RANK FUNCTIONS FOR CLOSED AND PERFECT [0,1]-MATROIDS ${ }^{\ddagger}$

Xiu Xin*† and Fu-Gui Shi*

Received 01:05:2009 : Accepted $12: 10: 2009$

Abstract

In this paper we present the notions of perfect $[0,1]$-matroid and closed $[0,1]$-matroid, and investigate some of their basic properties. Moreover, we prove that a closed and perfect $[0,1]$-matroid can be characterized by means of its $[0,1]$-fuzzy rank function.

Keywords: Matroids, L-matroids, Perfect [0, 1]-matroids, Closed [0, 1]-matroids, Fuzzy rank functions.

2000 AMS Classification: 03 E 70, 05 B 35, 52 B 40.

1. Introduction

Matroids were introduced by Whitney in 1935 as a generalization of both graphs and vector spaces. It is well-known that matroids play an important role in mathematics, especially in applied mathematics. Matroids are precisely the structures for which the very simple and efficient greedy algorithm works [1, 4]. In [6], Matroid theory was generalized to fuzzy fields by Shi, and L-fuzzy rank functions were studied. His approach to the fuzzification of matroids preserves many basic properties of crisp matroids, and L-matroids can be applied to fuzzy algebras and fuzzy graphs. Based on [6], the aim of this paper is to study the relation between a $[0,1]$-matroid and its $[0,1]$-fuzzy rank function.

In this paper, we obtain two results:
(1) There is a one-to-one correspondence between a closed and perfect $[0,1]$-matroid and its $[0,1]$-fuzzy rank function. That is, a closed and perfect $[0,1]$-matroid can be characterized by means of its $[0,1]$-fuzzy rank function.
(2) A $[0,1]$-matroid (resp., a perfect $[0,1]$-matroid, a closed $[0,1]$-matroid) and its $[0,1]$-fuzzy rank function are not in one-to-one correspondence in general.

[^0]
2. Preliminaries

Throughout this paper, L denotes a completely distributive lattice, and E a nonempty finite set. L^{E} is the set of all L-fuzzy sets (or L-sets for short) on E. The smallest element and the largest element in L are denoted by \perp and T respectively. We often do not distinguish a crisp subset A of E from its characteristic function χ_{A}.

An element a in L is called a prime element if $a \geqslant b \wedge c$ implies $a \geqslant b$ or $a \geqslant c$. Dually, a in L is called co-prime if $a \leqslant b \vee c$ implies $a \leqslant b$ or $a \leqslant c$ [2]. The set of non-unit prime elements in L is denoted by $P(L)$. The set of non-zero co-prime elements in L is denoted by $J(L)$. When L is replaced by the interval $[0,1]$, it is easy to see $J(L)=(0,1]$ and $P(L)=[0,1)$.

For $\mathcal{A} \subseteq 2^{E}$, we define

$$
\operatorname{Max}(\mathcal{A})=\{A \in \mathcal{A}: \forall B \in \mathcal{A}, \text { if } A \subseteq B \text { then } A=B\} .
$$

For $A \in L^{E}$ and $a \in L$, we define $A_{[a]}=\{e \in E: A(e) \geqslant a\}$. Some properties of the cut sets can be found in [3].

For $a \in L$ and $A \subseteq E$, define two L-fuzzy sets $a \wedge A$ and $a \vee A$ as follows:

$$
(a \wedge A)(e)=\left\{\begin{array}{ll}
a, & e \in A ; \\
\perp, & e \notin A .
\end{array} \quad(a \vee A)(e)= \begin{cases}\top, & e \in A ; \\
a, & e \notin A .\end{cases}\right.
$$

An L-fuzzy set $a \wedge\{e\}$ is called an L-fuzzy point, and denoted by e_{a}.
2.1. Definition. [5] Let \mathbb{N} denote the set of all natural numbers. An L-fuzzy natural number is an antitone map $\lambda: \mathbb{N} \rightarrow L$ satisfying

$$
\lambda(0)=\top, \quad \bigwedge_{n \in \mathbb{N}} \lambda(n)=\perp .
$$

The set of all L-fuzzy natural numbers is denoted by $\mathbb{N}(L)$.
For any $\lambda \in \mathbb{N}(L)$ and any $a \in J(L)$, we shall not distinguish $n \in \lambda_{[a]}$ from $n \leqslant\left|\lambda_{[a]}\right|$.
2.2. Definition. [5] For any $\lambda, \mu \in \mathbb{N}(L)$, define the sum $\lambda+\mu$ of λ and μ as follows: for any $n \in \mathbb{N}$,

$$
(\lambda+\mu)(n)=\bigvee_{k+l=n}(\lambda(k) \wedge \mu(l)) .
$$

2.3. Theorem. [5] For any $m \in \mathbb{N}$, define $\underline{m} \in \mathbb{N}(L)$ such that

$$
\underline{m}(t)= \begin{cases}\top, & \text { if } t \leqslant m \\ \perp, & \text { if } t \geqslant m+1 .\end{cases}
$$

Then for any $\lambda \in \mathbb{N}(L)$, it follows that

$$
\underline{0}+\lambda=\lambda .
$$

2.4. Definition. [6] Let A be an L-fuzzy set on a finite set E. Then the mapping $|A|: \mathbb{N} \rightarrow L$ defined $\forall n \in \mathbb{N}$ by,

$$
|A|(n)=\bigvee\left\{a \in L:\left|A_{[a]}\right| \geqslant n\right\}
$$

is called the L-fuzzy cardinality of A.
2.5. Lemma. [6] For a finite set E, it holds that $|A|_{[a]}=\left|A_{[a]}\right|$ for any $A \in L^{E}$ and any $a \in J(L)$.
2.6. Definition. [6] Let E be a finite set. A subfamily \mathcal{J} of L^{E} is called a family of independent L-fuzzy sets on E if it satisfies the following conditions:
(LI1) \mathcal{J} is nonempty;
(LI2) $A \in L^{E}, B \in \mathcal{J}, A \leqslant B \Longrightarrow A \in \mathcal{J}$;
(LI3) If $A, B \in \mathcal{J}$ and $b=|B|(n) \nless|A|(n)$ for some $n \in \mathbb{N}$, then there exists $e \in$ $F(A, B)$ such that $\left(b \wedge A_{[b]}\right) \vee e_{b} \in \mathcal{J}$, where

$$
F(A, B)=\{e \in E: b \leqslant B(e), b \nless A(e)\} .
$$

If \mathcal{J} is a family of independent L-fuzzy sets on E, then the pair (E, \mathcal{J}) is called an L matroid.
2.7. Theorem. [6] Let E be a finite set and $\mathcal{J} \subseteq L^{E}$. Define, $\forall a \in L \backslash\{\perp\}$,

$$
\mathcal{J}[a]=\left\{A_{[a]}: A \in \mathcal{J}\right\}
$$

If (E, \mathcal{J}) is an L-matroid, then $(E, \mathcal{J}[a])$ is a matroid for each $a \in L \backslash\{\perp\}$.

