RANK FUNCTIONS FOR CLOSED AND PERFECT [0, 1]-MATROIDS[‡]

Xiu Xin*† and Fu-Gui Shi*

Received 01:05:2009 : Accepted 12:10:2009

Abstract

In this paper we present the notions of perfect [0, 1]-matroid and closed [0, 1]-matroid, and investigate some of their basic properties. Moreover, we prove that a closed and perfect [0, 1]-matroid can be characterized by means of its [0, 1]-fuzzy rank function.

Keywords: Matroids, *L*-matroids, Perfect [0, 1]-matroids, Closed [0, 1]-matroids, Fuzzy rank functions.

2000 AMS Classification: 03 E 70, 05 B 35, 52 B 40.

1. Introduction

Matroids were introduced by Whitney in 1935 as a generalization of both graphs and vector spaces. It is well-known that matroids play an important role in mathematics, especially in applied mathematics. Matroids are precisely the structures for which the very simple and efficient greedy algorithm works [1, 4]. In [6], Matroid theory was generalized to fuzzy fields by Shi, and *L*-fuzzy rank functions were studied. His approach to the fuzzification of matroids preserves many basic properties of crisp matroids, and *L*-matroids can be applied to fuzzy algebras and fuzzy graphs. Based on [6], the aim of this paper is to study the relation between a [0, 1]-matroid and its [0, 1]-fuzzy rank function.

In this paper, we obtain two results:

(1) There is a one-to-one correspondence between a closed and perfect [0, 1]-matroid and its [0, 1]-fuzzy rank function. That is, a closed and perfect [0, 1]-matroid can be characterized by means of its [0, 1]-fuzzy rank function.

(2) A [0, 1]-matroid (resp., a perfect [0, 1]-matroid, a closed [0, 1]-matroid) and its [0, 1]-fuzzy rank function are not in one-to-one correspondence in general.

[‡]This project is supported by the National Natural Science Foundation of China (10971242) *Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, P. R. China.

E-mail: (X. Xin) xinxiu518@163.com (F.-G. Shi) fuguishi@bit.edu.cn

[†]Corresponding Author

2. Preliminaries

Throughout this paper, L denotes a completely distributive lattice, and E a nonempty finite set. L^E is the set of all L-fuzzy sets (or L-sets for short) on E. The smallest element and the largest element in L are denoted by \perp and \top respectively. We often do not distinguish a crisp subset A of E from its characteristic function χ_A .

An element a in L is called a prime element if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$. Dually, a in L is called *co-prime* if $a \le b \lor c$ implies $a \le b$ or $a \le c$ [2]. The set of non-unit prime elements in L is denoted by P(L). The set of non-zero co-prime elements in L is denoted by J(L). When L is replaced by the interval [0, 1], it is easy to see J(L) = (0, 1]and P(L) = [0, 1).

For $\mathcal{A} \subseteq 2^E$, we define

 $Max(\mathcal{A}) = \{ A \in \mathcal{A} : \forall B \in \mathcal{A}, \text{ if } A \subseteq B \text{ then } A = B \}.$

For $A \in L^E$ and $a \in L$, we define $A_{[a]} = \{e \in E : A(e) \ge a\}$. Some properties of the cut sets can be found in [3].

For $a \in L$ and $A \subseteq E$, define two L-fuzzy sets $a \wedge A$ and $a \vee A$ as follows:

$$(a \wedge A)(e) = \begin{cases} a, & e \in A; \\ \bot, & e \notin A. \end{cases} \quad (a \lor A)(e) = \begin{cases} \top, & e \in A; \\ a, & e \notin A. \end{cases}$$

An L-fuzzy set $a \wedge \{e\}$ is called an L-fuzzy point, and denoted by e_a .

2.1. Definition. [5] Let \mathbb{N} denote the set of all natural numbers. An *L*-fuzzy natural number is an antitone map $\lambda : \mathbb{N} \to L$ satisfying

$$\lambda(0) = \top, \quad \bigwedge_{n \in \mathbb{N}} \lambda(n) = \bot.$$

The set of all *L*-fuzzy natural numbers is denoted by $\mathbb{N}(L)$.

For any $\lambda \in \mathbb{N}(L)$ and any $a \in J(L)$, we shall not distinguish $n \in \lambda_{[a]}$ from $n \leq |\lambda_{[a]}|$.

2.2. Definition. [5] For any $\lambda, \mu \in \mathbb{N}(L)$, define the sum $\lambda + \mu$ of λ and μ as follows: for any $n \in \mathbb{N}$,

$$(\lambda + \mu)(n) = \bigvee_{k+l=n} (\lambda(k) \wedge \mu(l))$$

2.3. Theorem. [5] For any $m \in \mathbb{N}$, define $\underline{m} \in \mathbb{N}(L)$ such that

$$\underline{m}(t) = \begin{cases} \top, & \text{if } t \leq m; \\ \bot, & \text{if } t \geq m+1. \end{cases}$$

Then for any $\lambda \in \mathbb{N}(L)$, it follows that

$$\underline{0} + \lambda = \lambda. \quad \Box$$

2.4. Definition. [6] Let A be an L-fuzzy set on a finite set E. Then the mapping $|A|: \mathbb{N} \to L$ defined $\forall n \in \mathbb{N}$ by,

$$|A|(n) = \bigvee \{a \in L : |A_{[a]}| \ge n\}$$

is called the *L*-fuzzy cardinality of A.

