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Abstract

In this paper we focus on investigating the precision of several variance
estimators considered by different authors, such as those suggested by
Isaki (Variance estimation using auziliary information, J. Amer. Stat.
Assoc. 78, 117-123, 1983), and Kadilar and Cingi (Ratio estimators
for population variance in simple and stratified sampling, Appl. Math.
Comp. 173, 1047-1058 and Improvement in variance estimation using
auziliary information, Hacet. J. Math. Stat. 35(1), 111-115, 2006).
We propose a new hybrid class of estimators and show that in some
cases their efficiency is better than the aforementioned traditional ratio
and regression estimators of Isaki, and Kadilar and Cingi. Four nu-
merical examples are considered to further evaluate the performance of
these estimators.
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1. Introduction

Consider a finite population U = {U1,Us,...,Us,...,Un} consisting of N units. Let
y and x be the study and the auxiliary variables with population means ¥ and X re-
spectively. Let there be a sample of size n drawn from this population using simple
random sampling without replacement (SRSWOR). Let s7 = 37" (y; —§)*/(n — 1) and
52 =" (x; —7)%/(n — 1) be the sample variances and S? = 3"~ (y; — Y)?/(N — 1)
and 52 = 3" (#; — X)?/(N — 1) the population variances of y and z respectively. Let

Cy=8,/Y, and C, = S,/X be the coefficients of variation of y and z respectively, and
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pya the coefficient of correlation between y and . We assume that all parameters of x
are known.

Let 0o = (s; —S2)/Sz and 61 = (s2 — S2)/S2 be such that E(5;) =0, (i = 0,1). Also,
to the first order of approximation, we have E(63) = 7(Bay) — 1), E(67) = 7(B2(x) — 1)

and E(8001) = (A2 — 1), where 7 = (2 — L), Ars = pirs/ (150 157), pirs = 0, (i —

Y) (zi — X)*/N , and Ba(y) = pao/ 130, Ba(a) = Hoa/pg2 are the coefficients of kurtosis of
y and x respectively.

Recall that the variance of the usual variance estimator §5 (= 33) is given by

(1) Var(S}) = 7Sy (Ba(y) — 1)-
Now we discuss some other variance estimators that are available in the literature.

(i) The Isaki Estimators

Isaki [4] suggested the following ratio and regression estimators. The ratio estimator
is given by

2) SR:sy(f22>.

T

The bias and MSE of this estimator, to the first order of approximation, are given by
3) Bias(S%) = 7Sy [(Baz) — 1) — (Aez — 1)]
and
(4) MSE(S7) 2 ¥y [(Ba(y) — 1) + (B2 — 1) — 2(Na2 — 1))
respectively.
Isaki [4] also discussed a regression estimator given by
()  Sheg =5y T (57— 52),
where b* is the sample regression coefficient between sfj and s2. The corresponding

Sy0ea-l) (see Garcia and Cebrian [3])
S2(Ba(z)—1) ’

To the first order of approximation, the estimator .é%eg is unbiased and its variance is
given by

(6)  Var(Sheo) = 78y (Bacy) — V(1L = plaz.2)) = Var(5)) (1= pfz ) ) »

population regression coeflicient is given by 8 =

Y

where p(gz s2) = (A2 = 1)/[/(Bay) — D/ (Ba(x) — DI
(ii) The Kadilar and Cingi Estimators

Kadilar and Cingi [5] suggested the following variance estimators by using various
transformations.

N~ 2 Si+c,
(i) Skecr = sy ( 2+c:)
52 Sz +Ba(a)
s +ﬁ2(z)
o a2 _ S2B2(2)+Cx
(ili) Skes = (S 2 B0y +Ca

52Ca+Ba(a) >

(ii) §§<c2 =

(IV) S%(C’Zl = s CT"Pﬁz( N



Variance Estimation Using Auxiliary Information 59

The bias and MSE of §?<cz (1=1,2,3,4), to the first order of approximation, are given
by

(7) Bias(Sicci) = ySyvi [$i(Ba) — 1) — (hez — 1)]

and

(8) MSE(Skci) 2 7Sy [(Bag) — 1) + %7 (Ba@y — 1) — 20 (Aa2 — 1],

_ _s? __s2 _ _S2ba) _ _ Ssic,
where ¢y = 52+Ca Y2 = SZ+B2(x)’ ¥s = 52B2(z)+Ca’ and ¥y = S2Cu+Ba(x)