3. Closed and perfect $[0,1]$-matroids

In the sequel we will mainly focus on the case when L is the interval $[0,1]$.
3.1. Definition. A $[0,1]$-matroid (E, \mathcal{J}) is called a perfect $[0,1]$-matroid, if it satisfies the following condition:
(LI4) $\forall A \in[0,1]^{E}$, if $a \wedge A_{[a]} \in \mathcal{J}$ for all $a \in(0,1]$, then $A \in \mathcal{J}$.
3.2. Example. Let $E=\{3,5\}$. Define $A \in[0,1]^{E}$ by

$$
A(x)= \begin{cases}\frac{1}{2}, & x=3 \\ \frac{1}{3}, & x=5\end{cases}
$$

and define

$$
\mathcal{J}=\left\{B \in[0,1]^{E}: B \leqslant \frac{1}{3} \wedge\{3,5\}\right\} \cup\left\{B \in[0,1]^{E}: B \leqslant \frac{1}{2} \wedge\{3\}\right\}
$$

Then we can check that \mathcal{J} satisfies (LI1)-(LI3), but it does not satisfy (LI4) since $a \wedge A_{[a]} \in$ \mathcal{J} for all $a \in(0,1]$ but $A \notin \mathcal{J}$.
3.3. Theorem. Let (E, \mathcal{J}) be a $[0,1]$-matroid. Then (E, \mathcal{J}) is a perfect $[0,1]$-matroid if and only if

$$
\mathcal{J}=\left\{A \in[0,1]^{E}: \forall a \in(0,1], A_{[a]} \in \mathcal{J}[a]\right\}
$$

3.4. Lemma. Let (E, \mathcal{J}) be a $[0,1]$-matroid. If $0<a \leqslant b \leqslant 1$, then $\mathcal{J}[b] \subseteq \mathcal{J}[a]$.

Proof. Let $A \in \mathcal{J}[b]$. Then $b \wedge A \in \mathcal{J}$ as \mathcal{J} satisfies (LI2). Since $a \leqslant b, a \wedge A \leqslant b \wedge A$. Thus $a \wedge A \in \mathcal{J}$ by (LI2), hence $A=(a \wedge A)_{[a]} \in \mathcal{J}[a]$.
3.5. Theorem. Let $\mathcal{J} \subseteq[0,1]^{E}$ satisfy (LI2) and (LI4). Then the following conditions are equivalent:
(1) (E, \mathcal{J}) is a $[0,1]$-matroid.
(2) $(E, \mathcal{J}[a])$ is a matroid for all $a \in(0,1]$.

Proof. By Theorem 2.7, we only need to prove $(2) \Longrightarrow(1)$.
$(2) \Longrightarrow(1)$. Since \mathcal{J} satisfies (LI2) and (LI4), $\mathcal{J}=\left\{A \in[0,1]^{E}: \forall a \in(0,1], A_{[a]} \in \mathcal{J}[a]\right\}$. It is easy to see that \mathcal{J} satisfies (LI1). Now we prove that J satisfies (LI3). Suppose that $A, B \in \mathcal{J}$ and $b=|B|(n) \notin|A|(n)$ for some $n \in \mathbb{N}$. Then $n \in|B|_{[b]}$ and $n \notin|A|_{[b]}$, thus $|A|_{[b]} \nsupseteq|B|_{[b]}$. By Lemma 2.5, $\left|A_{[b]}\right| \nsupseteq\left|B_{[b]}\right|$, i.e. $\left|A_{[b]}\right|<\left|B_{[b]}\right|$. Since $A_{[b]}, B_{[b]} \in \mathcal{J}[b]$, there exists $e \in B_{[b]}-A_{[b]}$ such that $A_{[b]} \cup\{e\} \in \mathcal{J}[b]$. In this case, $b \leqslant B(e)$ and $b \notin A(e)$, i.e. $e \in F(A, B)$. By Lemma 3.4, it is obvious that

$$
\left(\left(b \wedge A_{[b]}\right) \vee e_{b}\right)_{[a]}=A_{[b]} \cup\{e\} \in \mathcal{J}[b] \subseteq \mathcal{J}[a]
$$

for every $a \leqslant b$, and $\left(\left(b \wedge A_{[b]}\right) \vee e_{b}\right)_{[a]}=\emptyset \in \mathcal{J}[a]$ for every $a \nless b$. This implies $\left(b \wedge A_{[b]}\right) \vee e_{b} \in \mathcal{J}$. Hence (E, \mathcal{J}) is a $[0,1]$-matroid.
3.6. Theorem. Let (E, \mathcal{J}) be a $[0,1]$-matroid. Then there is a finite sequence $0=a_{0}<$ $a_{1}<a_{2}<\cdots<a_{n}=1$ such that
(1) If $a_{i}<a, b<a_{i+1}$, then $\mathcal{J}[a]=\mathcal{J}[b], 0 \leqslant i \leqslant n-1$;
(2) If $a_{i}<a<a_{i+1}<b<a_{i+2}$, then $\mathcal{J}[a] \supset \mathcal{J}[b], 0 \leqslant i \leqslant n-2$.