2.5. Lemma. [6] For a finite set E, it holds that $|A|_{[a]} = |A_{[a]}|$ for any $A \in L^E$ and any $a \in J(L)$.

2.6. Definition. [6] Let E be a finite set. A subfamily \mathfrak{I} of L^{E} is called a family of independent L-fuzzy sets on E if it satisfies the following conditions:

- (LI1) \mathcal{I} is nonempty;
- (LI2) $A \in L^E, B \in \mathfrak{I}, A \leqslant B \implies A \in \mathfrak{I};$
- (LI3) If $A, B \in \mathcal{I}$ and $b = |B|(n) \notin |A|(n)$ for some $n \in \mathbb{N}$, then there exists $e \in F(A, B)$ such that $(b \wedge A_{[b]}) \lor e_b \in \mathcal{I}$, where

$$F(A,B) = \{ e \in E : b \leq B(e), b \not\leq A(e) \}.$$

If \mathcal{I} is a family of independent L-fuzzy sets on E, then the pair (E, \mathcal{I}) is called an L-matroid.

2.7. Theorem. [6] Let E be a finite set and $\mathfrak{I} \subseteq L^E$. Define, $\forall a \in L \setminus \{\bot\}$,

 $\mathcal{I}[a] = \{A_{[a]} : A \in \mathcal{I}\}.$

If (E, \mathfrak{I}) is an L-matroid, then $(E, \mathfrak{I}[a])$ is a matroid for each $a \in L \setminus \{\bot\}$.

3. Closed and perfect [0, 1]-matroids

In the sequel we will mainly focus on the case when L is the interval [0, 1].

3.1. Definition. A [0, 1]-matroid (E, \mathcal{I}) is called a *perfect* [0, 1]-matroid, if it satisfies the following condition:

(LI4) $\forall A \in [0,1]^E$, if $a \wedge A_{[a]} \in \mathcal{I}$ for all $a \in (0,1]$, then $A \in \mathcal{I}$.

3.2. Example. Let $E = \{3, 5\}$. Define $A \in [0, 1]^E$ by

$$A(x) = \begin{cases} \frac{1}{2}, & x = 3; \\ \frac{1}{3}, & x = 5, \end{cases}$$

and define

$$\mathcal{I} = \left\{ B \in [0,1]^E : B \leqslant \frac{1}{3} \land \{3,5\} \right\} \cup \left\{ B \in [0,1]^E : B \leqslant \frac{1}{2} \land \{3\} \right\}$$

Then we can check that \mathfrak{I} satisfies (LI1)–(LI3), but it does not satisfy (LI4) since $a \wedge A_{[a]} \in \mathfrak{I}$ for all $a \in (0, 1]$ but $A \notin \mathfrak{I}$.

3.3. Theorem. Let (E, \mathfrak{I}) be a [0, 1]-matroid. Then (E, \mathfrak{I}) is a perfect [0, 1]-matroid if and only if

 $\mathfrak{I} = \{ A \in [0,1]^E : \forall a \in (0,1], \ A_{[a]} \in \mathfrak{I}[a] \}. \quad \Box$

3.4. Lemma. Let (E, \mathbb{J}) be a [0, 1]-matroid. If $0 < a \leq b \leq 1$, then $\mathbb{J}[b] \subseteq \mathbb{J}[a]$.

Proof. Let $A \in \mathcal{J}[b]$. Then $b \wedge A \in \mathcal{J}$ as \mathcal{J} satisfies (LI2). Since $a \leq b, a \wedge A \leq b \wedge A$. Thus $a \wedge A \in \mathcal{J}$ by (LI2), hence $A = (a \wedge A)_{[a]} \in \mathcal{J}[a]$.

3.5. Theorem. Let $\mathbb{J} \subseteq [0, 1]^E$ satisfy (LI2) and (LI4). Then the following conditions are equivalent:

(1) (E, J) is a [0, 1]-matroid.

(2) $(E, \mathfrak{I}[a])$ is a matroid for all $a \in (0, 1]$.

Proof. By Theorem 2.7, we only need to prove $(2) \Longrightarrow (1)$.

 $\begin{array}{l} (2) \Longrightarrow (1). \text{ Since } \Im \text{ satisfies (LI2) and (LI4), } \Im = \{A \in [0,1]^E : \forall a \in (0,1], A_{[a]} \in \Im[a]\}. \\ \text{It is easy to see that } \Im \text{ satisfies (LI1). Now we prove that } \Im \text{ satisfies (LI3). Suppose that } A, B \in \Im \text{ and } b = |B|(n) \not\leq |A|(n) \text{ for some } n \in \mathbb{N}. \text{ Then } n \in |B|_{[b]} \text{ and } n \notin |A|_{[b]}, \text{ thus } |A|_{[b]} \not\supseteq |B|_{[b]}. \text{ By Lemma 2.5, } |A_{[b]}| \not\geq |B_{[b]}|, \text{ i.e. } |A_{[b]}| < |B_{[b]}|. \text{ Since } A_{[b]}, B_{[b]} \in \Im[b], \\ \text{there exists } e \in B_{[b]} - A_{[b]} \text{ such that } A_{[b]} \cup \{e\} \in \Im[b]. \text{ In this case, } b \leqslant B(e) \text{ and } b \notin A(e), \\ \text{i.e. } e \in F(A, B). \text{ By Lemma 3.4, it is obvious that} \end{array}$

$$((b \land A_{[b]}) \lor e_b)_{[a]} = A_{[b]} \cup \{e\} \in \mathcal{I}[b] \subseteq \mathcal{I}[a]$$

for every $a \leq b$, and $((b \wedge A_{[b]}) \vee e_b)_{[a]} = \emptyset \in \mathfrak{I}[a]$ for every $a \leq b$. This implies $(b \wedge A_{[b]}) \vee e_b \in \mathfrak{I}$. Hence (E, \mathfrak{I}) is a [0, 1]-matroid. \Box

3.6. Theorem. Let (E, \mathcal{I}) be a [0, 1]-matroid. Then there is a finite sequence $0 = a_0 < a_1 < a_2 < \cdots < a_n = 1$ such that

- (1) If $a_i < a, b < a_{i+1}$, then $\mathfrak{I}[a] = \mathfrak{I}[b], \ 0 \leq i \leq n-1$;
- (2) If $a_i < a < a_{i+1} < b < a_{i+2}$, then $\mathfrak{I}[a] \supset \mathfrak{I}[b], \ 0 \leq i \leq n-2$.