Kadilar and Cingi [6] also presented the following estimator

N S2
(9) S?{C = alsi —+ a2 ('55572) T,

x

where a1 + a2 = 1 and 7 = 1111%’2’ is a constant (see Shabbir and Yaab [9]). Kadilar

and Cingi report that the MSE of §§(c, to the first order of approximation, is given by
(10) MSE(ch)opt =~ ’yS; [22(ﬂ2(y) — 1) + a;272(ﬁ2<x) — 1) — 27’20[3()\22 — 1)] 5
where z = o] + as7,
e (Poy — DT = 1)+ (Bo@) — D7+ (1 —27)(A22 — 1) . .
a] = 5 and ag =1 —aj.
(Bagy) = DA = 7)2/7} 4+ 2(A22 = 1)(1 = 7) + (B2@) — D)7

The corresponding bias of the estimator '§§<07 to the first order of approximation, is given
by

(11) Bias(S7c) & (af — 1)S2 + vS2asT [(Ba) — 1) — (22 — 1)] .

Kadilar and Cingi [6] have shown that the estimator §%{c is more efficient than the ratio
and regression estimators under the following conditions.

(i) MSE(S%¢)opt < MSE(S3) if
2’2(ﬁ2(y) — 1) — ﬂz(y) — 22’05;7‘()\22 — 1) + 222 + a;27—2(ﬂ2(9¢) - 1) - 52(93) <0.
(ll) MSE(ggqc)opt < Var(g‘%%eg) if

(2* = 1)(Baqy) — 1) = 22057 (A22 = 1) + 03°7* (Baa) — 1) + % <

2. The proposed estimator

We now propose a hybrid estimator based on the following two mean estimators. The
first one is the estimator considered by Sahahi and Ray [8] for estimating Y. It is given
by

(12)  Vs=7 [2 - %)w} ,

where w is a constant.
The other estimator is proposed by Kaur [7], and is given by

(13) Yk = [kig + by (X —2)],
where k1 is a constant and by, the sample regression coefficient between y and =z.
A possible hybrid class of estimators of S7, based on (12) and (13) is

2 [e%
(14) 53 = [dis) +da (S3 — 52)] {2— (%) }

where di, d2 and « are suitably chosen constants.
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Writing (14) in terms of the §; ’s (¢ = 0,1), we have
(15)  Spl) = [diS2(1 4 80) — d2S281] [2 — (14 61)°].

A first order approximation of (15) is given by

(16) G2l —52 = (dy—1)52+d, 52 {50 _ by — adosy — 221

5 5%}%253 (61 — 7).

From (16), the bias and MSE of §123<ra) are given by

e -1
an Bias(Spi) 2 (i — 1)Sy — diayS; {(Azz G 5 ) (B - 1)}
+ d2ayS2(Bagay — 1)
and
MSE(52(*)) = E[(dz1 —1)S% +di 82 {50 — ad — adody — @cﬁ}
2
— 4287 {81 — ad?} |
or
MSE(S5™) & (dy — 1)) + d3 Siy {(Bagy) — 1) + @ (Bagay — 1) — 2a(Aaz — 1)}
+ 38,7 (Ba(a) — 1) — 2di(di — 1)
-1
(18) X Spary {()\22 -1)+ (@ 5 )(52(1) - 1)}

+2da(d1 — 1)Sy 5707 (Baa) — 1)
— 2d1d25553’y {()\22 — 1) — Oé(ﬂg(w) — 1)} .
From (18), we have
MSE(Sp™) 2 S5 + diSy A + d3Si Az + 2d1d2 S22 ALY

(19)
—2d, S A — 2dy 5252 AL,
where
A =147 {(Baiy) — 1) + a(Bage) — 1) — da(A22 — 1)}
A2 =7(Ba(z) — 1),
AL =~ {20(B2) = 1) = A2z — 1)},
o a—1
AP :1—a7{(/\22 ~1+ @, —1)},
ALY = ay(Bage) — 1).
g2() () _ pgle) g(@)
Setting %ﬁfpr) =0 (¢ = 1,2), we have di = % = d§°‘> (say) and
i Al Ay a2

52 [ 4l@) L) _ 4(@) gla) (o)
d2= 5% { @, arm [ = (say).

