
(i) There exists $u \in S$ with $\bar{P}_{\left(\left(s_{1}, s_{2}\right), u\right)} \nsubseteq R$ and $\bar{P}_{\left(\left(u, s_{3}\right), w\right)} \nsubseteq R$.
(ii) There exists $v \in S$ with $\bar{P}_{\left(\left(s_{2}, s_{3}\right), v\right)} \nsubseteq R$ and $\bar{P}_{\left(\left(s_{1}, v\right), w\right)} \nsubseteq R$.

Proof. We outline the proof of (1), leaving the proof of the dual result (2) to the reader.
Suppose first that $r \circ(r \times i) \circ a \subseteq r \circ(i \times r)$. Given $s_{1}, s_{2}, s_{3}, w \in S$, suppose we have $u \in S$ satisfying $r \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right), u\right)}$ and $r \nsubseteq \bar{Q}_{\left(\left(u, s_{3}\right), w\right)}$. It may be verified that $r \circ(r \times i) \circ a \notin \bar{Q}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right), w\right)}$. Hence, by hypothesis, $r \circ(i \times r) \nsubseteq \bar{Q}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right), w\right)}$. Now we have $w^{\prime} \in S$ with $P_{w^{\prime}} \nsubseteq Q_{w}$ and $t^{\prime}, v^{\prime} \in S$ satisfying $i \times r \nsubseteq \bar{Q}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right),\left(t^{\prime}, v^{\prime}\right)\right)}$ and $r \nsubseteq \bar{Q}_{\left(\left(t^{\prime}, v^{\prime}\right), w^{\prime}\right)}$. Hence for some $t, v \in S$ with $P_{(t, v)} \nsubseteq Q_{\left(t^{\prime}, v^{\prime}\right)}$ we have $i \nsubseteq \bar{Q}_{\left(s_{1}, t\right)}$ and $r \nsubseteq \bar{Q}_{\left(\left(s_{2}, s_{3}\right), v\right)}$. We see that $P_{\left(s_{1}, v\right)} \nsubseteq Q_{\left(t^{\prime}, v^{\prime}\right)}$, whence $r \nsubseteq \bar{Q}_{\left(\left(s_{1}, v\right), w^{\prime}\right)}$ by R1, and so $r \nsubseteq \bar{Q}_{\left(\left(s_{1}, v\right), w\right)}$ since $Q_{w} \subseteq Q_{w^{\prime}}$. This verifies (ii), and we have established that $(i) \Longrightarrow(i i)$.

Conversely, suppose that (i) (ii) but that $r \circ(r \times i) \circ a \nsubseteq r \circ(i \times r)$. We have $s_{1}, s_{2}, s_{3}, w \in S$ with $\bar{P}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right), w\right)} \nsubseteq r \circ(i \times r)$, so that $a \nsubseteq \bar{Q}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right),\left(\left(s_{1}^{\prime}, s_{2}^{\prime}\right), s_{3}^{\prime}\right)\right)}$, $r \times i \nsubseteq \bar{Q}_{\left(\left(\left(s_{1}^{\prime}, s_{2}^{\prime}\right), s_{3}^{\prime}\right),\left(u^{\prime}, t^{\prime}\right)\right)}$ and $r \nsubseteq \bar{Q}_{\left(\left(u^{\prime}, t^{\prime}\right), w\right)}$ for some $s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}, u^{\prime}, t^{\prime} \in S$. We deduce $P_{s_{k}} \not \subset Q_{s_{k}^{\prime}}, k=1,2,3$, so we may write $r \times i \nsubseteq \bar{Q}_{\left(\left(\left(s_{1}^{\prime}, s_{2}\right), s_{3}\right),\left(u^{\prime}, t^{\prime}\right)\right)}$ by definition, and then we have $u, t \in S$ with $P_{(u, t)} \nsubseteq Q_{\left(u^{\prime}, t^{\prime}\right)}, r \nsubseteq \bar{Q}_{\left(\left(s_{1}^{\prime}, s_{2}\right), u\right)}$ and $i \nsubseteq \bar{Q}_{\left(s_{3}, t\right)}$. This gives $P_{\left(u, s_{3}\right)} \notin Q_{\left(u^{\prime}, t^{\prime}\right)}$, whence $r \nsubseteq \bar{Q}_{\left(\left(u, s_{3}\right), w\right)}$ by R1. By hypothesis we now have $v \in S$
satisfying $r \nsubseteq \bar{Q}_{\left(\left(s_{2}, s_{3}\right), v\right)}$ and $r \nsubseteq \bar{Q}_{\left(\left(s_{1}^{\prime}, v\right), w\right)}$. Now we have $v^{\prime} \in S$ with $P_{v^{\prime}} \nsubseteq Q_{v}$ and $r \nsubseteq \bar{Q}_{\left(\left(s_{2}, s_{3}\right), v^{\prime}\right)}$. Also we may take $s_{1}^{\prime \prime} \in S$ satisfying $P_{s_{1}} \nsubseteq Q_{s_{1}^{\prime \prime}}$ and $P_{s_{1}^{\prime \prime}} \nsubseteq Q_{s_{1}^{\prime}}$, whence $i \nsubseteq \bar{Q}_{\left(s_{1}, s_{1}^{\prime \prime}\right)}$. This now gives $\bar{P}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right),\left(s_{1}^{\prime \prime}, v^{\prime}\right)\right)} \subseteq i \times r$ and so $i \times r \nsubseteq \bar{Q}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right),\left(s_{1}^{\prime}, v\right)\right)}$. With $r \nsubseteq \bar{Q}_{\left(\left(s_{1}^{\prime}, v\right), w\right)}$ this gives the contradiction $\bar{P}_{\left(\left(s_{1},\left(s_{2}, s_{3}\right)\right), w\right)} \subseteq r \circ(i \times r)$, and we have established $r \circ(r \times i) \circ a \subseteq r \circ(i \times r)$.

Using Lemma $2.3(1)$ we may verify in the same way that $(i i) \Longrightarrow(i)$ is equivalent to $r \circ(i \times r) \circ A^{\leftarrow} \subseteq r \circ(r \times i)$, and this is equivalent to $r \circ(i \times r) \subseteq r \circ(r \times i) \circ a$ by Lemma 2.3 (4). This completes the proof of (1).

4. Operations on direlations and difunctions

Now let $\left(r_{k}, R_{k}\right), k=1,2$ be direlations from (S, \mathcal{S}) to (T, \mathcal{T}) and suppose ($\left.\square, \square\right)$ is a binary di-operation on (T, \mathcal{T}). We wish to apply (\square, \square) to obtain a new direlation from (S, \mathcal{S}) to (T, \mathcal{T}). We begin by defining a direlation $\left(r_{1}, R_{1}\right) \cdot\left(r_{2}, R_{2}\right)$ from (S, \mathcal{S}) to $(T \times T, \mathcal{T} \otimes \mathcal{T})$.
4.1. Lemma. Let $\left(r_{k}, R_{k}\right), k=1,2$ be direlations from (S, \mathcal{S}) to (T, \mathcal{T}). Then
(1) $r_{1} \cdot r_{2}=\bigvee\left\{\bar{P}_{\left(s,\left(t_{1}, t_{2}\right)\right)} \mid \exists u \in S\right.$ with $\left.P_{s} \nsubseteq Q_{u}, r_{1} \nsubseteq \bar{Q}_{\left(u, t_{1}\right)}, r_{2} \nsubseteq \bar{Q}_{\left(u, t_{2}\right)}\right\}$ is a relation from (S, S) to $(T \times T, \mathcal{T} \otimes \mathcal{T})$.
(2) $R_{1} \cdot R_{2}=\bigcap\left\{\bar{Q}_{\left(s,\left(t_{1}, t_{2}\right)\right)} \mid \exists u \in S\right.$ with $\left.P_{u} \nsubseteq Q_{s}, \bar{P}_{\left(u, t_{1}\right)} \nsubseteq R_{1}, \bar{P}_{\left(u, t_{2}\right)} \nsubseteq R_{2}\right\}$ is a corelation from (S, \mathcal{S}) to $(T \times T, \mathcal{T} \otimes \mathcal{T})$.
(3) If $\left(f_{k}, F_{k}\right), k=1,2$ are difunctions from (S, \mathcal{S}) to (T, \mathcal{T}) then the direlation $\left(f_{1}, F_{1}\right) \cdot\left(f_{2}, F_{2}\right)=\left(f_{1} \cdot f_{2}, F_{1} \cdot F_{2}\right)$ is a difunction from (S, \mathcal{S}) to $(T \times T, \mathcal{T} \otimes \mathcal{T})$.
Proof. Straightforward.
It will be noted that $\left(f_{1}, F_{1}\right) \cdot\left(f_{2}, F_{2}\right)$ is a special case of the difuncton $\left\langle\left(f_{j}, F_{j}\right)\right\rangle$ considered in [6, Theorem 3.10].
4.2. Proposition. Let $\left(r_{k}, R_{k}\right), k=1,2$ be direlations from (S, \mathcal{S}) to (T, \mathcal{T}) and (c, C) the commutativity direlation on (T, \mathcal{T}). Then