The sequence a_0, a_1, \ldots, a_n is called the fundamental sequence for (E, \mathcal{I}) .

Proof. We define an equivalence relation \sim on (0, 1] by $a \sim b \Leftrightarrow \Im[a] = \Im[b]$. Since E is a finite set, the number of matroids on E is finite. Thus there exist at most finitely many equivalence classes which are respectively denoted by I_1, I_2, \ldots, I_n .

Each I_i (i = 1, 2, ..., n) is an interval. We only need to show that $\forall a, b \in I_i$ with $a \leq b$, if $c \in [a, b]$, then $c \in I_i$. Since $a \leq c \leq b$, by Lemma 3.4, we know that $\mathcal{I}[b] \subseteq \mathcal{I}[c] \subseteq \mathcal{I}[a]$. As $a, b \in I_i$, $\mathcal{I}[a] = \mathcal{I}[b]$. Thus $\mathcal{I}[b] = \mathcal{I}[c] = \mathcal{I}[a]$, hence $c \in I_i$ by the definition of I_i . This implies that I_i is an interval.

Let $a_{i-1} = \inf I_i$ and $a_i = \sup I_i$ (i = 1, 2, ..., n). Clearly, the sequence $a_0, a_1, ..., a_n$ is the fundamental sequence for (E, \mathcal{I}) .

3.7. Definition. A [0,1]-matroid (E, \mathcal{J}) with the fundamental sequence a_0, a_1, \ldots, a_n is called a *closed* [0,1]-*matroid* if whenever $a_{i-1} < a \leq a_i$ $(1 \leq i \leq n)$, then $\mathcal{I}[a] = \mathcal{I}[a_i]$.

3.8. Theorem. Let (E, J) be a [0, 1]-matroid with the fundamental sequence a_0, a_1, \ldots, a_n . Then (E, J) is a closed [0, 1]-matroid if and only if J satisfies the following condition:

(*)
$$\forall a \in (0,1] \text{ and } A \in 2^E, \text{ if } b \land A \in \mathcal{I} \text{ for all } 0 < b < a, \text{ then } a \land A \in \mathcal{I}$$

Proof. Suppose that \mathfrak{I} satisfies (*). Then $\forall a \in (a_{i-1}, a_i)$, $(i = 1, 2, \ldots, n)$, we have $\mathfrak{I}[a_i] \subseteq \mathfrak{I}[a]$ by Lemma 3.4. Let $A \in \mathfrak{I}[a]$ for all $a \in (a_{i-1}, a_i)$. Then $a \wedge A \in \mathfrak{I}$ for all $a \in (a_{i-1}, a_i)$, thus $b \wedge A \in \mathfrak{I}$ for all $0 < b < a_i$. Since \mathfrak{I} satisfies (*), $a_i \wedge A \in \mathfrak{I}$. Thus $A = (a_i \wedge A)_{[a_i]} \in \mathfrak{I}[a_i]$. This implies that $\mathfrak{I}[a] \subseteq \mathfrak{I}[a_i]$ for all $a \in (a_{i-1}, a_i)$. Therefore, $\mathfrak{I}[a] = \mathfrak{I}[a_i]$ for all $a \in (a_{i-1}, a_i)$, i.e. (E, \mathfrak{I}) is a closed [0, 1]-matroid.

Conversely, assume that (E, \mathcal{J}) is a closed [0, 1]-matroid. Let $a \in (0, 1], A \in 2^E$, and $b \wedge A \in \mathcal{I}$ for all 0 < b < a. Since $a \in (0, 1], a \in (a_{i-1}, a_i]$ for some $i = 1, 2, \ldots, n$. Take $b_0 \in (a_{i-1}, a) \subseteq (a_{i-1}, a_i]$, then $b_0 \wedge A \in \mathcal{J}$, thus $A \in \mathcal{I}[b_0] = \mathcal{I}[a_i]$ since (E, \mathcal{I}) is a closed [0, 1]-matroid, hence $a_i \wedge A \in \mathcal{J}$. By (L12), $a \wedge A \in \mathcal{J}$. This means that \mathcal{I} satisfies (*). \Box

By Example 3.2, we know that a closed [0, 1]-matroid need not be a perfect [0, 1]matroid. The following example shows that a perfect [0, 1]-matroid need not be a closed [0, 1]-matroid either.

3.9. Example. Let E be a finite set. Define

$$\mathbb{J} = \left\{ A \in [0,1]^E : A(x) < \frac{1}{2} \text{ for all } x \in E \right\}.$$

Then we can check that \mathcal{I} satisfies (LI1)-(LI4), but it is not closed.

4. Rank functions for closed and perfect [0,1]-matroids

4.1. Definition. [6] Let (E, \mathcal{I}) be an *L*-matroid. The mapping $R_{\mathcal{I}} : L^E \to \mathbb{N}(L)$ defined by

$$R_{\mathfrak{I}}(A) = \bigvee \{ |B| : B \leqslant A, B \in \mathfrak{I} \}$$

is called the *L*-fuzzy rank function for (E, \mathbb{J}) . If $A \in L^E$, $R_{\mathbb{J}}(A)$ is called the *L*-fuzzy rank of A in (E, \mathbb{J}) .