Substituting the optimum values of di and d2 in (19), we get the optimum MSE of
Sgg‘l) in the form

N (@) 42(a) 2(a) _ o g(@) 4(@) 4(@)
(20)  MSE(Sp™)opt 22 S <1—A1 A TAA 24 A A )

A Ay — A3
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The corresponding bias of .§§)r is given by

o) Bias(Sp, ") = (di”) — 1)S] — d‘%st{(Am—m(O‘;”wm@—n}
21

+ds ey S2 (Bage) — 1).
Note that the expression in (20) is only an ideal optimal MSE value since d*) and d{*
involve unknown parameters. However, we can use prior estimates of the population
parameters A22 and (2, in the corresponding variance estimator if good prior estimates

are available. Upadhyaya and Singh [10] suggest that if such prior estimates are unknown,
then these parameters can be estimated from the sample.

Now we consider three cases for different values of o that are of particular interest.

(i) For a = 0, the proposed estimator becomes a generalized regression estimator.
When we put @ = 0 in (14), (19), (20) and (21), we get

(22) SO = [dis? +do (52— s2)].
The optimum MSE of SQ(O and the corresponding bias are given by
(23)  Bias(S2”) = (d” — 1)52

and
0 2(0 2(0 0 0 0
MSE(St” )opt 22 S (1 _AVAY + A AT - 240 AP A )>
Pr o - Y 2
AP Ay — A3
or
~ 1
MSE(S2),,, =~ 8% [ 1 —
( Pr ) pt Y 1-‘,—’}/(52(1!) —1)(1_[)?52’53))
(24) !

Var(S3)(1 = pf.a,29)
1+ 7(52(31) - 1)(1 - P?Sz,sg)).
The optimum values of di and da are given by
©) A2A£10) _ AéO)AE‘O) 52 A(O)A(O) A(O)A(O)
b A0, - 22O 52 { A0 4, — 20 } ’

and d<20)

where
AP =1 -1
1 + 7([32(9) )7
As =v(Ba(zy — 1),
AL = —y(haz — 1),
AP =1,
AP =0

(ii) For o = 1, the second part of the proposed estimator becomes a transformed
product estimator. When we put @ = 1 in (14), (19), (20) and (21), we get

52
w8 en (-] - ()]
The optimum MSE of S2<1 and the corresponding bias are given by
(26) Bias(Sp\") = (dM —1)87 —dV 782 (A22 — 1) +dSV 82y (Ba(a) — 1)
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and

1) 42(1 2(1 1) 4(1) 4(1
S0 gt (1 AVAZD + 4, 4300 — 240 AP A
( Pr )Opf =Py (1) 2(1) ’

AV A, — A2

or

(27) MSE(§2(1)) - g4 (1 o (Ba(z) — 1)U1) . S;l'yUf
pr o — Py = s

U, U,

where

Ui =1-37(Bogay — 1) + 7> (Bay) — D(Boiey — 1) + 72 (Bogey — 1)°

- 72()‘22 - 1)27
Uz = (Ba@) — 1) +7(Bagy) — 1) (Ba(z) — 1) — 37(Bogay — 1)°
— (A2 — 1)%,

Ur = (Bogy) — 1)(Baie) — 1) — A2z — 1)* — 4(Bagy) — 1) By — 1)°
= 7(Ba@) — 1) + ¥(Baq) — 1)(Aa2 — 1)
The optimum values of d; and dz are

1 1 1 1 1 1 1
o _ Al — AP MQ_%{wau&my}

1 AS”AQ _ A§<1) -8z A§1)A2 . Agu)
where
AP =149 {(Boy = 1) + (Baie) — 1) — 40022 — 1)}
Az = v(Ba(zy — 1),
A =7 {2(Be(@) — 1) = (22 = D},
AP =1-9(0 - 1),
ALY =y (Baga) — 1).
For o = —1, the second part of the proposed estimator becomes a transformed
ratio estimator. When we put o = —1 in (14), (19), (20) and (21), we get
@) S =+ (s3] o (5],