The sequence $a_{0}, a_{1}, \ldots, a_{n}$ is called the fundamental sequence for (E, \mathcal{J}).
Proof. We define an equivalence relation \sim on $(0,1]$ by $a \sim b \Leftrightarrow \mathcal{J}[a]=\mathcal{J}[b]$. Since E is a finite set, the number of matroids on E is finite. Thus there exist at most finitely many equivalence classes which are respectively denoted by $I_{1}, I_{2}, \ldots, I_{n}$.

Each $I_{i}(i=1,2, \ldots, n)$ is an interval. We only need to show that $\forall a, b \in I_{i}$ with $a \leqslant b$, if $c \in[a, b]$, then $c \in I_{i}$. Since $a \leqslant c \leqslant b$, by Lemma 3.4, we know that $\mathcal{J}[b] \subseteq \mathcal{J}[c] \subseteq \mathcal{J}[a]$. As $a, b \in I_{i}, \mathcal{J}[a]=\mathcal{J}[b]$. Thus $\mathcal{J}[b]=\mathcal{J}[c]=\mathcal{J}[a]$, hence $c \in I_{i}$ by the definition of I_{i}. This implies that I_{i} is an interval.

Let $a_{i-1}=\inf I_{i}$ and $a_{i}=\sup I_{i}(i=1,2, \ldots, n)$. Clearly, the sequence $a_{0}, a_{1}, \ldots, a_{n}$ is the fundamental sequence for (E, \mathcal{J}).
3.7. Definition. A $[0,1]$-matroid (E, \mathcal{J}) with the fundamental sequence $a_{0}, a_{1}, \ldots, a_{n}$ is called a closed $[0,1]$-matroid if whenever $a_{i-1}<a \leqslant a_{i}(1 \leqslant i \leqslant n)$, then $\mathcal{J}[a]=\mathcal{J}\left[a_{i}\right]$.
3.8. Theorem. Let (E, \mathcal{J}) be a $[0,1]$-matroid with the fundamental sequence $a_{0}, a_{1}, \ldots, a_{n}$. Then (E, \mathcal{J}) is a closed $[0,1]$-matroid if and only if \mathcal{J} satisfies the following condition:
(*) $\forall a \in(0,1]$ and $A \in 2^{E}$, if $b \wedge A \in \mathcal{J}$ for all $0<b<a$, then $a \wedge A \in \mathcal{J}$.
Proof. Suppose that J satisfies (*). Then $\forall a \in\left(a_{i-1}, a_{i}\right),(i=1,2, \ldots, n)$, we have $\mathcal{J}\left[a_{i}\right] \subseteq \mathcal{J}[a]$ by Lemma 3.4. Let $A \in \mathcal{J}[a]$ for all $a \in\left(a_{i-1}, a_{i}\right)$. Then $a \wedge A \in \mathcal{J}$ for all $a \in\left(a_{i-1}, a_{i}\right)$, thus $b \wedge A \in \mathcal{J}$ for all $0<b<a_{i}$. Since \mathcal{J} satisfies $(*), a_{i} \wedge A \in \mathcal{J}$. Thus $A=\left(a_{i} \wedge A\right)_{\left[a_{i}\right]} \in \mathcal{J}\left[a_{i}\right]$. This implies that $\mathcal{J}[a] \subseteq \mathcal{J}\left[a_{i}\right]$ for all $a \in\left(a_{i-1}, a_{i}\right)$. Therefore, $\mathcal{J}[a]=\mathcal{J}\left[a_{i}\right]$ for all $a \in\left(a_{i-1}, a_{i}\right]$, i.e. (E, \mathcal{J}) is a closed $[0,1]$-matroid.

Conversely, assume that (E, \mathcal{J}) is a closed [0,1$]$-matroid. Let $a \in(0,1], A \in 2^{E}$, and $b \wedge A \in \mathcal{J}$ for all $0<b<a$. Since $a \in(0,1], a \in\left(a_{i-1}, a_{i}\right]$ for some $i=1,2, \ldots, n$. Take $b_{0} \in\left(a_{i-1}, a\right) \subseteq\left(a_{i-1}, a_{i}\right]$, then $b_{0} \wedge A \in \mathcal{J}$, thus $A \in \mathcal{J}\left[b_{0}\right]=\mathcal{J}\left[a_{i}\right]$ since (E, \mathcal{J}) is a closed [0,1]-matroid, hence $a_{i} \wedge A \in \mathcal{J}$. By (LI2), $a \wedge A \in \mathcal{J}$. This means that \mathcal{J} satisfies ($*$).

By Example 3.2, we know that a closed $[0,1]$-matroid need not be a perfect $[0,1]$ matroid. The following example shows that a perfect $[0,1]$-matroid need not be a closed [0,1$]$-matroid either.
3.9. Example. Let E be a finite set. Define

$$
\mathcal{J}=\left\{A \in[0,1]^{E}: A(x)<\frac{1}{2} \text { for all } x \in E\right\} .
$$

Then we can check that J satisfies (LI1)-(LI4), but it is not closed.

4. Rank functions for closed and perfect [0, 1]-matroids

4.1. Definition. [6] Let (E, \mathcal{J}) be an L-matroid. The mapping $R_{\mathcal{J}}: L^{E} \rightarrow \mathbb{N}(L)$ defined by

$$
R_{\mathcal{J}}(A)=\bigvee\{|B|: B \leqslant A, B \in \mathcal{J}\}
$$

is called the L-fuzzy rank function for (E, \mathcal{J}). If $A \in L^{E}, R_{\mathcal{J}}(A)$ is called the L-fuzzy rank of A in (E, \mathcal{J}).
4.2. Theorem. Let (E, \mathcal{J}) be an L-matroid. If $R_{\mathcal{J}}: L^{E} \rightarrow \mathbb{N}(L)$ is the L-fuzzy rank function for (E, \mathcal{J}), then

$$
R_{\mathcal{J}}(A)(n)=\bigvee\left\{a \in L \backslash\{\perp\}: n \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)\right\} \text { for all } n \in \mathbb{N}
$$

where $R_{\mathcal{J}[a]}$ is the rank function for $(E, \mathcal{J}[a])$ and

$$
R_{\mathcal{J}[a]}\left(A_{[a]}\right)=\bigvee\left\{|B|: B \in \mathcal{J}[a], B \subseteq A_{[a]}\right\} .
$$

Proof. Let $a \in\left\{a \in L \backslash\{\perp\}: n \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)\right\}, \forall n \in \mathbb{N}$. Let $B_{a} \in \operatorname{Max}\left(\left.\mathcal{J}[a]\right|_{A_{[a]}}\right)$. Then $n \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)=\left|B_{a}\right|$.