4.2. Theorem. Let (E, \mathbb{J}) be an L-matroid. If $R_{\mathbb{J}} : L^E \to \mathbb{N}(L)$ is the L-fuzzy rank function for (E, \mathbb{J}) , then

$$R_{\mathfrak{I}}(A)(n) = \bigvee \left\{ a \in L \setminus \{\bot\} : n \leqslant R_{\mathfrak{I}[a]}(A_{[a]}) \right\} \text{ for all } n \in \mathbb{N},$$

where $R_{\mathfrak{I}[a]}$ is the rank function for $(E, \mathfrak{I}[a])$ and

$$R_{\mathfrak{I}[a]}(A_{[a]}) = \bigvee \{ |B| : B \in \mathfrak{I}[a], \ B \subseteq A_{[a]} \}.$$

Proof. Let $a \in \{a \in L \setminus \{\bot\} : n \leq R_{\mathfrak{I}[a]}(A_{[a]})\}, \forall n \in \mathbb{N}$. Let $B_a \in \operatorname{Max}(\mathfrak{I}[a]|_{A_{[a]}})$. Then $n \leq R_{\mathfrak{I}[a]}(A_{[a]}) = |B_a|$.

Since
$$B_a \in \mathcal{I}[a]$$
 and $B_a \subseteq A_{[a]}$, $a \wedge B_a \in \mathcal{I}$ and $a \wedge B_a \leq A$. Thus

$$R_{\mathfrak{I}}(A)(n) = \Big(\bigvee\{|B|: B \leqslant A, B \in \mathfrak{I}\}\Big)(n) \ge |a \land B_a|(n) = a.$$

Hence $R_{\mathfrak{I}}(A)(n) \ge \bigvee \{a \in L \setminus \{\bot\} : n \leqslant R_{\mathfrak{I}[a]}(A_{[a]}) \}.$

Conversely, in order to prove $R_{\mathcal{I}}(A)(n) \leq \bigvee \{a \in L \setminus \{\bot\} : n \leq R_{\mathcal{I}[a]}(A_{[a]})\}$, we only need to prove $|B|(n) \leq \bigvee \{a \in L \setminus \{\bot\} : n \leq R_{\mathcal{I}[a]}(A_{[a]})\}$ for all $B \leq A$ and $B \in \mathcal{I}$. Let $B \in \mathcal{I}$ and $B \leq A$. Then $B_{[a]} \in \mathcal{I}[a]|_{A_{[a]}}, \forall a \in \{a \in L \setminus \{\bot\} : |B_{[a]}| \geq n\}$, thus $n \leq |B_{[a]}| \leq R_{\mathcal{I}[a]}(A_{[a]})$, hence $a \in \{a \in L \setminus \{\bot\} : n \leq R_{\mathcal{I}[a]}(A_{[a]})\}$. This implies that

$$|B|(n) = \bigvee \{a \in L : |B_{[a]}| \ge n\} \leqslant \bigvee \{a \in L \setminus \{\bot\} : n \leqslant R_{\mathfrak{I}[a]}(A_{[a]})\},\$$

and thus $R_{\mathfrak{I}}(A)(n) \leq \bigvee \{a \in L \setminus \{\bot\} : n \leq R_{\mathfrak{I}[a]}(A_{[a]})\}$. Therefore,

$$R_{\mathfrak{I}}(A)(n) = \bigvee \{ a \in L \setminus \{\bot\} : n \leqslant R_{\mathfrak{I}[a]}(A_{[a]}) \}$$

for all $n \in \mathbb{N}$.

4.3. Lemma. Let (E, \mathcal{J}) be a closed [0, 1]-matroid and $A \in [0, 1]^E$. Then there is a finite sequence $0 = a_0 < a_1 < a_2 < \cdots < a_n = 1$ such that

(1) If
$$a_i < a, b \le a_{i+1}$$
, then $R_{\mathbb{J}[a]}(A_{[a]}) = R_{\mathbb{J}[b]}(A_{[b]}), \ 0 \le i \le n-1;$
(2) If $a_i < a \le a_{i+1} < b \le a_{i+2}$, then $R_{\mathbb{J}[a]}(A_{[a]}) > R_{\mathbb{J}[b]}(A_{[b]}), \ 0 \le i \le n-2.$

Proof. Let (E, \mathfrak{I}) be a [0, 1]-matroid and $A \in [0, 1]^E$. We define an equivalence relation \sim on (0, 1] by $a \sim b \iff R_{\mathfrak{I}[a]}(A_{[a]}) = R_{\mathfrak{I}[b]}(A_{[b]})$. Since E is a finite set, there exist at most finitely many equivalence classes which are respectively denoted by I_1, I_2, \ldots, I_n .

Step 1 For all $a, b \in (0, 1]$, if $a \leq b$, $R_{\mathcal{I}[b]}(A_{[b]}) \leq R_{\mathcal{I}[a]}(A_{[a]})$. Since $a \leq b$, $\mathcal{I}[b] \subseteq \mathcal{I}[a]$ and $A_{[b]} \subseteq A_{[a]}$. Thus

$$R_{\mathfrak{I}[b]}(A_{[b]}) = \bigvee \{|B| : B \in \mathfrak{I}[b], B \subseteq A_{[b]}\}$$
$$\leqslant \bigvee \{|B| : B \in \mathfrak{I}[a], B \subseteq A_{[a]}\}$$
$$= R_{\mathfrak{I}[a]}(A_{[a]}).$$

Step 2 Each I_i , (i = 1, 2, ..., n), is an interval. We only need to show that for any $a, b \in I_i$ with $a \leq b$, if $c \in [a, b]$, then $c \in I_i$. Since $a \leq c \leq b$, we know that $R_{\mathcal{I}_{[b]}}(A_{[b]}) \leq R_{\mathcal{I}_{[c]}}(A_{[c]}) \leq R_{\mathcal{I}_{[a]}}(A_{[a]})$ by Step 1. Since $a, b \in I_i$, $R_{\mathcal{I}_{[a]}}(A_{[a]}) = R_{\mathcal{I}_{[b]}}(A_{[b]})$, thus

$$R_{\mathfrak{I}[a]}(A_{[a]}) = R_{\mathfrak{I}[c]}(A_{[c]}) = R_{\mathfrak{I}[b]}(A_{[b]})$$

Hence $c \in I_i$ by the definition of I_i , and then I_i is an interval.