$$
\left(r_{2}, R_{2}\right) \cdot\left(r_{1}, R_{1}\right)=(c, C) \circ\left(\left(r_{1}, R_{1}\right) \cdot\left(r_{2}, R_{2}\right)\right)
$$

Proof. We establish $r_{2} \cdot r_{1}=c \circ\left(r_{1} \cdot r_{2}\right)$, leaving the dual result $R_{2} \cdot R_{1}=C \circ\left(R_{1} \cdot R_{2}\right)$ to the reader.

First suppose that $r_{2} \cdot r_{1} \nsubseteq c \circ\left(r_{1} \cdot r_{2}\right)$. Then we have $s \in S, t_{1}, t_{2} \in T$ with $r_{2} \cdot r_{1} \nsubseteq \bar{Q}_{\left(s,\left(t_{1}, t_{2}\right)\right)}$ and $\bar{P}_{\left(s,\left(t_{1}, t_{2}\right)\right)} \nsubseteq c \circ\left(r_{1} \cdot r_{2}\right)$. Now we may take $t_{1}^{\prime}, t_{2}^{\prime} \in T$ satisfying $\bar{P}_{\left(s,\left(t_{1}^{\prime}, t_{2}^{\prime}\right)\right)} \not \subset \bar{Q}_{\left(s,\left(t_{1}, t_{2}\right)\right)}$ for which we have $u \in S$ with $P_{s} \nsubseteq Q_{u}, r_{2} \nsubseteq \bar{Q}_{\left(u, t_{1}^{\prime}\right)}$ and $r_{1} \nsubseteq \bar{Q}_{\left(u, t_{2}^{\prime}\right)}$. Finally, take $v_{1}, v_{2} \in T$ satisfying $r_{2} \nsubseteq \bar{Q}_{\left(u, v_{1}\right)}, P_{v_{1}} \nsubseteq Q_{t_{1}^{\prime}}$ and $r_{1} \notin$ $\bar{Q}_{\left(u, v_{2}\right)}, P_{v_{2}} \not \subset Q_{t_{2}^{\prime}}$. Now $\bar{P}_{\left(s,\left(v_{2}, v_{1}\right)\right)} \subseteq r_{1} \cdot r_{2}$ and so $r_{1} \cdot r_{2} \nsubseteq \bar{Q}_{\left(s,\left(t_{2}^{\prime}, t_{1}^{\prime}\right)\right)}$. On the other hand, $\bar{P}_{\left(\left(t_{2}^{\prime}, t_{1}^{\prime}\right),\left(t_{1}^{\prime}, t_{2}^{\prime}\right)\right)} \notin \bar{Q}_{\left(\left(t_{2}^{\prime}, t_{1}^{\prime}\right),\left(t_{1}, t_{2}\right)\right)}$ and so $c \notin \bar{Q}_{\left(\left(t_{2}^{\prime}, t_{1}^{\prime}\right),\left(t_{1}, t_{2}\right)\right)}$, which implies that $\bar{P}_{\left(s,\left(t_{1}, t_{2}\right)\right)} \subseteq c \circ\left(r_{1} \cdot r_{2}\right)$. This contradiction establishes $r_{2} \cdot r_{1} \subseteq c \circ\left(r_{1} \cdot r_{2}\right)$.

To obtain the reverse inclusion, interchange r_{1} and r_{2} in the above, and compose each side with c. According to [5, Proposition 2.17], we have

$$
c \circ\left(r_{1} \cdot r_{2}\right) \subseteq c \circ\left(c \circ\left(r_{2} \cdot r_{1}\right)\right)=(c \circ c) \circ\left(r_{2} \cdot r_{1}\right)
$$

But $c \circ c=i_{T \times T}$ by Lemma 2.2, and we obtain $c \circ\left(r_{1} \cdot r_{2}\right) \subseteq r_{2} \cdot r_{1}$ as required.
4.3. Proposition. Let $\left(r_{k}, R_{k}\right), k=1,2,3$ be direlations from (S, \mathcal{S}) to (T, \mathcal{T}) and (a, A) the associativity direlation on (T, \mathcal{T}). Then

$$
\left(\left(r_{1}, R_{1}\right) \cdot\left(r_{2}, R_{2}\right)\right) \cdot\left(r_{3}, R_{3}\right)=(a, A) \circ\left[\left(r_{1}, R_{1}\right) \cdot\left(\left(r_{2}, R_{2}\right) \cdot\left(r_{3}, R_{3}\right)\right)\right]
$$

Proof. We verify $\left(r_{1} \cdot r_{2}\right) \cdot r_{3}=a \circ\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right)$, leaving the proof of the dual result $\left(R_{1} \cdot R_{2}\right) \cdot R_{3}=A \circ\left(R_{1} \cdot\left(R_{2} \cdot R_{3}\right)\right)$ to the reader.