Since $B_{a} \in \mathcal{J}[a]$ and $B_{a} \subseteq A_{[a]}, a \wedge B_{a} \in \mathcal{J}$ and $a \wedge B_{a} \leqslant A$. Thus

$$
R_{\mathcal{J}}(A)(n)=(\bigvee\{|B|: B \leqslant A, B \in \mathcal{J}\})(n) \geqslant\left|a \wedge B_{a}\right|(n)=a
$$

Hence $R_{\mathcal{J}}(A)(n) \geqslant \bigvee\left\{a \in L \backslash\{\perp\}: n \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)\right\}$.
Conversely, in order to prove $R_{\mathcal{J}}(A)(n) \leqslant \bigvee\left\{a \in L \backslash\{\perp\}: n \leqslant R_{J[a]}\left(A_{[a]}\right)\right\}$, we only need to prove $|B|(n) \leqslant \bigvee\left\{a \in L \backslash\{\perp\}: n \leqslant R_{\Im[a]}\left(A_{[a]}\right)\right\}$ for all $B \leqslant A$ and $B \in \mathcal{J}$. Let $B \in \mathcal{J}$ and $B \leqslant A$. Then $\left.B_{[a]} \in \mathcal{J}[a]\right|_{A_{[a]}}, \forall a \in\left\{a \in L \backslash\{\perp\}:\left|B_{[a]}\right| \geqslant n\right\}$, thus $n \leqslant\left|B_{[a]}\right| \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)$, hence $a \in\left\{a \in L \backslash\{\perp\}: n \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)\right\}$. This implies that

$$
|B|(n)=\bigvee\left\{a \in L:\left|B_{[a]}\right| \geqslant n\right\} \leqslant \bigvee\left\{a \in L \backslash\{\perp\}: n \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)\right\},
$$

and thus $R_{\mathcal{J}}(A)(n) \leqslant \bigvee\left\{a \in L \backslash\{\perp\}: n \leqslant R_{\text {Ja] }}\left(A_{[a]}\right)\right\}$. Therefore,

$$
R_{\mathcal{J}}(A)(n)=\bigvee\left\{a \in L \backslash\{\perp\}: n \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)\right\}
$$

for all $n \in \mathbb{N}$.
4.3. Lemma. Let (E, \mathcal{J}) be a closed $[0,1]$-matroid and $A \in[0,1]^{E}$. Then there is a finite sequence $0=a_{0}<a_{1}<a_{2}<\cdots<a_{n}=1$ such that
(1) If $a_{i}<a, b \leqslant a_{i+1}$, then $R_{\text {J }}^{[a]}$ $\left(A_{[a]}\right)=R_{\text {J }[b]}\left(A_{[b]}\right), 0 \leqslant i \leqslant n-1$;
(2) If $a_{i}<a \leqslant a_{i+1}<b \leqslant a_{i+2}$, then $R_{\mathcal{J}[a]}\left(A_{[a]}\right)>R_{\mathcal{J}[b]}\left(A_{[b]}\right), 0 \leqslant i \leqslant n-2$.

Proof. Let (E, \mathcal{J}) be a $[0,1]$-matroid and $A \in[0,1]^{E}$. We define an equivalence relation \sim on $(0,1]$ by $a \sim b \Longleftrightarrow R_{\mathcal{J}[a]}\left(A_{[a]}\right)=R_{\mathcal{J}[b]}\left(A_{[b]}\right)$. Since E is a finite set, there exist at most finitely many equivalence classes which are respectively denoted by $I_{1}, I_{2}, \ldots, I_{n}$.

Step 1 For all $a, b \in(0,1]$, if $a \leqslant b, R_{\mathcal{J}[b]}\left(A_{[b]}\right) \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)$. Since $a \leqslant b, \mathcal{J}[b] \subseteq \mathcal{J}[a]$ and $A_{[b]} \subseteq A_{[a]}$. Thus

$$
\begin{aligned}
R_{\mathcal{J}[b]}\left(A_{[b]}\right) & =\bigvee\left\{|B|: B \in \mathcal{J}[b], B \subseteq A_{[b]}\right\} \\
& \leqslant \bigvee\left\{|B|: B \in \mathcal{J}[a], B \subseteq A_{[a]}\right\} \\
& =R_{\mathcal{J}[a]}\left(A_{[a]}\right) .
\end{aligned}
$$

Step 2 Each $I_{i},(i=1,2, \ldots, n)$, is an interval. We only need to show that for any $a, b \in I_{i}$ with $a \leqslant b$, if $c \in[a, b]$, then $c \in I_{i}$. Since $a \leqslant c \leqslant b$, we know that $R_{\mathcal{J}_{[b]}}\left(A_{[b]}\right) \leqslant R_{\mathcal{J}[c]}\left(A_{[c]}\right) \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)$ by Step 1. Since $a, b \in I_{i}, R_{\mathcal{J}[a]}\left(A_{[a]}\right)=R_{\mathcal{J}[b]}\left(A_{[b]}\right)$, thus

$$
R_{\mathcal{J}[a]}\left(A_{[a]}\right)=R_{\mathcal{J}[c]}\left(A_{[c]}\right)=R_{\mathcal{J}[b]}\left(A_{[b]}\right) .
$$