Step 3 Let $\inf I_i = a_{i-1}$, $\sup I_i = a_i$. Since E is a finite set, $\{\mathfrak{I}[a]|_{A_{[a]}} : a \in (a_{i-1}, a_i)\}$ is a finite family. Let

 $\{\mathfrak{I}[a]|_{A_{[a]}}: a \in (a_{i-1}, a_i)\} = \{\mathfrak{I}[b_1]|_{A_{[b_1]}}, \mathfrak{I}[b_2]|_{A_{[b_2]}}, \dots, \mathfrak{I}[b_m]|_{A_{[b_m]}}\},$

where $a_i > b_1 > b_2 > \dots > b_m > a_{i-1}$. Hence $\mathbb{J}[b_1]|_{A_{[b_1]}} \subset \mathbb{J}[b_2]|_{A_{[b_2]}} \subset \dots \subset \mathbb{J}[b_m]|_{A_{[b_m]}}$. Let $B \in \operatorname{Max}(\mathbb{J}[b_1]|_{A_{[b_1]}})$, then $|B| = R_{\mathbb{J}[b_1]}(A_{[b_1]}) = R_{\mathbb{J}[b_2]}(A_{[b_2]}) = \dots = R_{\mathbb{J}[b_m]}(A_{[b_m]})$, thus $B \in \operatorname{Max}(\mathbb{J}[a]|_{A_{[a]}})$ for all $a \in (a_{i-1}, a_i)$. Hence $a \wedge B \in \mathbb{J}$ and $A(x) \ge a$, $(\forall x \in B)$ for all $a \in (a_{i-1}, a_i)$.

Since (E, \mathfrak{I}) is a closed [0, 1]-matroid, $a_i \wedge B \in \mathfrak{I}$ and $A(x) \geq a_i$, $(\forall x \in B)$, i.e. $B \in \mathfrak{I}[a_i]|_{A_{[a_i]}}$. Hence $B \in \operatorname{Max}(\mathfrak{I}[a_i]|_{A_{[a_i]}})$ and then $R_{\mathfrak{I}[a_i]}(A_{[a_i]}) = |B| = R_{\mathfrak{I}[a]}(A_{[a]})$ for all $a \in (a_{i-1}, a_i)$. This implies that $\sup I_i = a_i \in I_i$.

4.4. Theorem. Let (E, \mathfrak{I}) be a closed [0, 1]-matroid and $R_{\mathfrak{I}} : [0, 1]^E \to \mathbb{N}([0, 1])$ the [0, 1]-fuzzy rank function for (E, \mathfrak{I}) . Then

 $R_{\mathfrak{I}}(A)_{[a]} = R_{\mathfrak{I}[a]}(A_{[a]})$

for all $A \in [0, 1]^E$, $a \in (0, 1]$.

Proof. Let $A \in [0,1]^E$ and $a \in (0,1]$. By Theorem 4.2 and Lemma 4.3, $n \in R_{\mathcal{I}}(A)_{[a]}$ if and only if $n \leq R_{\mathcal{I}[a]}(A_{[a]})$ for all $n \in \mathbb{N}$. Hence $R_{\mathcal{I}}(A)_{[a]} = R_{\mathcal{I}[a]}(A_{[a]})$, $(\forall A \in [0,1]^E, a \in (0,1])$.

4.5. Lemma. Let (E, \mathfrak{I}) be a [0, 1]-matroid with fundamental sequence a_0, a_1, \ldots, a_n . For each $a \in (0, 1]$, define $\overline{\mathfrak{I}}_a = \mathfrak{I}[\overline{a}_i]$, where $a_{i-1} < a \leq a_i$ and $\overline{a}_i = \frac{1}{2}(a_{i-1} + a_i)$. Let $\overline{\mathfrak{I}} = \{A \in [0, 1]^E : \forall a \in (0, 1], A_{[a]} \in \overline{\mathfrak{I}}_a\}$, then

- (1) (E, \overline{J}) is a closed and perfect [0, 1]-matroid.
- (2) $R_{\mathfrak{I}} = R_{\bar{\mathfrak{I}}}.$

Proof. (1) Obviously, $\overline{\mathbb{J}}$ satisfies (LI1) and (LI2). Let $A \in [0,1]^E$. If $a \wedge A_{[a]} \in \overline{\mathbb{J}}$ for all $0 < a \leq 1$, then by the definition of $\overline{\mathbb{J}}$, $A_{[a]} = (a \wedge A_{[a]})_{[a]} \in \overline{\mathbb{J}}_a$ for all $0 < a \leq 1$, hence $A \in \overline{\mathbb{J}}$. This implies that $\overline{\mathbb{J}}$ satisfies (LI4).

For any $a \in (0,1]$, let $A \in \overline{\mathbb{J}}[a]$. Then $a \wedge A \in \overline{\mathbb{J}}$, thus $A = (a \wedge A)_{[a]} \in \overline{\mathbb{J}}_a$, hence $\overline{\mathbb{J}}[a] \subseteq \overline{\mathbb{J}}_a$. Conversely, let $A \in \overline{\mathbb{J}}_a$. It is obvious that $(a \wedge A)_{[b]} = A \in \overline{\mathbb{J}}_a \subseteq \overline{\mathbb{J}}_b$ for every $b \leq a$ and $(a \wedge A)_{[b]} = \emptyset \in \overline{\mathbb{J}}_b$ for every b > a, hence $a \wedge A \in \overline{\mathbb{J}}$, thus $A = (a \wedge A)_{[a]} \in \overline{\mathbb{J}}[a]$. This implies that $\overline{\mathbb{J}}_a \subseteq \overline{\mathbb{J}}[a]$. Therefore, $\overline{\mathbb{J}}[a] = \overline{\mathbb{J}}_a$ for all $a \in (0, 1]$.