First suppose $\left(r_{1} \cdot r_{2}\right) \cdot r_{3} \nsubseteq a \circ\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right)$. Then we have $s \in S, t_{k}^{\prime} \in T, k=1,2,3$ with $\left(r_{1} \cdot r_{2}\right) \cdot r_{3} \nsubseteq \bar{Q}_{\left(s,\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right), t_{3}^{\prime}\right)\right)}$ and $\bar{P}_{\left(s,\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right), t_{3}^{\prime}\right)\right)} \nsubseteq a \circ\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right)$. Now we have $t_{k} \in T, k=1,2,3$ with $\bar{P}_{\left(s,\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)} \nsubseteq \bar{Q}_{\left(s,\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right), t_{3}^{\prime}\right)\right)}$ for which there exists $u \in S$ satisfying $P_{s} \nsubseteq Q_{u}, r_{1} \cdot r_{2} \nsubseteq \bar{Q}_{\left(u,\left(t_{1}, t_{2}\right)\right)}$ and $r_{3} \nsubseteq \bar{Q}_{\left(u, t_{3}\right)}$. Now we have $v_{1}, v_{2} \in T$ with $\bar{P}_{\left(u,\left(v_{1}, v_{2}\right)\right)} \nsubseteq \bar{Q}_{\left(u,\left(t_{1}, t_{2}\right)\right)}$ for which there exists $w \in S$ satisfying $P_{u} \nsubseteq Q_{w}, r_{1} \nsubseteq \bar{Q}_{\left(w, v_{1}\right)}$ and $r_{2} \nsubseteq \bar{Q}_{\left(w, v_{2}\right)}$. Choose $u^{\prime} \in S$ satisfying $P_{s} \nsubseteq Q_{u^{\prime}}$ and $P_{u^{\prime}} \nsubseteq Q_{u}$. Then:
(i) $r_{1} \nsubseteq \bar{Q}_{\left(u^{\prime}, v_{1}\right)}$.
(ii) $r_{2} \nsubseteq \bar{Q}_{\left(u, v_{2}\right)}$. Choose $v_{2}^{\prime} \in T$ satisfying $r_{2} \nsubseteq \bar{Q}_{\left(u, v_{2}^{\prime}\right)}$ and $\bar{P}_{\left(u, v_{2}^{\prime}\right)} \nsubseteq \bar{Q}_{\left(u, v_{2}\right)}$.
(iii) $r_{3} \nsubseteq \bar{Q}_{\left(u, t_{3}\right)}$. Choose $v_{3} \in T$ satisfying $r_{3} \nsubseteq \bar{Q}_{\left(u, v_{3}\right)}$ and $\bar{P}_{\left(u, v_{3}\right)} \notin \bar{Q}_{\left(u, t_{3}\right)}$ and then $v_{3}^{\prime} \in T$ with $r_{3} \nsubseteq \bar{Q}_{\left(u, v_{3}^{\prime}\right)}$ and $\bar{P}_{\left(u, v_{3}^{\prime}\right)} \nsubseteq \bar{Q}_{\left(u, v_{3}\right)}$.
From (iii) and (ii) we see $\bar{P}_{\left(u^{\prime},\left(v_{2}^{\prime}, v_{3}^{\prime}\right)\right)} \subseteq r_{2} \cdot r_{3}$, whence $r_{2} \cdot r_{3} \nsubseteq \bar{Q}_{\left(u^{\prime},\left(v_{2}, v_{3}\right)\right)}$. Together with (i) this gives $\bar{P}_{\left(s,\left(u_{1},\left(u_{2}, u_{3}\right)\right)\right)} \subseteq r_{1} \cdot\left(r_{2} \cdot r_{3}\right)$, and hence $r_{1} \cdot\left(r_{2} \cdot r_{3}\right) \nsubseteq \bar{Q}_{\left(s,\left(t_{1},\left(t_{2}, t_{3}\right)\right)\right)}$. On the other hand $\bar{P}_{\left(\left(t_{1},\left(t_{2}, t_{3}\right)\right),\left(\left(t_{1}, t_{2}\right), t_{3}\right)\right)} \subseteq a$. Hence $a \nsubseteq \bar{Q}_{\left(\left(t_{1},\left(t_{2}, t_{3}\right)\right),\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right), t_{3}^{\prime}\right)\right), \text { which }}$ leads to the contradiction $\bar{P}_{\left(s,\left(\left(t_{1}^{\prime}, t_{2}^{\prime}\right), t_{3}^{\prime}\right)\right)} \subseteq a \circ\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right)$. This proves the inclusion

$$
\left(r_{1} \cdot r_{2}\right) \cdot r_{3} \subseteq a \circ\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right) .
$$

In view of Lemma $2.3(1)$ an exactly analogous argument shows that $r_{1} \cdot\left(r_{2} \cdot r_{3}\right) \subseteq$ $A^{\leftarrow} \circ\left(\left(r_{1} \cdot r_{2}\right) \cdot r_{3}\right)$. Composing each side with a now gives

$$
a \circ\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right) \subseteq\left(a \circ A^{\leftarrow}\right) \circ\left(\left(r_{1} \cdot r_{2}\right) \cdot r_{3}\right)=i \circ\left(\left(r_{1} \cdot r_{2}\right) \cdot r_{3}\right)=\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right),
$$

by Lemma 2.3 (3). Combined with the previous inclusion this gives $\left(r_{1} \cdot r_{2}\right) \cdot r_{3}=a \circ\left(r_{1}\right.$. $\left(r_{2} \cdot r_{3}\right)$), as required.
4.4. Proposition. Let $\left(r_{k}, R_{k}\right)$ be direlations from $\left(S_{k}, S_{k}\right)$ to $\left(T_{k}, \mathcal{T}_{k}\right)$ and (p_{k}, P_{k}) direlations from (S, S) to $\left(S_{k}, \mathcal{S}_{k}\right), k=1,2$. Then

$$
\left[\left(r_{1}, R_{1}\right) \times\left(r_{2}, R_{2}\right)\right] \circ\left[\left(p_{1}, P_{1}\right) \cdot\left(p_{2}, P_{2}\right)\right]=\left[\left(r_{1}, R_{1}\right) \circ\left(p_{1}, P_{1}\right)\right] \cdot\left[\left(r_{2}, R_{2}\right) \circ\left(p_{2}, P_{2}\right)\right]
$$

Proof. We establish $\left(r_{1} \times r_{2}\right) \circ\left(p_{1} \cdot p_{2}\right)=\left(r_{1} \circ p_{1}\right) \cdot\left(r_{2} \circ p_{2}\right)$, leaving the proof of the dual result $\left(R_{1} \times R_{2}\right) \circ\left(P_{1} \cdot P_{2}\right)=\left(R_{1} \circ P_{1}\right) \cdot\left(R_{2} \circ P_{2}\right)$ to the reader.

Suppose $\left(r_{1} \times r_{2}\right) \circ\left(p_{1} \cdot p_{2}\right) \nsubseteq\left(r_{1} \circ p_{1}\right) \cdot\left(r_{2} \circ p_{2}\right)$. Then we have $s \in S, t_{k} \in T_{k}, k=1,2$ with $\bar{P}_{\left(s,\left(t_{1}, t_{2}\right)\right)} \not \subset\left(r_{1} \circ p_{1}\right) \cdot\left(r_{2} \circ p_{2}\right)$ and $s_{k} \in S_{k}, k=1,2$ so that $p_{1} \cdot p_{2} \not \subset \bar{Q}_{\left(s,\left(s_{1}, s_{2}\right)\right)}$ and $r_{1} \times r_{2} \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\right)}$. Now we have $s_{k}^{\prime} \in S_{k}, k=1,2$ with $\bar{P}_{\left(s,\left(s_{1}^{\prime}, s_{2}^{\prime}\right)\right)} \nsubseteq \bar{Q}_{\left(s,\left(s_{1}, s_{2}\right)\right)}$ and $u \in S$ satisfying $P_{s} \nsubseteq Q_{u}$ so that $p_{k} \nsubseteq \bar{Q}_{\left(u, s_{k}^{\prime}\right)}, k=1,2$. Also we have $v_{k} \in T_{k}$, $k=1,2$ so that $\bar{P}_{\left(\left(s_{1}, s_{2}\right),\left(v_{1}, v_{2}\right)\right)} \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\right)}$ and $r_{k} \nsubseteq \bar{Q}_{\left(s_{k}, v_{k}\right)}, k=1,2$. Since $P_{s_{k}^{\prime}} \nsubseteq Q_{s_{k}}$ we have $r_{k} \nsubseteq \bar{Q}_{\left(s_{k}^{\prime}, v_{k}\right)}$, so $\bar{P}_{\left(u, v_{k}\right)} \subseteq r_{k} \circ p_{k}, k=1,2$. But now $\bar{P}_{\left(s,\left(t_{1}, t_{2}\right)\right)} \subseteq$ $\left(r_{1} \circ p_{1}\right) \cdot\left(r_{2} \circ p_{2}\right)$, which is a contradiction.