Hence $c \in I_{i}$ by the definition of I_{i}, and then I_{i} is an interval.
Step 3 Let $\inf I_{i}=a_{i-1}, \sup I_{i}=a_{i}$. Since E is a finite set, $\left\{\left.\mathcal{J}[a]\right|_{A_{[a]}}: a \in\left(a_{i-1}, a_{i}\right)\right\}$ is a finite family. Let

$$
\left\{\left.\mathcal{J}[a]\right|_{[a]}: a \in\left(a_{i-1}, a_{i}\right)\right\}=\left\{\left.\mathcal{J}\left[b_{1}\right]\right|_{\left[b_{1}\right]},\left.\mathcal{J}\left[b_{2}\right]\right|_{A_{\left[b_{2}\right]}}, \ldots,\left.\mathcal{J}\left[b_{m}\right]\right|_{A_{\left[b_{m}\right]}}\right\}
$$

where $a_{i}>b_{1}>b_{2}>\cdots>b_{m}>a_{i-1}$. Hence $\left.\left.\left.\mathcal{J}\left[b_{1}\right]\right|_{A_{\left[b_{1}\right]}} \subset \mathcal{J}\left[b_{2}\right]\right|_{A_{\left[b_{2}\right]}} \subset \cdots \subset \mathcal{J}\left[b_{m}\right]\right|_{A_{\left[b_{m}\right]}}$. Let $B \in \operatorname{Max}\left(\left.\mathcal{J}\left[b_{1}\right]\right|_{A_{\left[b_{1}\right]}}\right)$, then $|B|=R_{\mathcal{J}\left[b_{1}\right]}\left(A_{\left[b_{1}\right]}\right)=R_{\mathcal{J}\left[b_{2}\right]}\left(A_{\left[b_{2}\right]}\right)=\cdots=R_{\mathcal{J}\left[b_{m}\right]}\left(A_{\left[b_{m}\right]}\right)$, thus $B \in \operatorname{Max}\left(\left.\mathcal{J}[a]\right|_{A_{[a]}}\right)$ for all $a \in\left(a_{i-1}, a_{i}\right)$. Hence $a \wedge B \in \mathcal{J}$ and $A(x) \geqslant a,(\forall x \in B)$ for all $a \in\left(a_{i-1}, a_{i}\right)$.

Since (E, \mathcal{J}) is a closed [0, 1]-matroid, $a_{i} \wedge B \in \mathcal{J}$ and $A(x) \geqslant a_{i},(\forall x \in B)$, i.e. $\left.B \in \mathcal{J}\left[a_{i}\right]\right|_{A_{\left[a_{i}\right]}}$. Hence $B \in \operatorname{Max}\left(\left.\mathcal{J}\left[a_{i}\right]\right|_{A_{\left[a_{i}\right]}}\right)$ and then $R_{\mathcal{J}\left[a_{i}\right]}\left(A_{\left[a_{i}\right]}\right)=|B|=R_{\mathcal{J}[a]}\left(A_{[a]}\right)$ for all $a \in\left(a_{i-1}, a_{i}\right)$. This implies that $\sup I_{i}=a_{i} \in I_{i}$.
4.4. Theorem. Let (E, \mathcal{J}) be a closed $[0,1]$-matroid and $R_{\mathcal{J}}:[0,1]^{E} \rightarrow \mathbb{N}([0,1])$ the $[0,1]$-fuzzy rank function for (E, \mathcal{J}). Then

$$
R_{\mathcal{J}}(A)_{[a]}=R_{\mathcal{J}[a]}\left(A_{[a]}\right)
$$

for all $A \in[0,1]^{E}, a \in(0,1]$.
Proof. Let $A \in[0,1]^{E}$ and $a \in(0,1]$. By Theorem 4.2 and Lemma 4.3, $n \in R_{\mathcal{J}}(A)_{[a]}$ if and only if $n \leqslant R_{J[a]}\left(A_{[a]}\right)$ for all $n \in \mathbb{N}$. Hence $R_{\mathcal{J}}(A)_{[a]}=R_{J[a]}\left(A_{[a]}\right),\left(\forall A \in[0,1]^{E}, a \in\right.$ $(0,1])$.
4.5. Lemma. Let (E, \mathcal{J}) be $a[0,1]$-matroid with fundamental sequence $a_{0}, a_{1}, \ldots, a_{n}$. For each $a \in(0,1]$, define $\overline{\mathcal{J}}_{a}=\mathcal{J}\left[\bar{a}_{i}\right]$, where $a_{i-1}<a \leqslant a_{i}$ and $\bar{a}_{i}=\frac{1}{2}\left(a_{i-1}+a_{i}\right)$. Let $\overline{\mathcal{J}}=\left\{A \in[0,1]^{E}: \forall a \in(0,1], A_{[a]} \in \overline{\mathcal{J}}_{a}\right\}$, then
(1) $(E, \overline{\mathcal{J}})$ is a closed and perfect $[0,1]$-matroid.
(2) $R_{\mathrm{J}}=R_{\bar{J}}$.

Proof. (1) Obviously, $\overline{\mathcal{J}}$ satisfies (LI1) and (LI2). Let $A \in[0,1]^{E}$. If $a \wedge A_{[a]} \in \overline{\mathcal{J}}$ for all $0<a \leqslant 1$, then by the definition of $\overline{\mathcal{J}}, A_{[a]}=\left(a \wedge A_{[a]}\right)_{[a]} \in \overline{\mathcal{J}}_{a}$ for all $0<a \leqslant 1$, hence $A \in \overline{\mathcal{J}}$. This implies that $\overline{\mathcal{J}}$ satisfies (LI4).

For any $a \in(0,1]$, let $A \in \overline{\mathcal{J}}[a]$. Then $a \wedge A \in \overline{\mathcal{J}}$, thus $A=(a \wedge A)_{[a]} \in \overline{\mathcal{J}}_{a}$, hence $\overline{\mathcal{J}}[a] \subseteq \overline{\mathcal{J}}_{a}$. Conversely, let $A \in \overline{\mathcal{J}}_{a}$. It is obvious that $(a \wedge A)_{[b]}=A \in \overline{\mathcal{J}}_{a} \subseteq \overline{\mathcal{J}}_{b}$ for every $b \leqslant a$ and $(a \wedge A)_{[b]}=\emptyset \in \overline{\mathcal{J}}_{b}$ for every $b>a$, hence $a \wedge A \in \overline{\mathcal{J}}$, thus $A=(a \wedge A)_{[a]} \in \overline{\mathcal{J}}[a]$.