By Theorem 3.5 and the definition of $\overline{\mathcal{I}}$, $(E,\overline{\mathcal{I}})$ is a closed and perfect [0,1]-matroid.

(2) We need to prove that $R_{\mathfrak{I}}(A) = R_{\overline{\mathfrak{I}}}(A), \forall A \in [0,1]^E$. Let $A \in \mathfrak{I}$. Then $A_{[a]} \in \mathfrak{I}[a] \subseteq \overline{\mathfrak{I}}_a$ for all $a \in (0,1]$, thus $A \in \overline{\mathfrak{I}}$ by the definition of $\overline{\mathfrak{I}}$. This implies that $\mathfrak{I} \subseteq \overline{\mathfrak{I}}$. Hence $R_{\mathfrak{I}}(A) \leq R_{\overline{\mathfrak{I}}}(A)$.

Conversely, we need to prove $R_{\bar{\jmath}}(A) \leq R_{\mathfrak{J}}(A)$, i.e. $R_{\bar{\jmath}}(A)_{[a]} \subseteq R_{\mathfrak{J}}(A)_{[a]}$ for all $a \in (0,1]$. Let $n \in R_{\bar{\jmath}}(A)_{[a]}$. Then $n \leq R_{\bar{\jmath}}[a](A_{[a]})$ by Theorem 4.4, i.e. there exists $B \in \bar{\mathfrak{I}}[a]$ such that $B \subseteq A_{[a]}$ and $n \leq |B|$. By the definition of $\bar{\mathfrak{I}}, B \in \mathfrak{I}[b]$ for any 0 < b < a. Thus $b \wedge B \in \mathfrak{I}, b \wedge B \leq A$ for any 0 < b < a and $|b \wedge B|(n) = b$. Hence $R_{\mathfrak{I}}(A)(n) \geq \bigvee \{|b \wedge B|(n) : 0 < b < a\} = a$, i.e. $n \in R_{\mathfrak{I}}(A)_{[a]}$.

This implies that $R_{\bar{\mathfrak{I}}}(A)_{[a]} \subseteq R_{\mathfrak{I}}(A)_{[a]}$. Therefore, we have $R_{\mathfrak{I}} = R_{\bar{\mathfrak{I}}}$.

By Lemma 4.5, Example 3.2 and Example 3.9, we obtain the following result:

4.6. Remark. In general, a [0, 1]-matroid (resp., a perfect [0, 1]-matroid, a closed [0, 1]-matroid) is not in one-to-one correspondence with its [0, 1]-fuzzy rank function.

By Lemma 4.5, we can limit our study of fuzzy rank functions for [0, 1]-matroids to closed and perfect [0, 1]-matroids.

4.7. Theorem. Let (E, \mathfrak{I}) be a [0, 1]-matroid and $R_{\mathfrak{I}} : [0, 1]^E \to \mathbb{N}([0, 1])$ the [0, 1]-fuzzy rank function for (E, \mathfrak{I}) . Then $R_{\mathfrak{I}}$ satisfies the following conditions:

(LR1) For any $A \in [0,1]^E$, $\underline{0} \leq R_{\mathfrak{I}}(A) \leq |A|$; (LR2) If $A, B \in [0,1]^E$ and $A \leq B$, then $R_{\mathfrak{I}}(A) \leq R_{\mathfrak{I}}(B)$; (LR3) For any $A, B \in [0,1]^E$, $R_{\mathfrak{I}}(A) + R_{\mathfrak{I}}(B) \geq R_{\mathfrak{I}}(A \lor B) + R_{\mathfrak{I}}(A \land B)$;

(LR4) For any $A \in [0,1]^E$ and any $a \in (0,1]$, $R_{\mathfrak{I}}(a \wedge A_{[a]})_{[a]} = R_{\mathfrak{I}}(A)_{[a]}$.

Proof. By [6, Theorem 3.14], R_1 satisfies (LR1)-(LR3). We only need to check that R_1 satisfies (LR4). For any $A \in \mathcal{I}$ and $a \in (0, 1]$, by Theorem 4.4 and Lemma 4.5,

$$R_{\bar{\jmath}}(A)_{[a]} = R_{\bar{\jmath}}(A)_{[a]} = R_{\bar{\jmath}}_{[a]}(A_{[a]}) = R_{\bar{\jmath}}_{[a]}((a \land A_{[a]})_{[a]}) = R_{\bar{\jmath}}(a \land A_{[a]})_{[a]}$$
$$= R_{\bar{\jmath}}(a \land A_{[a]})_{[a]}.$$

4.8. Lemma. Let (E, \mathbb{J}) be a closed and perfect [0, 1]-matroid and $R_{\mathbb{J}} : [0, 1]^E \to \mathbb{N}([0, 1])$ the [0,1]-fuzzy rank function for (E, \mathfrak{I}) . Then $A \in \mathfrak{I} \iff R_{\mathfrak{I}}(A) = |A|$.

Proof. Let $A \in \mathcal{I}$, then $A_{[a]} \in \mathcal{I}[a]$ for all $a \in (0, 1]$, hence

$$R_{\mathcal{J}}(A)(n) = \bigvee \left\{ a \in (0,1] : n \leqslant R_{\mathcal{J}[a]}(A_{[a]}) \right\} = \bigvee \left\{ a \in (0,1] : n \leqslant |A_{[a]}| \right\} = |A|(n),$$

i.e. $R_{\mathfrak{I}}(A) = |A|$.