Now suppose $\left(r_{1} \circ p_{1}\right) \cdot\left(r_{2} \circ p_{2}\right) \nsubseteq\left(r_{1} \times r_{2}\right) \circ\left(p_{1} \cdot p_{2}\right)$. Then we have $t_{k} \in T_{k}$ with $\bar{P}_{\left(s,\left(t_{1}, t_{2}\right)\right)} \nsubseteq\left(r_{1} \times r_{2}\right) \circ\left(p_{1} \cdot p_{2}\right)$, for which there exists $P_{s} \nsubseteq Q_{u}$ so that $r_{k} \circ p_{k} \not \subset \bar{Q}_{\left(u, t_{k}\right)}$, $k=1,2$. Now we have $t_{k}^{\prime} \in T_{k}$ with $\bar{P}_{\left(u, t_{k}^{\prime}\right)} \notin \bar{Q}_{\left(u, t_{k}\right)}$ for which there exists $s_{k} \in S_{k}$ with $p_{k} \nsubseteq \bar{Q}_{\left(u, s_{k}\right)}$ and $r_{k} \nsubseteq \bar{Q}_{\left(s_{k}, t_{k}^{\prime}\right)}, k=1,2$. Choose $s_{k}^{\prime} \in S_{k}, k=1,2$ satisfying $p_{k} \nsubseteq \bar{Q}_{\left(u, s_{k}^{\prime}\right)}$ and $\bar{P}_{\left(u, s_{k}^{\prime}\right)} \nsubseteq \bar{Q}_{\left(u, s_{k}\right)}$. Now we have $\bar{P}_{\left(s,\left(s_{1}^{\prime}, s_{2}^{\prime}\right)\right)} \subseteq p_{1} \cdot p_{2}$ and so $p_{1} \cdot p_{2} \nsubseteq \bar{Q}_{\left(s,\left(s_{1}, s_{2}\right)\right)}$. On the other hand $\bar{P}_{\left(\left(s_{1}, s_{2}\right),\left(t_{1}^{\prime}, t_{2}^{\prime}\right)\right)} \subseteq r_{1} \times r_{2}$ and so $r_{1} \times r_{2} \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right),\left(t_{1}, t_{2}\right)\right)}$. But now $\bar{P}_{\left(s,\left(t_{1}, t_{2}\right)\right)} \subseteq\left(r_{1} \times r_{2}\right) \circ\left(p_{1} \cdot p_{2}\right)$, which is a contradiction.
4.5. Corollary. Let $\left(r_{k}, R_{k}\right), k=1,2,3$ be direlations from (S, \mathcal{S}) to $(T, \mathcal{T}),(i, I)$ the identity and (c, C) the commutativity direlation on (T, \mathcal{T}). Then

$$
\begin{aligned}
& ((i, I) \times(c, C)) \circ\left(\left(r_{1}, R_{1}\right) \cdot\left(\left(r_{2}, R_{2}\right) \cdot\left(r_{3}, R_{3}\right)\right)\right)=\left(r_{1}, R_{1}\right) \cdot\left(\left(r_{3}, R_{3}\right) \cdot\left(r_{2}, R_{2}\right)\right) \\
& ((c, C) \times(i, I)) \circ\left(\left(\left(r_{1}, R_{1}\right) \cdot\left(r_{2}, R_{2}\right)\right) \cdot\left(r_{3}, R_{3}\right)\right)=\left(\left(r_{2}, R_{2}\right) \cdot\left(r_{1}, R_{1}\right)\right) \cdot\left(r_{3}, R_{3}\right)
\end{aligned}
$$

Proof. $(i \times c) \circ\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right)=\left(i \circ r_{1}\right) \cdot\left(c \circ\left(r_{2} \cdot r_{3}\right)\right)=r_{1} \cdot\left(r_{3} \cdot r_{2}\right)$ by Proposition 4.4, [5, Proposition 2.17 (1)] and Proposition 4.2. The remaining equalities are proved likewise.

We will also find the following result useful when we come to discuss continuity.
4.6. Lemma. Let $\left(r_{k}, R_{k}\right)$ be direlations from (S, \mathcal{S}) to $\left(T_{k}, \mathcal{T}_{k}\right), k=1,2$. Then, for $A_{1} \in \mathcal{T}_{1}$,
(1) If $r_{2}^{\leftarrow}(\emptyset)=\emptyset$ then $\left(r_{1} \cdot r_{2}\right)^{\leftarrow}\left(A_{1} \times T_{2}\right)=r_{1}^{\leftarrow}\left(A_{1}\right)$,
(2) If $R_{2}^{\leftarrow}\left(T_{2}\right)=S$ then $\left(R_{1} \cdot R_{2}\right)^{\leftarrow}\left(A_{1} \times T_{2}\right)=R_{1}^{\leftarrow}\left(A_{1}\right)$.

Proof. We establish (1), the proof of (2) being dual.
Suppose first that $\left(r_{1} \cdot r_{2}\right)^{\leftarrow}\left(A_{1} \times T_{2}\right) \nsubseteq r_{1}^{\leftarrow}\left(A_{1}\right)$. Now we have $s \in S$ with $P_{s} \nsubseteq r_{1}^{\leftarrow}\left(A_{1}\right)$ for which $r_{1} \cdot r_{2} \nsubseteq \bar{Q}_{\left(s,\left(t_{1}, t_{2}\right)\right)} \Longrightarrow P_{\left(t_{1}, t_{2}\right)} \subseteq A_{1} \times T_{2} \Longrightarrow P_{t_{1}} \subseteq A_{1}$. Let us take $u \in S$ with $P_{s} \nsubseteq Q_{u}$ and $P_{u} \nsubseteq r_{1}^{\leftarrow}\left(A_{1}\right)$, whence we have $t_{1} \in T_{1}$ with $r_{1} \nsubseteq \bar{Q}_{\left(u, t_{1}\right)}$ and $P_{t_{1}} \nsubseteq A_{1}$. Also, $P_{u} \nsubseteq \emptyset=r_{2}^{\leftarrow}(\emptyset)$, by hypothesis, so we have $t_{2} \in T_{2}$ satisfying $r_{2} \nsubseteq \bar{Q}_{\left(u, t_{2}\right)}$. We may now deduce $r_{1} \cdot r_{2} \nsubseteq \bar{Q}_{\left(s,\left(t_{1}, t_{2}\right)\right)}$, and the above implications now lead to the contradiction $P_{t_{1}} \subseteq A_{1}$.

On the other hand, suppose $r_{1}^{\leftarrow}\left(A_{1}\right) \nsubseteq\left(r_{1} \cdot r_{2}\right)^{\leftarrow}\left(A_{1} \times T_{2}\right)$. Then we have $s \in S$ with $P_{s} \nsubseteq\left(r_{1} \cdot r_{2}\right) \leftarrow\left(A_{1} \times T_{2}\right)$ for which $r_{1} \nsubseteq \bar{Q}_{(s, t)} \Longrightarrow P_{t} \subseteq A_{1}$. Now we have $t_{k} \in T_{k}$, $k=1,2$ with $r_{1} \cdot r_{2} \nsubseteq \bar{Q}_{\left(s,\left(t_{1}, t_{2}\right)\right)}$ and $P_{\left(t_{1}, t_{2}\right)} \nsubseteq A_{1} \times T_{2}$, i.e. $P_{t_{1}} \nsubseteq A_{1}$. Hence we have $t_{k}^{\prime} \in T_{k}, k=1,2$, with $P_{\left(t_{1}^{\prime}, t_{2}^{\prime}\right)} \nsubseteq Q_{\left(t_{1}, t_{2}\right)}$ and $r_{k} \nsubseteq \bar{Q}_{\left(u, t_{k}^{\prime}\right)}, k=1,2$. In particular we deduce $r_{1} \nsubseteq \bar{Q}_{\left(s, t_{1}\right)}$ and hence the contradiction $P_{t_{1}} \subseteq A_{1}$ from the above implication.

Naturally, the corresponding results for $A_{2} \in \mathcal{T}_{2}$ also hold. If we note that the hypotheses of the above lemma are satisfied for difunctions [5, Proposition 2.28(1c)], while inverse images preserve meet and join, the following corollary is immediate:
4.7. Corollary. Let $(f, F),(g, G)$ be difunctions from (S, \mathcal{S}) to $\left(T_{1}, \mathcal{T}_{1}\right),\left(T_{2}, \mathcal{T}_{2}\right)$, respectively, $A \in \mathcal{T}_{1}$ and $B \in \mathcal{T}_{2}$. Then,
(1) $(f \cdot g) \leftarrow\left(\left(A \times T_{2}\right) \cap\left(T_{1} \times B\right)\right)=f^{\leftarrow}(A) \cap g \leftarrow(B)$.
(2) $(F \cdot G) \leftarrow\left(\left(A \times T_{2}\right) \cup\left(T_{1} \times B\right)\right)=F^{\leftarrow}(A) \cup G^{\leftarrow}(B)$.