This implies that $\overline{\mathcal{J}}_{a} \subseteq \overline{\mathcal{J}}[a]$. Therefore, $\overline{\mathcal{J}}[a]=\overline{\mathcal{J}}_{a}$ for all $a \in(0,1]$.
By Theorem 3.5 and the definition of $\overline{\mathcal{J}},(E, \overline{\mathcal{J}})$ is a closed and perfect $[0,1]$-matroid.
(2) We need to prove that $R_{\mathcal{J}}(A)=R_{\overline{\mathcal{J}}}(A), \forall A \in[0,1]^{E}$. Let $A \in \mathcal{J}$. Then $A_{[a]} \in$ $\mathcal{J}[a] \subseteq \overline{\mathcal{J}}_{a}$ for all $a \in(0,1]$, thus $A \in \overline{\mathcal{J}}$ by the definition of $\overline{\mathcal{J}}$. This implies that $\mathcal{J} \subseteq \overline{\mathcal{J}}$. Hence $R_{\mathcal{J}}(A) \leqslant R_{\bar{\jmath}}(A)$.

Conversely, we need to prove $R_{\bar{J}}(A) \leqslant R_{\mathcal{J}}(A)$, i.e. $R_{\overline{\mathcal{J}}}(A)_{[a]} \subseteq R_{\mathcal{J}}(A)_{[a]}$ for all $a \in$ $(0,1]$. Let $n \in R_{\bar{J}}(A)_{[a]}$. Then $n \leqslant R_{\overline{\mathcal{J}}}^{[a]}$ ($\left.A_{[a]}\right)$ by Theorem 4.4, i.e. there exists $B \in \overline{\mathcal{J}}[a]$ such that $B \subseteq A_{[a]}$ and $n \leqslant|B|$. By the definition of $\overline{\mathcal{J}}, B \in \mathcal{J}[b]$ for any $0<b<a$. Thus $b \wedge B \in \mathcal{J}, b \wedge B \leqslant A$ for any $0<b<a$ and $|b \wedge B|(n)=b$. Hence $R_{\mathcal{J}}(A)(n) \geqslant$ $\bigvee\{|b \wedge B|(n): 0<b<a\}=a$, i.e. $n \in R_{\mathcal{J}}(A)_{[a]}$.

This implies that $R_{\overline{\mathcal{J}}}(A)_{[a]} \subseteq R_{\mathcal{J}}(A)_{[a]}$. Therefore, we have $R_{\mathcal{J}}=R_{\bar{J}}$.
By Lemma 4.5, Example 3.2 and Example 3.9, we obtain the following result:
4.6. Remark. In general, a $[0,1]$-matroid (resp., a perfect $[0,1]$-matroid, a closed $[0,1]$ matroid) is not in one-to-one correspondence with its $[0,1]$-fuzzy rank function.

By Lemma 4.5, we can limit our study of fuzzy rank functions for $[0,1]$-matroids to closed and perfect $[0,1]$-matroids.
4.7. Theorem. Let (E, \mathcal{J}) be a $[0,1]$-matroid and $R_{\mathcal{J}}:[0,1]^{E} \rightarrow \mathbb{N}([0,1])$ the $[0,1]$-fuzzy rank function for (E, \mathcal{J}). Then $R_{\mathcal{J}}$ satisfies the following conditions:
(LR1) For any $A \in[0,1]^{E}, \underline{0} \leqslant R_{\mathcal{J}}(A) \leqslant|A|$;
(LR2) If $A, B \in[0,1]^{E}$ and $A \leqslant B$, then $R_{\mathcal{J}}(A) \leqslant R_{\mathcal{J}}(B)$;
(LR3) For any $A, B \in[0,1]^{E}, R_{\mathcal{J}}(A)+R_{\mathcal{J}}(B) \geqslant R_{\mathcal{J}}(A \vee B)+R_{\mathcal{J}}(A \wedge B)$;
(LR4) For any $A \in[0,1]^{E}$ and any $a \in(0,1], R_{\mathcal{J}}\left(a \wedge A_{[a]}\right)_{[a]}=R_{\mathcal{J}}(A)_{[a]}$.
Proof. By [6, Theorem 3.14], $R_{\mathcal{J}}$ satisfies (LR1)-(LR3). We only need to check that $R_{\mathcal{J}}$ satisfies (LR4). For any $A \in \mathcal{J}$ and $a \in(0,1]$, by Theorem 4.4 and Lemma 4.5,

$$
\begin{aligned}
R_{\mathcal{J}}(A)_{[a]} & =R_{\bar{J}}(A)_{[a]}=R_{\bar{J}[a]}\left(A_{[a]}\right)=R_{\overline{\mathcal{J}}[a]}\left(\left(a \wedge A_{[a]}\right)_{[a]}\right)=R_{\bar{J}}\left(a \wedge A_{[a]}\right)_{[a]} \\
& =R_{\mathcal{J}}\left(a \wedge A_{[a]}\right)_{[a]} .
\end{aligned}
$$

4.8. Lemma. Let (E, \mathcal{J}) be a closed and perfect $[0,1]$-matroid and $R_{\mathcal{J}}:[0,1]^{E} \rightarrow \mathbb{N}([0,1])$ the $[0,1]$-fuzzy rank function for (E, \mathcal{J}). Then $A \in \mathcal{J} \Longleftrightarrow R_{\mathcal{J}}(A)=|A|$.

Proof. Let $A \in \mathcal{J}$, then $A_{[a]} \in \mathcal{J}[a]$ for all $a \in(0,1]$, hence

$$
R_{\mathcal{J}}(A)(n)=\bigvee\left\{a \in(0,1]: n \leqslant R_{\mathcal{J}[a]}\left(A_{[a]}\right)\right\}=\bigvee\left\{a \in(0,1]: n \leqslant\left|A_{[a]}\right|\right\}=|A|(n)
$$

i.e. $R_{\mathcal{J}}(A)=|A|$.