Conversely, let $A \in [0,1]^E$ and $R_{\mathfrak{I}}(A) = |A|$, then $R_{\mathfrak{I}[a]}(A_{[a]}) = R_{\mathfrak{I}}(A)_{[a]} = |A|_{[a]} =$ $|A_{[a]}|$ for all $a \in (0,1]$ by Theorem 4.4 and Lemma 2.5, i.e. $A_{[a]} \in \mathcal{I}[a]$ for all $a \in (0,1]$, hence $a \wedge A_{[a]} \in \mathcal{I}$ for all $a \in (0,1]$ by (LI2). Since (E,\mathcal{I}) is a perfect [0,1]-matroid, $A\in \mathfrak{I}.$

4.9. Lemma. For any $\lambda, \mu \in \mathbb{N}(L)$ and for any $a \in J(L)$, it follows that

$$(\lambda + \mu)_{[a]} = \lambda_{[a]} + \mu_{[a]}.$$

Proof. By [5, Theorem 19], we only need to prove that $(\lambda + \mu)_{[a]} \subseteq \lambda_{[a]} + \mu_{[a]}$. Suppose that $n \in (\lambda + \mu)_{[a]}$. Then

$$(\lambda+\mu)(n) = \bigvee_{k+l=n} \left(\lambda(k) \wedge \mu(l)\right) \geqslant a$$

By $a \in J(L)$, we know that there exist $k, l \in \mathbb{N}$ with n = k + l such that $\lambda(k) \wedge \mu(l) \ge a$. This implies that $k \in \lambda_{[a]}$ and $l \in \mu_{[a]}$, i.e. $n \in \lambda_{[a]} + \mu_{[a]}$. Hence $(\lambda + \mu)_{[a]} \subseteq \lambda_{[a]} + \mu_{[a]}$. \Box

By Lemma 4.9, we can easily obtain the following lemma.

4.10. Lemma. Let E be a finite set and $R: [0,1]^E \to \mathbb{N}([0,1])$ a mapping satisfying (LR1)-(LR4). Define $R_a: 2^E \to \mathbb{N}$ for each $a \in (0,1]$ by $R_a(A) = R(a \wedge A)_{[a]}$. Then R_a satisfies the following conditions (R1), (R2) and (R3). Hence there exists a crisp matroid (E, \mathfrak{I}_{R_a}) such that R_a is the rank function for (E, \mathfrak{I}_{R_a}) :

- (R1) For any $A \in 2^{E}$, $0 \leq R_{a}(A) \leq |A|$; (R2) For each $A, B \in 2^{E}$ and $A \subseteq B$, then $R_{a}(A) \leq R_{a}(B)$; (R3) For each $A, B \in 2^{E}$, $R_{a}(A) + R_{a}(B) \geq R_{a}(A \cup B) + R_{a}(A \cap B)$, where

$$\mathcal{I}_{R_a} = \{ A \in 2^L : R_a(A) = |A| \}.$$

4.11. Lemma. If $a \ge b$, then $\mathfrak{I}_{R_a} \subseteq \mathfrak{I}_{R_b}$.

Proof. Let $A \in \mathcal{J}_{R_a}$. Then $|A| = R_a(A) = R(a \wedge A)_{[a]} \leq R(a \wedge A)_{[b]}$. By (LR4), $R(a \wedge A)_{[b]} = R(b \wedge A)_{[b]} = R_b(A)$. Hence $|A| \leq R_b(A)$, thus $|A| = R_b(A)$ by (R1), i.e. $A \in \mathcal{I}_{R_b}$. This implies that $\mathcal{I}_{R_a} \subseteq \mathcal{I}_{R_b}$.

4.12. Theorem. Let E be a finite set and $R: [0,1]^E \to \mathbb{N}([0,1])$ a mapping satisfying (LR1)-(LR4). Define $\mathbb{J}_R = \{A \in [0,1]^E : \forall a \in (0,1], A_{[a]} \in \mathbb{J}_{R_a}\}, then$

(1)
$$\mathfrak{I}_R = \{A \in [0,1]^E : R(A) = |A|\}.$$

(2) (E, \mathfrak{I}_R) is a closed and perfect [0, 1]-matroid.

(3) R is the [0,1]-fuzzy rank function for (E, \mathfrak{I}_R) .

Proof. (1) Let $A \in \mathcal{J}_R$. Then $|A|_{[a]} = |A_{[a]}| = R(a \wedge A_{[a]})_{[a]} = R(A)_{[a]}$ for all $a \in (0, 1]$ by Lemma 2.5 and (LR4), hence |A| = R(A).

Conversely, let $A \in [0,1]^E$ with |A| = R(A). Then $|A_{[a]}| = |A|_{[a]} = R(A)_{[a]} = R(A)_{[a]} = R(A)_{[a]} = R(A)_{[a]} = R_a(A_{[a]})$ for all $a \in (0,1]$ by (LR4) and the definition of $R_a(A_{[a]})$, hence $A_{[a]} \in \mathfrak{I}_{R_a}$ for all $a \in (0,1]$ by the definition of \mathfrak{I}_{R_a} . By the definition of $\mathfrak{I}_R, A \in \mathfrak{I}_R$.

(2) **Step 1** Obviously, \mathfrak{I}_R satisfies (LI1) and (LI2). Let $A \in [0, 1]^E$. If $a \wedge A_{[a]} \in \mathfrak{I}_R$ for all $0 < a \leq 1$, then by the definition of \mathfrak{I}_R , $A_{[a]} = (a \wedge A_{[a]})_{[a]} \in \mathfrak{I}_{R_a}$ for all $0 < a \leq 1$, hence $A \in \mathfrak{I}_R$. This implies that \mathfrak{I}_R satisfies (LI4).

Step 2 We prove $\mathfrak{I}_R[a] = \mathfrak{I}_{R_a}$ ($\forall a \in (0, 1]$). For each $a \in (0, 1]$, let $A_{[a]} \in \mathfrak{I}_R[a]$, where $A \in \mathfrak{I}_R$. By the definition of \mathfrak{I}_R , $A_{[a]} \in \mathfrak{I}_{R_a}$. This implies that $\mathfrak{I}_R[a] \subseteq \mathfrak{I}_{R_a}$.