Let us now make precise the notion of applying a di-operation to direlations.
4.8. Definition. Let $\left(r_{k}, R_{k}\right), k=1,2$ be direlations from (S, \mathcal{S}) to (T, \mathcal{T}) and ($\left.\square, \square\right)$ a di-operation on (T, \mathcal{T}). Then the result of applying (\square, \square) to $\left(r_{1}, R_{1}\right)$ and $\left(r_{2}, R_{2}\right)$ is the direlation $\left(r_{1}, R_{1}\right)(\square, \square)\left(r_{2}, R_{2}\right)=\left(r_{1} \square r_{2}, R_{1} \square R_{2}\right)$ from (S, \mathcal{S}) to (T, \mathcal{T}) defined by

$$
\left(r_{1}, R_{1}\right)(\square, \square)\left(r_{2}, R_{2}\right)=(\square, \square) \circ\left(\left(r_{1}, R_{1}\right) \cdot\left(r_{2}, R_{2}\right)\right)
$$

When (f, F) and (g, G) are difunctions from (S, \mathcal{S}) to $(T, \mathcal{T}),(f \square g, F \square G)$ is also a difunction from (S, \mathcal{S}) to (T, \mathcal{T}). This follows from Lemma 4.1 (3) and the fact that difunctions are closed under composition ([6], Proposition 2.28(2)).

The following lemma gives formulae for directly calculating $r_{1} \square r_{2}$ and $R_{1} \square R_{2}$.
4.9. Lemma. With the notation as in Definition 4.8,

$$
\begin{gathered}
r_{1} \square r_{2}=\bigvee\left\{\bar{P}_{(s, t)} \mid \exists u \in S, P_{s} \nsubseteq Q_{u} \text { and } t_{1}, t_{2} \in T \text { with } r_{k} \nsubseteq \bar{Q}_{\left(u, t_{k}\right)}, k=1,2\right. \\
\text { and } \left.\nsubseteq \bar{Q}_{\left(\left(t_{1}, t_{2}\right), t\right)}\right\}, \\
R_{1} \square R_{2}=\bigcap\left\{\bar{Q}_{(s, t)} \mid \exists u \in S, P_{u} \nsubseteq Q_{s} \text { and } t_{1}, t_{2} \in T \text { with } \bar{P}_{\left(u, t_{k}\right)} \nsubseteq R_{k}, k=1,2\right. \\
\text { and } \left.\bar{P}_{\left(\left(t_{1}, t_{2}\right), t\right)} \nsubseteq \square\right\} .
\end{gathered}
$$

Proof. Immediate
In case (\square, \square) is commutative or associative we have the following.
4.10. Theorem. $\operatorname{Let}(S, \mathcal{S}),(T, \mathcal{T})$ be textures and (\square, \square) a binary di-operation on (T, \mathcal{T}).
(1) If (\square, \square) is commutative then

$$
\left(r_{1}, R_{1}\right)(\square, \square)\left(r_{2}, R_{2}\right)=\left(r_{2}, R_{2}\right)(\square, \square)\left(r_{1}, R_{1}\right)
$$

for all direlations $\left(r_{k}, R_{k}\right), k=1,2$ from (S, \mathcal{S}) to (T, \mathcal{T}).
(2) If (\square, \square) is associative then
$\left(r_{1}, R_{1}\right)(\square, \square)\left(\left(r_{2}, R_{2}\right)(\square, \square)\left(r_{3}, R_{3}\right)\right)=\left(\left(r_{1}, R_{1}\right)(\square, \square)\left(r_{2}, R_{2}\right)\right)(\square, \square)\left(r_{3}, R_{3}\right)$
for all direlations $\left(r_{k}, R_{k}\right), k=1,2,3$ from (S, \mathcal{S}) to (T, \mathcal{T}).
Proof. (1). By Definition 4.8 we have $r_{2} \square r_{1}=\square \circ\left(r_{2} \cdot r_{1}\right)=\square \circ c \circ\left(r_{1} \cdot r_{2}\right)$ by Proposition 4.2 , where c is the commutativity relation on (T, \mathcal{T}). Since \square is commutative we now have $r_{2} \square r_{1}=\square \circ\left(r_{1} \cdot r_{2}\right)=r_{1} \square r_{2}$, as required.

The proof of $R_{2} \square R_{1}=R_{1} \square R_{2}$ is similar.
(2). Applying Definition 4.8, and letting i be the identity relation on (T, \mathcal{T}) we have $\left(r_{1} \square r_{2}\right) \square r_{3}=\square \circ\left(\left(\square \circ\left(r_{1} \cdot r_{2}\right)\right) \cdot\left(i \circ r_{3}\right)\right)=\square \circ(\square \times i) \circ\left(\left(r_{1} \cdot r_{2}\right) \cdot r_{3}\right)$ by Proposition 4.4. If a is the associativity relation on (T, \mathcal{T}), Proposition 4.3 now gives $\left(r_{1} \square r_{2}\right) \square r_{3}=\square \circ$ $(\square \times i) \circ a \circ\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right)=\square \circ(i \times \square) \circ\left(r_{1} \cdot\left(r_{2} \cdot r_{3}\right)\right)$, since \square is associative. Applying Proposition 4.4 again finally gives $\left(r_{1} \square r_{2}\right) \square r_{3}=\square \circ\left(\left(i \circ r_{1}\right) \cdot\left(\square \circ\left(r_{2} \cdot r_{3}\right)\right)=r_{1} \square\left(r_{2} \square r_{3}\right)\right.$, as required.

The proof of $\left(R_{1} \square R_{2}\right) \square R_{3}=R_{1} \square\left(R_{2} \square R_{3}\right)$ is similar.

Now let $\left(\tau_{1}, \kappa_{1}\right)$ be a ditopology on $\left(S_{1}, \mathcal{S}_{1}\right)$ and $\left(\tau_{2}, \kappa_{2}\right)$ a ditopology on $\left(S_{2}, \mathcal{S}_{2}\right)$. We denote by $\left(\tau_{2}^{2}, \kappa_{2}^{2}\right)$ the product ditopology [6] on $\left(S_{2} \times S_{2}, \mathcal{S}_{2} \otimes \mathcal{S}_{2}\right)$. Hence, a base for τ_{2}^{2} consists of elements of $\mathcal{S}_{2} \otimes \mathcal{S}_{2}$ of the form $\left(G \times S_{2}\right) \cap\left(S_{2} \times H\right)=G \times H, G, H \in \tau_{2}$, while a base for κ_{2}^{2} consists of elements of the form $\left(F \times S_{2}\right) \cup\left(S_{2} \times K\right), F, K \in \kappa_{2}$. Let us first note the following:
4.11. Lemma. With the notation above, let the difunctions $(f, F),(g, G)$ from $\left(S_{1}, \mathcal{S}_{1}\right)$ to $\left(S_{2}, \mathcal{S}_{2}\right)$ be $\left(\tau_{1}, \kappa_{1}\right)-\left(\tau_{2}, \kappa_{2}\right)$ bicontinuous. Then $(f, F) \cdot(g, G)$ is $\left(\tau_{1}, \kappa_{1}\right)-\left(\tau_{2}^{2}, \kappa_{2}^{2}\right)$ bicontinuous.