The optimum MSE of §§,<r1) and the corresponding bias are given by

(29)
Bias(Spl V) 2 (d{") —1)S; + diVvS) {(A22 — 1) — (Boge) — 1}
—dy 829 (Bay — 1)

and

i ACD 4260 4o 421 g A1) g (=1) 4 (=1
MSE(Sz. ) opt 22 Sy (1— 1 A5 +ainy el

AP A, — AZCD

or

5 o — DU Sy U3
(30)  MSE(SA ) = 5 (1 - B0 2D 5005
U4 U4

where
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Us =1=5Y(Ba(a) — 1) +7*(Bay) — D(Ba(@) — 1) + 49 (Ba@) — 1)°

— 7% (A2 — 1)%,
Us = (Baz) — 1) +7(Baty) — 1)(Bazy — 1) — 57(Ba@) — 1)°
—¥(A22 — 1)%,

Ui = (Boy) — 1)(Baie) — 1) — A2z — 1)* = 4(Bagy) — 1) (Baqy — 1)°
—4y(Boey — 1)® +v(Bagey — 1) (A2 — 1)*.
The optimum values of d; and ds are

(1) _ AATY —ATVATY ey S5 [ ATVATY —Agary
h =D oy and & D 2(-1) :
ATV A, — A Ay Ay — Ay

= =
where
ATV =149 {(Boy = 1) = (Bai@) — 1) +4(A22 — 1)}
Az = v(Ba(zy — 1),
AT = =y {2082y — 1) + (2 = 1)},
ATY =147 {22 = 1) = (Baw) — D)},
AT = —(Bae) — 1.

3. Comparison of the estimators

We now compare the proposed estimator with other estimators considered here. These
comparisons lead to the following obvious conditions.

Case 1: a=0.
Condition (i):
MSE(S2)ope < Var(52) i
Var(gg)(l — p?si,sa)) _ Var(:S'\i)[A + P?sg,sg)] >0
1+ A (1+A4) ’
where A = v(Bayy — 1)(1 — P(QSg, 52))-

Condition (ii):

Var(52) —

MSE(S2”) pe < MSE(S%) if
VarSH( —plg )
1+ A ’
MSE(S%)A + MSE(5%) — Var(52)(1 — Plez, 2)) o
(1+ A) '

P _1)2
MSE(S3)A + 75} { (B — 1) — 20022 — 1) + $225 1

0+ A >0, or

~ _ 2
MSE(S3)A + 955 (B — 1) (1 - §225)

T+ A) > 0.

MSE(5%) —
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Condition (i11):
MSE(S2) ope < Var(She,) if

Var(S3)(1 = pf.z .2)) .
1+ A >0, or

MSE(S2.,) -

Var(She,)A

>0,
(1+4)

using (6).
Conditions (iw-vii):
MSE(SE),p0 < MSE(S%c;) (i = 1,2,3,4) if
Var(S2)(1 - ps )

MSE (5% ;) — 14 >0 or
MSE(Skci)A + MSE(Skei) — Var(5))(1 = pf.z .2)) oo
(1+A) ’
MSE(Skc) A + 155 { (Bate) — D? = 2002 — Do + G205
Ty >0, or
MSE(S%c) A + 783 (Bam — 1) (4 — G2t ) .,
(1+4) '
The conditions (i)-(vii) above are always true.
Condition (viii):
MSE(S2? )opt < MSE(S%¢)ope i
. Var(S3)(1 = p 2., ))
MSE(Skc)opt — T+ A >0, or
MSE(S:0)opt A + MSE(Skc)opt — Var(S5) (1 = plz 2)) o e
(1+4) ’
MSE(§?<C)OMA + ’YS;B >0
(1+A4) ’

where B = (Ba¢,) — 1)(2* + p?sf,,si) — 1)+ a5’7*(Bogz) — 1) — 22703 (A22 — 1).

Obviously the proposed estimator will always perform better than gﬁ, §123, §Kcl~ (i=
1,2,3,4) and §12%eg since Conditions (i)-(vii) always hold. It will also perform better than

§KC if Condition (viii) holds, which indeed may be the case in some situations as shown
below for certain data sets that have been used in the literature.

Case 2: a=1,—1.

The proposed estimators §123(Tl ) and §}23(T_1) are only conditionally better then the other
estimators considered here. This will be so if the optimum MSEs of §12,(741 ) and §123(;1) are
smaller than the MSEs of the estimators @2 i=y,R,KCi (i=1,2,3,4), KC and Reg.

4. Description of data and results

We use the following data to numerically compare the different estimators.

