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Abstract

In this paper we present the notions of perfect [0, 1]-matroid and closed
[0, 1]-matroid, and investigate some of their basic properties. Moreover,
we prove that a closed and perfect [0, 1]-matroid can be characterized
by means of its [0, 1]-fuzzy rank function.
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1. Introduction

Matroids were introduced by Whitney in 1935 as a generalization of both graphs and
vector spaces. It is well-known that matroids play an important role in mathematics,
especially in applied mathematics. Matroids are precisely the structures for which the
very simple and efficient greedy algorithm works [1, 4]. In [6], Matroid theory was
generalized to fuzzy fields by Shi, and L-fuzzy rank functions were studied. His approach
to the fuzzification of matroids preserves many basic properties of crisp matroids, and
L-matroids can be applied to fuzzy algebras and fuzzy graphs. Based on [6], the aim
of this paper is to study the relation between a [0, 1]-matroid and its [0, 1]-fuzzy rank
function.

In this paper, we obtain two results:

(1) There is a one-to-one correspondence between a closed and perfect [0, 1]-matroid
and its [0, 1]-fuzzy rank function. That is, a closed and perfect [0, 1]-matroid can be
characterized by means of its [0, 1]-fuzzy rank function.

(2) A [0,1]-matroid (resp., a perfect [0,1]-matroid, a closed [0,1]-matroid) and its
[0, 1]-fuzzy rank function are not in one-to-one correspondence in general.
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2. Preliminaries

Throughout this paper, L denotes a completely distributive lattice, and F a nonempty
finite set. L% is the set of all L-fuzzy sets (or L-sets for short) on E. The smallest
element and the largest element in L are denoted by | and T respectively. We often do
not distinguish a crisp subset A of E from its characteristic function x4.

An element a in L is called a prime element if a > bAc implies a > b or a > ¢. Dually,
a in L is called co-prime if a < bV ¢ implies a < b or a < ¢ [2]. The set of non-unit
prime elements in L is denoted by P(L). The set of non-zero co-prime elements in L is
denoted by J(L). When L is replaced by the interval [0, 1], it is easy to see J(L) = (0, 1]
and P(L) =[0,1).

For A C 2% we define

Max(A) ={Ae€ A:VBe A, if AC B then A = B}.

For A € L¥ and a € L, we define A,) = {e € E: A(e) > a}. Some properties of the cut
sets can be found in [3].

For a € L and A C F, define two L-fuzzy sets a A A and a V A as follows:

T, e€ A
(a/\A)(e)—{ (a\/A)(e)—{a7 cd A

a, e€A;
1, eg A.
An L-fuzzy set a A {e} is called an L-fuzzy point, and denoted by eq.

2.1. Definition. [5] Let N denote the set of all natural numbers. An L-fuzzy natural
number is an antitone map A : N — L satisfying

A0) =T, A Mn)=L.
neN

The set of all L-fuzzy natural numbers is denoted by N(L).
For any A € N(L) and any a € J(L), we shall not distinguish n € Aj) from n < [Ajq]-

2.2. Definition. [5] For any A, p € N(L), define the sum A + g of A and p as follows:
for any n € N,

A+pm) =\ A& ApD).

k+l=n
2.3. Theorem. [5] For any m € N, define m € N(L) such that
T, ft<my
m(y={ " TS
1, ift>m+1.
Then for any A € N(L), it follows that
O+A=AX 0O

2.4. Definition. [6] Let A be an L-fuzzy set on a finite set E. Then the mapping
|A| : N — L defined Vn € N by,

|A|(n) = \/{a € L: |Ag| >n}
is called the L-fuzzy cardinality of A.