Proof. For $G, H \in \tau_{2}$ we have $(f \cdot g)^{\leftarrow}(G \times H)=(f \cdot g)^{\leftarrow}\left(\left(G \times S_{2}\right) \cap\left(S_{2} \times H\right)\right)=$ $f^{\leftarrow}(G) \cap g^{\leftarrow}(H) \in \tau_{1}$, by Corollary $4.7(1)$. Since inverse images preserve join this is sufficient to show $\left(\tau_{1}, \kappa_{1}\right)-\left(\tau_{2}^{2}, \kappa_{2}^{2}\right)$ continuity. Cocontinuity is proved likewise using Corollary 4.7 (2).
4.12. Definition. The di-operation (\square, \square) is called bicontinuous on $\left(S_{2}, \mathcal{S}_{2}, \tau_{2}, \kappa_{2}\right)$ if it is bicontinuous as a difunction from $\left(S_{2} \times S_{2}, \mathcal{S}_{2} \otimes \mathcal{S}_{2}, \tau_{2}^{2}, \kappa_{2}^{2}\right)$ to $\left(S_{2}, \mathcal{S}_{2}, \tau_{2}, \kappa_{2}\right)$.

The following result in now a trivial consequence of Lemma 4.11 and the fact that the composition of two bicontinuous difunctions is bicontinuous ([7], Lemma $2.3(2)$).
4.13. Theorem. With the notation as above, let (\square, \square) be a bicontinous di-operation on $\left(S_{2}, \mathcal{S}_{2}, \tau_{2}, \kappa_{2}\right)$ and let $(f, F),(g, G)$ be bicontinuous difunctions from $\left(S_{1}, \mathcal{S}_{1}, \tau_{1}, \kappa_{1}\right)$ to $\left(S_{2}, \mathcal{S}_{2}, \tau_{2}, \kappa_{2}\right)$. Then $(f, F)(\square, \square)(g, G)$ is also a bicontinuous difunction from $\left(S_{1}, \mathcal{S}_{1}, \tau_{1}, \kappa_{1}\right)$ to $\left(S_{2}, \mathcal{S}_{2}, \tau_{2}, \kappa_{2}\right)$.

5. Real di-Operations and real difunctions

In this section we begin by considering certain natural di-operations on the real texture $(\mathbb{R}, \mathcal{R})$. This texture is clearly closed under arbitrary unions, and is therefore a plain texture [5]. It follows that the product texture $(\mathbb{R} \times \mathbb{R}, \mathcal{R} \otimes \mathcal{R})$ is also plain. We require the following result which characterizes difunctions on a plain texture in terms of ordinary (point) functions.
5.1. Theorem. Let (S, \mathcal{S}) be a plain texture and (f, F) a difunction from (S, \mathcal{S}) to (T, \mathcal{T}). Then there exists a point function φ from S to T satisfying the conditions
(1) $P_{s^{\prime}} \subseteq P_{s} \Longrightarrow P_{\varphi(s)} \nsubseteq Q_{\varphi\left(s^{\prime}\right)}$,
(2) $f=\bigvee\left\{\bar{P}_{(s, \varphi(s))} \mid s \in S\right\}, F=\bigcap\left\{\bar{Q}_{(s, \varphi(s))} \mid s \in S\right\}$, and
(3) $f^{\leftarrow}(B)=F^{\leftarrow}(B)=\varphi^{-1}(B)$ for all $B \in \mathcal{T}$.

Conversely, if φ is any point function from S to T satisfying (1), then setting $f=$ $\bigvee\left\{\bar{P}_{(s, \varphi(s))} \mid s \in S\right\}, F=\bigcap\left\{\bar{Q}_{(s, \varphi(s))} \mid s \in S\right\}$ defines a difunction (f, F) satisfying $f^{\leftarrow}(B)=F^{\leftarrow}(B)=\varphi^{-1}(B)$ for all $B \in \mathcal{T}$.

Proof. Clear from [5, Proposition 3.7] and [6, Lemma 3.8], since for a plain texture the conditions (b) and (c) mentioned there are automatically satisfied.

We may apply this theorem to any di-operation (\square, \square) on $(\mathbb{R}, \mathcal{R})$ since this is just a difunction from the plain texture $(\mathbb{R} \times \mathbb{R}, \mathcal{R} \otimes \mathcal{R})$ to $(\mathbb{R}, \mathcal{R})$. Hence, bearing in mind that for the texture $(\mathbb{R} \times \mathbb{R}, \mathcal{R} \otimes \mathcal{R})$ we have $P_{\left(s_{1}, s_{2}\right)}=\left\{\left(r_{1}, r_{2}\right) \mid r_{k} \leq s_{k}, k=1,2\right\}$, while for $(\mathbb{R}, \mathcal{R}), P_{s}=\{r \mid r \leq s\}$ and $Q_{s}=\{r \mid r<s\}$, we see that ($\left.\square, \square\right)$ is equivalent, in the sense described in Theorem 5.1 , to a point function $\varphi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfying the monotonicity property

$$
\mathrm{MP}: s_{k}^{\prime} \leq s_{k}, k=1,2 \Longrightarrow \varphi\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \leq \varphi\left(s_{1}, s_{2}\right)
$$

The following relations hold between (\square, \square) and φ.
5.2. Theorem. Let (\square, \square) and φ be related as above. Then
(1) (\square, \square) is commutative if and only if φ is commutative as a binary point operation on \mathbb{R}.
(2) (\square, \square) is associative if and only if φ is associative as a binary point operation on \mathbb{R}.
(3) Consider the usual ditopology
$\theta=\{(-\infty, s) \mid s \in \mathbb{R}\} \cup\{\mathbb{R}, \emptyset\}, \phi=\{(-\infty, s] \mid s \in \mathbb{R}\} \cup\{\mathbb{R}, \emptyset\}$
on $(\mathbb{R}, \mathcal{R})$ and the product ditopology on $(\mathbb{R} \times \mathbb{R}, \mathcal{R} \otimes \mathcal{R})$. Then (\square, \square) is bicontinuous if and only if φ satisfies the following conditions.
(a) If $s_{1}, s_{2}, s \in \mathbb{R}$ satisfy $\varphi\left(s_{1}, s_{2}\right)<s$ then there exist $r_{1}, r_{2} \in \mathbb{R}$ satisfying $s_{k}<r_{k}, k=1,2$, and $\varphi\left(r_{1}, r_{2}\right)<s$.
(b) If $s_{1}, s_{2}, s \in \mathbb{R}$ satisfy $\varphi\left(s_{1}, s_{2}\right)>s$ then there exist $r_{1}, r_{2} \in \mathbb{R}$ satisfying $s_{k}>r_{k}, k=1,2$, and $\varphi\left(r_{1}, r_{2}\right)>s$.

Proof. (1) Immediate from Theorem 3.5.
(2) Suppose that φ is associative. We first establish $(i) \Longrightarrow$ (ii) for \square in Theorem $3.6(1)$. Take $s_{1}, s_{2}, s_{3}, w \in \mathbb{R}$ and suppose we have $u \in \mathbb{R}$ with $\square \nsubseteq \bar{Q}_{\left(\left(s_{1}, s_{2}\right), u\right)}$ and
$\square \nsubseteq \bar{Q}_{\left(\left(u, s_{3}\right), w\right)}$. Then $u \leq \varphi\left(s_{1}, s_{2}\right)$ and $w \leq \varphi\left(u, s_{3}\right)$. By MP we see $w \leq \varphi\left(u, s_{3}\right) \leq$ $\varphi\left(\varphi\left(s_{1}, s_{2}\right), s_{3}\right)=\varphi\left(s_{1}, \varphi\left(s_{2}, s_{3}\right)\right)$, since φ is associative. If we set $v=\varphi\left(s_{2}, s_{3}\right) \in \mathbb{R}$ we see that $\square \not \subset \bar{Q}_{\left(\left(s_{2}, s_{3}\right), v\right)}$ and $\square \not \subset \bar{Q}_{\left(\left(s_{1}, v\right), w\right)}$, which verifies (ii). The proof of $(i i) \Longrightarrow(i)$ is similar, and likewise $(i) \Longleftrightarrow$ (ii) for \square in Theorem 3.6 (2). Hence (\square, \square) is associative.