Conversely, let $A \in[0,1]^{E}$ and $R_{\mathcal{J}}(A)=|A|$, then $R_{\mathcal{J}[a]}\left(A_{[a]}\right)=R_{\mathcal{J}}(A)_{[a]}=|A|_{[a]}=$ $\left|A_{[a]}\right|$ for all $a \in(0,1]$ by Theorem 4.4 and Lemma 2.5, i.e. $A_{[a]} \in \mathcal{J}[a]$ for all $a \in(0,1]$, hence $a \wedge A_{[a]} \in \mathcal{J}$ for all $a \in(0,1]$ by (LI2). Since (E, \mathcal{J}) is a perfect $[0,1]$-matroid, $A \in \mathcal{J}$.
4.9. Lemma. For any $\lambda, \mu \in \mathbb{N}(L)$ and for any $a \in J(L)$, it follows that

$$
(\lambda+\mu)_{[a]}=\lambda_{[a]}+\mu_{[a]}
$$

Proof. By [5, Theorem 19], we only need to prove that $(\lambda+\mu)_{[a]} \subseteq \lambda_{[a]}+\mu_{[a]}$. Suppose that $n \in(\lambda+\mu)_{[a]}$. Then

$$
(\lambda+\mu)(n)=\bigvee_{k+l=n}(\lambda(k) \wedge \mu(l)) \geqslant a
$$

By $a \in J(L)$, we know that there exist $k, l \in \mathbb{N}$ with $n=k+l$ such that $\lambda(k) \wedge \mu(l) \geqslant a$. This implies that $k \in \lambda_{[a]}$ and $l \in \mu_{[a]}$, i.e. $n \in \lambda_{[a]}+\mu_{[a]}$. Hence $(\lambda+\mu)_{[a]} \subseteq \lambda_{[a]}+\mu_{[a]}$.

By Lemma 4.9, we can easily obtain the following lemma.
4.10. Lemma. Let E be a finite set and $R:[0,1]^{E} \rightarrow \mathbb{N}([0,1])$ a mapping satisfying (LR1)-(LR4). Define $R_{a}: 2^{E} \rightarrow \mathbb{N}$ for each $a \in(0,1]$ by $R_{a}(A)=R(a \wedge A)_{[a]}$. Then R_{a} satisfies the following conditions (R1), (R2) and (R3). Hence there exists a crisp matroid $\left(E, \mathfrak{J}_{R_{a}}\right)$ such that R_{a} is the rank function for $\left(E, \mathcal{J}_{R_{a}}\right)$:
(R1) For any $A \in 2^{E}, 0 \leqslant R_{a}(A) \leqslant|A|$;
(R2) For each $A, B \in 2^{E}$ and $A \subseteq B$, then $R_{a}(A) \leqslant R_{a}(B)$;
(R3) For each $A, B \in 2^{E}, R_{a}(A)+R_{a}(B) \geqslant R_{a}(A \cup B)+R_{a}(A \cap B)$, where

$$
\mathcal{J}_{R_{a}}=\left\{A \in 2^{E}: R_{a}(A)=|A|\right\}
$$

4.11. Lemma. If $a \geqslant b$, then $\mathcal{J}_{R_{a}} \subseteq \mathcal{J}_{R_{b}}$.

Proof. Let $A \in \mathcal{J}_{R_{a}}$. Then $|A|=R_{a}(A)=R(a \wedge A)_{[a]} \leqslant R(a \wedge A)_{[b]}$. By (LR4), $R(a \wedge A)_{[b]}=R(b \wedge A)_{[b]}=R_{b}(A)$. Hence $|A| \leqslant R_{b}(A)$, thus $|A|=R_{b}(A)$ by (R1), i.e. $A \in \mathcal{J}_{R_{b}}$. This implies that $\mathcal{J}_{R_{a}} \subseteq \mathcal{J}_{R_{b}}$.
4.12. Theorem. Let E be a finite set and $R:[0,1]^{E} \rightarrow \mathbb{N}([0,1])$ a mapping satisfying (LR1)-(LR4). Define $\mathcal{J}_{R}=\left\{A \in[0,1]^{E}: \forall a \in(0,1], A_{[a]} \in \mathcal{J}_{R_{a}}\right\}$, then
(1) $\mathcal{J}_{R}=\left\{A \in[0,1]^{E}: R(A)=|A|\right\}$.
(2) $\left(E, \mathcal{J}_{R}\right)$ is a closed and perfect $[0,1]$-matroid.
(3) R is the $[0,1]$-fuzzy rank function for $\left(E, \mathcal{J}_{R}\right)$.

Proof. (1) Let $A \in \mathcal{J}_{R}$. Then $|A|_{[a]}=\left|A_{[a]}\right|=R\left(a \wedge A_{[a]}\right)_{[a]}=R(A)_{[a]}$ for all $a \in(0,1]$ by Lemma 2.5 and (LR4), hence $|A|=R(A)$.

Conversely, let $A \in[0,1]^{E}$ with $|A|=R(A)$. Then $\left|A_{[a]}\right|=|A|_{[a]}=R(A)_{[a]}=$ $R\left(a \wedge A_{[a]}\right)_{[a]}=R_{a}\left(A_{[a]}\right)$ for all $a \in(0,1]$ by (LR4) and the definition of $R_{a}\left(A_{[a]}\right)$, hence $A_{[a]} \in \mathcal{J}_{R_{a}}$ for all $a \in(0,1]$ by the definition of $\mathcal{J}_{R_{a}}$. By the definition of $\mathcal{J}_{R}, A \in \mathcal{J}_{R}$.
(2) Step 1 Obviously, \mathcal{J}_{R} satisfies (LI1) and (LI2). Let $A \in[0,1]^{E}$. If $a \wedge A_{[a]} \in \mathcal{J}_{R}$ for all $0<a \leqslant 1$, then by the definition of $\mathcal{J}_{R}, A_{[a]}=\left(a \wedge A_{[a]}\right)_{[a]} \in \mathcal{J}_{R_{a}}$ for all $0<a \leqslant 1$, hence $A \in \mathcal{J}_{R}$. This implies that \mathcal{J}_{R} satisfies (LI4).

Step 2 We prove $\mathcal{J}_{R}[a]=\mathcal{J}_{R_{a}}(\forall a \in(0,1])$. For each $a \in(0,1]$, let $A_{[a]} \in \mathcal{J}_{R}[a]$, where $A \in \mathcal{J}_{R}$. By the definition of $\mathcal{J}_{R}, A_{[a]} \in \mathcal{J}_{R_{a}}$. This implies that $\mathcal{J}_{R}[a] \subseteq \mathcal{J}_{R_{a}}$.