Conversely, let $A \in \mathcal{I}_{R_a}$, then $|A| = R(a \wedge A)_{[a]}$. For all $b \in (0, 1]$, $(a \wedge A)_{[b]} = A \in \mathcal{I}_{R_a} \subseteq \mathcal{I}_{R_b}$ for each $b \leq a$ by Lemma 4.11, $(a \wedge A)_{[b]} = \emptyset \in \mathcal{I}_{R_b}$ for each b > a. Thus $a \wedge A \in \mathcal{I}_R$, hence $A = (a \wedge A)_{[a]} \in \mathcal{I}_R[a]$. This implies that $\mathcal{I}_{R_a} \subseteq \mathcal{I}_R[a]$.

Step 3 Let $A \in 2^E$ and $a \in (0, 1]$. If $b \wedge A \in \mathcal{I}_R$ for all 0 < b < a, then

$$R(a \land A) \geqslant \bigvee_{0 < b < a} R(b \land A) = \bigvee_{0 < b < a} |b \land A| = |a \land A|$$

by (LR2) and (1), hence $R(a \wedge A) = |a \wedge A|$ by (LR1). By (1), $a \wedge A \in \mathcal{J}_R$.

Step 4 By Step 1, Step 2 and Theorem 3.5, (E, J_R) is a perfect [0, 1]-matroid. Thus (E, J_R) is a closed and perfect [0, 1]-matroid by Step 3 and Theorem 3.8.

(3) $\forall A \in [0, 1]^E, a \in (0, 1]$. By Theorem 4.4, Step 2 and (LR4),

$$R_{\mathfrak{I}_{R}}(A)_{[a]} = R_{\mathfrak{I}_{R}[a]}(A_{[a]}) = R_{\mathfrak{I}_{R_{a}}}(A_{[a]}) = R_{a}(A_{[a]}) = R(a \wedge A_{[a]})_{[a]} = R(A)_{[a]}.$$

Hence, $R_{\mathfrak{I}_R}(A) = R(A)$, $(\forall A \in [0,1]^E)$, thus $R_{\mathfrak{I}_R} = R$, i.e. R is the [0,1]-fuzzy rank function for (E,\mathfrak{I}_R) .

4.13. Theorem. Let (E, \mathbb{J}) be a closed and perfect [0, 1]-matroid, then $\mathbb{J}_{R_{\mathbb{J}}} = \mathbb{J}$.

Proof. By Lemma 4.8 and Theorem 4.12 (1), we have $A \in \mathcal{I} \iff R_{\mathcal{I}}(A) = |A| \iff A \in \mathcal{I}_{R_{\mathcal{I}}}$. This implies that $\mathcal{I}_{R_{\mathcal{I}}} = \mathcal{I}$.

4.14. Remark. For any [0, 1]-matroid (E, \mathfrak{I}) , we have $\mathfrak{I}_{R_{\mathfrak{I}}} = \overline{\mathfrak{I}}$. Indeed, by Lemma 4.5, $(E, \overline{\mathfrak{I}})$ is a closed and perfect [0, 1]-matroid and $R_{\mathfrak{I}} = R_{\overline{\mathfrak{I}}}$. Hence $\mathfrak{I}_{R_{\mathfrak{I}}} = \mathfrak{I}_{R_{\overline{\mathfrak{I}}}} = \overline{\mathfrak{I}}$ by Theorem 4.13.

By Theorem 4.12 and Theorem 4.13, the following theorem is obvious.

4.15. Theorem. A closed and perfect [0,1]-matroid is in one-to-one correspondence with its [0,1]-fuzzy rank function. That is, a closed and perfect [0,1]-matroid can be characterized by means of its [0,1]-fuzzy rank function.

5. Conclusions

The notions of closed [0, 1]-matroid and perfect [0, 1]-matroid are presented, and some of their basic properties are studied. For any [0, 1]-matroid (E, \mathcal{I}) , we can find a closed and perfect [0, 1]-matroid $(E, \overline{\mathcal{I}})$ such that $\overline{\mathcal{I}} = \mathcal{I}_{R_{\mathcal{I}}}$ and $R_{\mathcal{I}} = R_{\overline{\mathcal{I}}}$. Therefore, a [0, 1]matroid (resp., a perfect [0, 1]-matroid, a closed [0, 1]-matroid) and its [0, 1]-fuzzy rank function are not in one-to-one correspondence in general. Also, we can limit our study of fuzzy rank functions of [0, 1]-matroids to closed and perfect [0, 1]-matroids. A closed and perfect [0, 1]-matroid can be characterized by means of its [0, 1]-fuzzy rank function. That is, a closed and perfect [0, 1]-matroid and its [0, 1]-fuzzy rank function are in one-to-one correspondence.

Acknowledgments The authors would like to thank the unknown reviewers for their valuable comments and suggestions.

References

- Gale, D. Optimal assignments in an ordered set: an application of matroid theory, J. Combinatoral Theory 4, 176–180, 1968.
- [2] Gierz, G. et al. Continuous Lattices and Domains (Encyclopedia of Mathematics and its Applications 93, Cambridge University Press, Cambridge, 2003).
- [3] Huang H.-L. and Shi F.-G. L-fuzzy numbers and their properties, Information Sciences 178, 1141–1151, 2008.
- [4] Oxley J.G. Matroid theory (Oxford University Press, New York, 1992).
- [5] Shi F.-G. A new approach to the fuzzification of matroids, Fuzzy Sets and Systems 160, 696-705, 2009.
- [6] Shi F.-G. (L, M)-fuzzy matroids, Fuzzy Sets and Systems 160, 2387–2400, 2009.