Suppose now that \square is associative. If $\varphi\left(s_{1}, \varphi\left(s_{2}, s_{3}\right)\right)<\varphi\left(\varphi\left(s_{1}, s_{2}\right), s_{3}\right)$, set $u=$ $\varphi\left(s_{1}, s_{2}\right) \in \mathbb{R}$ and take $w \in \mathbb{R}$ with $\varphi\left(s_{1}, \varphi\left(s_{2}, s_{3}\right)\right)<w<\varphi\left(\varphi\left(s_{1}, s_{2}\right), s_{3}\right)$. Then $\square \not \mathbb{Z}$ $\bar{Q}_{\left(\left(s_{1}, s_{2}\right), u\right)}$ and $\square \nsubseteq \bar{Q}_{\left(\left(u, s_{3}\right), w\right)}$, so by Theorem 3.6 (1) there exists $v \in \mathbb{R}$ with $\square \not \mathbb{Z}$ $\bar{Q}_{\left(\left(s_{2}, s_{3}\right), v\right)}$ and $\square \nsubseteq \bar{Q}_{\left(\left(s_{1}, v\right), w\right)}$. Now $v \leq \varphi\left(s_{2}, s_{3}\right)$ and $w \leq \varphi\left(s_{1}, v\right) \leq \varphi\left(s_{1}, \varphi\left(s_{2}, s_{3}\right)\right)$ by MP, which is a contradiction. In the same way $\varphi\left(\varphi\left(s_{1}, s_{2}\right), s_{3}\right)<\varphi\left(s_{1}, \varphi\left(s_{2}, s_{3}\right)\right)$ also leads to a contradiction, and we have established that φ is associative. We may also establish the associativity of φ from that of \square.
(3) By Theorem 5.1 we need only consider the inverse image with respect to φ. However, (a) is equivalent to

$$
\left(s_{1}, s_{2}\right) \in\left(-\infty, r_{1}\right) \times\left(-\infty, r_{2}\right) \subseteq \varphi^{-1}((-\infty, s))
$$

and hence to the continuity of ($\square, \square)$. Likewise, (b) is equivalent to

$$
\left(s_{1}, s_{2}\right) \notin\left(\left(-\infty, r_{1}\right] \times \mathbb{R}\right) \cup\left(\mathbb{R} \times\left(-\infty, r_{2}\right]\right) \supseteq \varphi^{-1}((-\infty, s]),
$$

and hence to the cocontinuity of (\square, \square).
We now give the examples of di-operations on $(\mathbb{R}, \mathcal{R})$ promised earlier.
5.3. Example. (1) Let $\varphi\left(s_{1}, s_{2}\right)=s_{1}+s_{2}, s_{1}, s_{2} \in \mathbb{R}$. Clearly φ satisfies $M P$ and is commutative and associative as a binary point operation on \mathbb{R}. Also, it is trivial to verify conditions (a) and (b) of Theorem 5.2 (3). Hence, by Theorem 5.1,

$$
\begin{aligned}
& +=\bigvee\left\{\bar{P}_{\left(\left(s_{1}, s_{2}\right), s_{1}+s_{2}\right)} \mid s_{1}, s_{2} \in \mathbb{R}\right\} \\
& +=\bigcap\left\{\bar{Q}_{\left(\left(s_{1}, s_{2}\right), s_{1}+s_{2}\right)} \mid s_{1}, s_{2} \in \mathbb{R}\right\}
\end{aligned}
$$

define a bicontinous di-operation $(+,+)$ on $(\mathbb{R}, \mathcal{R})$.
(2) Let $\varphi\left(s_{1}, s_{2}\right)=\max \left(s_{1}, s_{2}\right), s_{1}, s_{2} \in \mathbb{R}$. Clearly φ satisfies MP and is commutative and associative as a binary point operation on \mathbb{R}. Also, it is trivial to verify conditions (a) and (b) of Theorem 5.2 (3). Hence, by Theorem 5.1,

$$
\begin{aligned}
& \vee=\bigvee\left\{\bar{P}_{\left(\left(s_{1}, s_{2}\right), s_{1} \vee s_{2}\right)} \mid s_{1}, s_{2} \in \mathbb{R}\right\}, \\
& \vee=\bigcap\left\{\bar{Q}_{\left(\left(s_{1}, s_{2}\right), s_{1} \vee s_{2}\right)} \mid s_{1}, s_{2} \in \mathbb{R}\right\},
\end{aligned}
$$

define a bicontinous di-operation (\vee, \vee) on $(\mathbb{R}, \mathcal{R})$.
(3) Let $\varphi\left(s_{1}, s_{2}\right)=\min \left(s_{1}, s_{2}\right), s_{1}, s_{2} \in \mathbb{R}$. Clearly φ satisfies MP and is commutative and associative as a binary point operation on \mathbb{R}. Also, it is trivial to verify conditions (a) and (b) of Theorem 5.2 (3). Hence, by Theorem 5.1,

$$
\begin{aligned}
& \wedge=\bigvee\left\{\bar{P}_{\left(\left(s_{1}, s_{2}\right), s_{1} \wedge s_{2}\right)} \mid s_{1}, s_{2} \in \mathbb{R}\right\} \\
& \wedge=\bigcap\left\{\bar{Q}_{\left(\left(s_{1}, s_{2}\right), s_{1} \wedge s_{2}\right)} \mid s_{1}, s_{2} \in \mathbb{R}\right\}
\end{aligned}
$$

define a bicontinous di-operation (\wedge, \wedge) on $(\mathbb{R}, \mathcal{R})$.
(4) The point function $\varphi\left(s_{1}, s_{2}\right)=s_{1} s_{2}$ does not define a di-operation on $(\mathbb{R}, \mathcal{R})$ in the above sense since φ does not satisfy MP.
Now let (S, S) be a texture with ditopology (τ, κ). We denote by $\operatorname{DF}(S, S)$ the set $\mathrm{DF}(S, \mathcal{S})=\{(f, F) \mid(f, F):(S, \mathcal{S}) \rightarrow(\mathbb{R}, \mathcal{R})$, is a difunction $\}$
of real difunctions on (S, \mathcal{S}), and by $\operatorname{BDF}(S, S, \tau, \kappa)$ the set
$\operatorname{BDF}(S, \mathcal{S}, \tau, \kappa)=\{(f, F) \in \operatorname{DF}(S, \mathcal{S}) \mid(f, F),(\tau, \kappa)-(\theta, \phi)$ bicontinuous $\}$
of bicontinuous real difunctions on ($S, \mathcal{S}, \tau, \kappa$).
If (\square, \square) is a binary di-operation on $(\mathbb{R}, \mathcal{R}, \theta, \phi)$ then we may apply (\square, \square) to $(f, F),(g, G)$ in $\mathrm{DF}(S, \mathcal{S})$ to give the element $(f, F)(\square, \square)(g, G)$ of $\mathrm{DF}(S, \mathcal{S})$. That is, (\square, \square) induces a binary operation on the set $\operatorname{DF}(S, S)$, which is commutative and associative if and only if (\square, \square) is. Likewise it induces a binary operation on the set $\operatorname{BDF}(S, \mathcal{S}, \tau, \kappa)$. Moreover, if φ is the point function corresponding to ($\square, \square)$ as described above, then from Lemma 4.9, Theorem 5.1 and the fact that $(\mathbb{R} \times \mathbb{R}, \mathcal{R} \otimes \mathcal{R})$ is plain, we may easily deduce the following formulae for $f \square g$ and $F \square G$.
(a) $f \square g=\bigvee\left\{\bar{P}_{\left(s, \varphi\left(r_{1}, r_{2}\right)\right)} \mid \exists P_{s} \nsubseteq Q_{u}\right.$ with $f \nsubseteq \bar{Q}_{\left(u, r_{1}\right)}$ and $\left.g \nsubseteq \bar{Q}_{\left(u, r_{2}\right)}\right\}$.
(b) $F \square G=\bigcap\left\{\bar{Q}_{\left(s, \varphi\left(r_{1}, r_{2}\right)\right)} \mid \exists P_{u} \nsubseteq Q_{s}\right.$ with $\bar{P}_{\left(u, r_{1}\right)} \nsubseteq F$ and $\left.\bar{P}_{\left(u, r_{2}\right)} \nsubseteq G\right\}$.