Conversely, let $A \in \mathcal{J}_{R_{a}}$, then $|A|=R(a \wedge A)_{[a]}$. For all $b \in(0,1],(a \wedge A)_{[b]}=A \in$ $\mathcal{J}_{R_{a}} \subseteq \mathcal{J}_{R_{b}}$ for each $b \leqslant a$ by Lemma 4.11, $(a \wedge A)_{[b]}=\emptyset \in \mathcal{J}_{R_{b}}$ for each $b>a$. Thus $a \wedge A \in \mathcal{J}_{R}$, hence $A=(a \wedge A)_{[a]} \in \mathcal{J}_{R}[a]$. This implies that $\mathcal{J}_{R_{a}} \subseteq \mathcal{J}_{R}[a]$.

Step 3 Let $A \in 2^{E}$ and $a \in(0,1]$. If $b \wedge A \in \mathcal{J}_{R}$ for all $0<b<a$, then

$$
R(a \wedge A) \geqslant \bigvee_{0<b<a} R(b \wedge A)=\bigvee_{0<b<a}|b \wedge A|=|a \wedge A|
$$

by (LR2) and (1), hence $R(a \wedge A)=|a \wedge A|$ by (LR1). By (1), $a \wedge A \in \mathcal{J}_{R}$.
Step 4 By Step 1, Step 2 and Theorem 3.5, $\left(E, \mathcal{J}_{R}\right)$ is a perfect $[0,1]$-matroid. Thus $\left(E, \mathcal{J}_{R}\right)$ is a closed and perfect $[0,1]$-matroid by Step 3 and Theorem 3.8.
(3) $\forall A \in[0,1]^{E}, a \in(0,1]$. By Theorem 4.4, Step 2 and (LR4),

$$
R_{\mathcal{J}_{R}}(A)_{[a]}=R_{\mathcal{J}_{R}[a]}\left(A_{[a]}\right)=R_{\mathcal{J}_{R_{a}}}\left(A_{[a]}\right)=R_{a}\left(A_{[a]}\right)=R\left(a \wedge A_{[a]}\right)_{[a]}=R(A)_{[a]} .
$$

Hence, $R_{\mathcal{J}_{R}}(A)=R(A),\left(\forall A \in[0,1]^{E}\right)$, thus $R_{\mathcal{J}_{R}}=R$, i.e. R is the $[0,1]$-fuzzy rank function for $\left(E, \mathcal{J}_{R}\right)$.
4.13. Theorem. Let (E, \mathcal{J}) be a closed and perfect $[0,1]$-matroid, then $\mathcal{J}_{R_{\mathcal{J}}}=\mathcal{J}$.

Proof. By Lemma 4.8 and Theorem 4.12 (1), we have $A \in \mathcal{J} \Longleftrightarrow R_{\mathcal{J}}(A)=|A| \Longleftrightarrow$ $A \in \mathcal{J}_{R_{\mathcal{J}}}$. This implies that $\mathcal{J}_{R_{\mathcal{J}}}=\mathcal{J}$.
4.14. Remark. For any $[0,1]$-matroid (E, \mathcal{J}), we have $\mathcal{J}_{R_{\mathcal{J}}}=\overline{\mathcal{J}}$. Indeed, by Lemma 4.5 , $(E, \overline{\mathcal{J}})$ is a closed and perfect $[0,1]$-matroid and $R_{\mathcal{J}}=R_{\bar{\jmath}}$. Hence $\mathcal{J}_{R_{\mathcal{J}}}=\mathcal{J}_{R_{\overline{\mathcal{J}}}}=\overline{\mathcal{J}}$ by Theorem 4.13.

By Theorem 4.12 and Theorem 4.13, the following theorem is obvious.
4.15. Theorem. A closed and perfect $[0,1]$-matroid is in one-to-one correspondence with its $[0,1]$-fuzzy rank function. That is, a closed and perfect $[0,1]$-matroid can be characterized by means of its $[0,1]$-fuzzy rank function.

5. Conclusions

The notions of closed $[0,1]$-matroid and perfect $[0,1]$-matroid are presented, and some of their basic properties are studied. For any $[0,1]$-matroid (E, \mathcal{J}), we can find a closed and perfect $[0,1]$-matroid $(E, \overline{\mathcal{J}})$ such that $\overline{\mathcal{J}}=\mathcal{J}_{R_{\mathcal{J}}}$ and $R_{\mathcal{J}}=R_{\bar{\jmath}}$. Therefore, a $[0,1]$ matroid (resp., a perfect [0, 1]-matroid, a closed $[0,1]$-matroid) and its [0,1$]$-fuzzy rank function are not in one-to-one correspondence in general. Also, we can limit our study of fuzzy rank functions of $[0,1]$-matroids to closed and perfect $[0,1]$-matroids. A closed and
perfect [0,1$]$-matroid can be characterized by means of its [0,1$]$-fuzzy rank function. That is, a closed and perfect [0,1$]$-matroid and its [0,1$]$-fuzzy rank function are in one-to-one correspondence.

Acknowledgments The authors would like to thank the unknown reviewers for their valuable comments and suggestions.

References

[1] Gale, D. Optimal assignments in an ordered set: an application of matroid theory, J. Combinatoral Theory 4, 176-180, 1968.
[2] Gierz, G. et al. Continuous Lattices and Domains (Encyclopedia of Mathematics and its Applications 93, Cambridge University Press, Cambridge, 2003).
[3] Huang H. -L. and Shi F.-G. L-fuzzy numbers and their properties, Information Sciences 178, 1141-1151, 2008.
[4] Oxley J. G. Matroid theory (Oxford University Press, New York, 1992).
[5] Shi F.-G. A new approach to the fuzzification of matroids, Fuzzy Sets and Systems 160, 696-705, 2009.
[6] Shi F.-G. (L, M)-fuzzy matroids, Fuzzy Sets and Systems 160, 2387-2400, 2009.

[^0]: ${ }^{\ddagger}$ This project is supported by the National Natural Science Foundation of China (10971242)
 *Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, P. R. China.
 E-mail: (X. Xin) xinxiu518@163.com (F.-G. Shi) fuguishi@bit.edu.cn
 ${ }^{\dagger}$ Corresponding Author