Data 1: [Source: Kadilar and Cingi [6]]
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The data consist of 104 villages in the East Anatolia Region of Turkey in 1999. The
variates are defined as:

y is the level of apple production (in 100 tones)
and

x is the number of apple trees.
For this data, we have
N =104, n =20, v=0.04038, ¥ = 6.254, X = 13931.683,
Sy = 11.67, S, = 23029.072, pyz = 0.865, p(z, <2) = 0.836757,
Bagy) = 16.523, Baryy = 17.516, a2 = 14.398, 7 = 0.99766,
of =0.18777, d\” = 0.84179, 4 =0, d'" = 0.41072,
dV =0, d{"" =0.46619, d\" " =0.

Data 2: [Source: Das [2]]

The data consist of 278 villages/towns/wards under Gajole Police Station of Malda
district of West Bengal, India. The variates are defined as:

y is the number of agricultural laborers in 1971
and
x is the number of agricultural laborers in 1961.
For this data, we have:
N =278, n =30, v =0.02974, Y = 39.068, X = 25.111,
Sy = 56.457167, S, = 40.674797, py, = 0.7213, P(sz, s2) = 0.840475,
Bay) = 25.8969, fa(z) = 38.8808, A2p = 26.8142, T = 0.974196,

of =0.30808, d\” =0.82143, d =1.07818, d\" = 0.57957,
dV =0.45414, d{™" = 0.53897, d\ = 0.85759.

Data 3: [Source: Cochran [1, p. 325]]

The data consist of 100 blocks in a large city of which 10 were chosen. The variates
are defined as:

y is the number of persons per block
and

x is the number of rooms per block.

For this data, we have:
N =100, n =10, v =0.09, Y = 101.1, X = 58.8,
Sy = 14.6595, S, = 7.53228, pye = 0.65, p2 52) = 0.419701,
Ba(y) = 2.3523, Barny = 2.2387, a2 = 1.5432, 7 = 0.99961,
of =0.56103, d\” =0.90887, d¥ =1.50966, d\" = 1.01464,
dV = —2.21336, d\"" =1.22602, d$ ) = 7.53651.

Data 4: [Source: Kadilar and Cingi [5]]

The data consist of 106 villages in the Marmarian Region of Turkey in 1999. The
variates are defined as:

y is the level of apple production (1 unit = 100 tonnes)
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and

x is the number of apple trees (1 unit = 100 trees).

For this data, we have:
N =106,n = 20, v = 0.04056,Y = 15.37, X = 243.76,
Sy = 64.25, Sy = 491.89, pyo = 0.82, p.2 .2y = 0.730458,
Bary) = 80.13, Bacay = 25.71, Aoo = 33.30, 7 = 0.974196,
of = —0.17269, d'* = 0.40048, d\” = 0.00893, d'" = 1.97072,
dV = —0.00623, d\"" =0.79816, d\ " = 0.02797.

We obtain the Percent Relative Efficiency (PRE) of the various estimators as compared
to Sg . These are given in Table 1.

Table 1. PRE of the various estimators with respect to 55

Estimator Data 1 Data 2 Data 3 Data 4
52 100.000 100.000 100.000 100.000
S3 296.071 223.124 89.878 201.656

S%en 296.071 223.597 90.065 201.656
5% s 296.071 234.354 93.032 201.648
5%cs 296.071 223.137 89.961 201.656
5%c4 296.071 230.088 108.555 201.652
S%c 334.786 353.047 121.423 169.493
53, 333.514 340.597 121.381 214.394
SO 396.196 414.641 133.552 535.346
S 133.311 123.456 121.580 162.318
S 78.318 64.041 167.789 200.665

In Table 1, the efficiencies of the estimators :5‘\12% and §§<Cz (i=1,2,3,4) are the same in
Data 1 because the values of ¥; (i = 1,2, 3, 4) are all equal to one. Also one can observe
that the estimators S%; (1=1,2,3,4) and S2. . may not always be more efficient than
the regression estimator, but that one of the proposed estimators (SP(r )) perform better
than the regression estimator. This is to be expected based on the fact that condition (iii)
for a = 0 always holds. The estimator (§§,(YO)) is more efficient than §f<cl (i=1,2,3,4)
and S% ¢ also. However, the estimators §123(rl) and §12)(r71) are not always superior to the
other estimators.
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