If we consider the di-operations $(\vee, \vee),(\wedge, \wedge)$ and $(+,+)$ on the sets $\mathrm{DF}(S, \mathcal{S})$ and $\operatorname{BDF}(S, \mathcal{S}, \tau, \kappa)$ we obtain the following.
5.4. Theorem. Let (S, \mathcal{S}) be a texture and (τ, κ) a ditopology on (S, \mathcal{S}). Then
(1) The spaces $(\operatorname{DF}(S, \mathcal{S}),(\wedge, \wedge),(\vee, \vee))$ and $(\operatorname{BDF}(S, \mathcal{S}, \tau, \kappa),(\wedge, \wedge),(\vee, \vee))$ are distributive lattices.
(2) For all $(f, F),(g, G),(h, H)$ in $\operatorname{DF}(S, \mathcal{S})$ or $\operatorname{BDF}(S, \mathcal{S}, \tau, \kappa)$ we have
(i) $(f+(g \wedge h), F+(G \wedge H))=((f+g) \wedge(f+h),(F+G) \wedge(F+H))$, and
(ii) $(f+(g \vee h), F+(G \vee H))=((f+g) \vee(f+h),(F+G) \vee(F+H))$.

Proof. (1). Bearing in mind that the di-operations ($\vee, \vee)$ and (\wedge, \wedge) are commutative and associative, it will be sufficient to verify the following equalities and define the required partial order \leq on $\operatorname{DF}(S, \mathcal{S})$ or $\operatorname{BDF}(S, \mathcal{S}, \tau, \kappa)$ by one of the equivalent conditions $(f, F) \leq(g, G) \Longleftrightarrow(f \wedge g, F \wedge G)=(f, F)$ or $(f, F) \leq(g, G) \Longleftrightarrow(f \vee g, F \vee G)=$ (g, G) :
(i) $(f \wedge f, F \wedge F)=(f, F)$ and $(f \vee f, F \vee F)=(f, F)$.
(ii) $(f \wedge(f \vee g), F \wedge(F \vee G))=(f, F)$.
(iii) $(f \vee(g \wedge h), F \vee(G \wedge H))=((f \vee g) \wedge(f \vee h),(F \vee G) \wedge(F \vee H))$.

Here, $(f, F),(g, G)$ and (h, H) are arbitrary elements of the space concerned. We will verify (ii), leaving the remaining equalities to the interested reader.

Firstly, $f \wedge(f \vee g) \subseteq f$ is trivial, so suppose $f \nsubseteq f \wedge(f \vee g)$. Then we have $s \in S$ and $r_{1} \in \mathbb{R}$ satisfying $f \not \subset \bar{Q}_{\left(s, r_{1}\right)}$ and $\bar{P}_{\left(s, r_{1}\right)} \nsubseteq f \wedge(f \vee g)$. By $R 2$ we have $u \in S$ with $P_{s} \nsubseteq Q_{u}$ and $f \nsubseteq \bar{Q}_{\left(u, r_{1}\right)}$. Take $u^{\prime} \in S$ with $P_{s} \nsubseteq Q_{u^{\prime}}$ and $P_{u^{\prime}} \nsubseteq Q_{u}$. Since $g^{\leftarrow}(\emptyset)=\emptyset$ we have $r_{2} \in \mathbb{R}$ with $g \nsubseteq \bar{Q}_{\left(u, r_{2}\right)}$ and $P_{r_{1}} \neq \emptyset$ so by formula (a) above for $\square=\vee$ we have $\bar{P}_{\left(u^{\prime}, r_{1} \vee r_{2}\right)} \subseteq f \vee g$, whence $f \vee g \nsubseteq \bar{Q}_{\left(u^{\prime}, r_{1} \vee r_{2}\right)}$ since $(\mathbb{R}, \mathcal{R})$ is plain. On the other hand $f \nsubseteq \bar{Q}_{\left(u^{\prime}, r_{1}\right)}$ by R1, so by formula (a) above for $\square=\wedge$ we have $\bar{P}_{\left(s, r_{1} \wedge\left(r_{1} \vee r_{2}\right)\right)} \subseteq$ $f \wedge(f \vee g)$. Since $r_{1} \wedge\left(r_{1} \vee r_{2}\right)=r_{1}$ we obtain the contradiction $\bar{P}_{\left(s, r_{1}\right)} \subseteq f \wedge(f \vee g)$.

This verifies $f=f \wedge(f \vee g)$, and the proof of $F=F \wedge(F \vee G)$ is dual to this. This establishes (ii) as required.
(2). Much as in the proof of (ii) above, this reduces to the equalities $r+\left(r_{1} \wedge r_{2}\right)=$ $\left(r+r_{1}\right) \wedge\left(r+r_{2}\right)$ and $r+\left(r_{1} \vee r_{2}\right)=\left(r+r_{1}\right) \vee\left(r+r_{2}\right)$, which hold trivially in \mathbb{R}.

The lattice $(\operatorname{BDF}(S, \mathcal{S}, \tau, \kappa),(\wedge, \wedge),(\vee, \vee))$ has already found applications in the work of F. Yıldız on real dicompactness of ditopological texture spaces [9], see also, for example [11]. When (S, S) is plain, Theorem 5.1 may be used to represent the elements of $\operatorname{DF}(S, \mathcal{S})$ and of $\operatorname{BDF}(S, \mathcal{S}, \tau, \kappa)$ as real-valued point functions on S. The reader is referred to [10] for a discussion of the general case.

References

[1] Brown, L. M. and Diker, M. Ditopological texture spaces and intuitionistic sets, Fuzzy Sets and Systems 98, 217-224, 1998.
[2] Brown, L. M. and Diker, M. Paracompactness and full normality in ditopological texture spaces, J. Math. Anal. Appl. 227, 144-165, 1998.
[3] Brown, L. M and Ertürk, R. Fuzzy Sets as Texture Spaces, I. Representation Theorems, Fuzzy Sets and Systems 110 (2), 227-236, 2000.
[4] Brown, L. M. and Ertürk, R. Fuzzy Sets as Texture Spaces, II. Subtextures and Quotient Textures, Fuzzy Sets and Systems 110 (2), 237-245, 2000.
[5] Brown, L. M., Ertürk, R. and Dost, Ş. Ditopological Texture Spaces and Fuzzy Topology, I. Basic concepts, Fuzzy Sets and Systems, Fuzzy Sets and Systems 147 (2), 171-199, 2004.
[6] Brown, L. M., Ertürk, R. and Dost, Ş. Ditopological Texture Spaces and Fuzzy Topology, II. Topological considerations, Fuzzy Sets and Systems 147 (2), 201-231, 2004.
[7] Brown, L. M., Ertürk, R. and Dost, Ş. Ditopological texture spaces and fuzzy topology, III. Separation axioms, Fuzzy Sets ans Systems 157 (14), 1886-1912, 2006.
[8] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A compendium of continuous lattices, Springer-Verlag, 1980.
[9] F. Yıldız, Spaces of Bicontinuous Real Difunctions and Real Compactness, (Ph.D. Thesis (in Turkish), Hacettepe University, 2006).
[10] Yıldız, F. and Brown, L. M. Characterizations of Real Difunctions, Hacet. J. Math. Stat. 35 (2), 189-202, 2006.
[11] Yıldız, F and Brown, L. M. Categories of Dicompact Bi-T Texture Spaces and a BanachStone Theorem, Quaestions Mathematicae 30, 167-192, 2007.

[^0]: *Hacettepe University, Mathematics Department, 06532 Beytepe, Ankara, Turkey.
 E-mail (L. M. Brown) brown@hacettepe.edu.tr (A. Irkad) irkad@hacettepe.edu.tr