2.5. Lemma. [6] For a finite set E, it holds that |Aljq) = |A[4)| for any A € L* and any
acJ(L). O

2.6. Definition. [6] Let E be a finite set. A subfamily J of L” is called a family of
independent L-fuzzy sets on E if it satisfies the following conditions:
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(LI1) J is nonempty;

(LI2) AcL? BeJ,A<B = Ac7;

(LI3) If A,B € J and b = |B|(n) £ |A|(n) for some n € N, then there exists e €
F(A, B) such that (bA Ap)) V ey € ], where

F(A,B)={e € E:b< Be),bg Ae)}.

If J is a family of independent L-fuzzy sets on E, then the pair (E,J) is called an L-
matroid.

2.7. Theorem. [6] Let E be a finite set and J C L”. Define, Va € L\ {1},
f][a] = {A[a] A€ j}
If (E,J) is an L-matroid, then (E,J[a]) is a matroid for each a € L\ {L}.

3. Closed and perfect [0, 1]-matroids
In the sequel we will mainly focus on the case when L is the interval [0, 1].

3.1. Definition. A [0, 1]-matroid (E,J) is called a perfect [0, 1]-matroid, if it satisfies
the following condition:
(LI4) VA €[0,1]%, if a A Ay €7 for all @ € (0,1], then A € J.

3.2. Example. Let E = {3,5}. Define A € [0,1]¥ by
1.3
Alz) = f, T = 3;
3 = 57
and define
:J:{Be 0,1 : B < %/\{375}}U{B6 0,1 : B < %/\{3}}.

Then we can check that J satisfies (LI1)—(LI3), but it does not satisfy (LI4) since aA A, €
J for all @ € (0,1] but A ¢ J.

3.3. Theorem. Let (E,J) be a [0,1]-matroid. Then (E,J) is a perfect [0, 1]-matroid if
and only if

J={A€0,1]" :Yae (0,1], Ay €Ia]}. O
3.4. Lemma. Let (E,J) be a [0,1]-matroid. If 0 < a < b < 1, then I[b] C I[a].

Proof. Let A € J[b]. Then bA A € J as J satisfies (LI2). Since a < b, aAA < bAA. Thus
aNA €] by (LI2), hence A = (a A A)g € I[al. O

3.5. Theorem. Let J C [0,1]" satisfy (LI12) and (LI14). Then the following conditions
are equivalent:

(1) (E,9) is a [0, 1]-matroid.

(2) (E, Ia]) is a matroid for all a € (0,1].
Proof. By Theorem 2.7, we only need to prove (2) = (1).

(2) => (1). Since J satisfies (L12) and (LI4),J = {4 € [0,1]” : Va € (0, 1], A(4) € I[a]}.

It is easy to see that J satisfies (LI1). Now we prove that J satisfies (LI3). Suppose that
A,B € J and b = |B|(n) £ |A|(n) for some n € N. Then n € |B|p and n & |A|p), thus
|A|[b] Z |B|[b]. By Lemma 2.5, |A[b]| }‘ |B[b]|7 i.e. |A[b]| < |B[b]|. Since A[b],B[b] € J[b],
there exists e € B — Ay such that ApyU{e} € J[b]. In this case, b < B(e) and b £ A(e),
i.e. e € F(A, B). By Lemma 3.4, it is obvious that

(0N App) V ev)ia) = Apy U {e} € I[b] C I[a]
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for every a < b, and ((b A Ap)) Vep)o = 0 € Jla] for every a ¢ b. This implies
(bA Ap)) Ve, €. Hence (E,7) is a [0, 1]-matroid. O

3.6. Theorem. Let (E,J) be a [0, 1]-matroid. Then there is a finite sequence 0 = ap <
a1 < az < -+ < an =1 such that

(1) Ifa;i < a,b < ait1, then Ja] =Ib], 0 < i < n—1;

(2) If ai < a < ait1 < b < ait2, then J[a] DIPB], 0 < i< n—2.

The sequence ag, ai,...,an s called the fundamental sequence for (E,7J).

Proof. We define an equivalence relation ~ on (0, 1] by a ~ b < J[a] = J[b]. Since E is a
finite set, the number of matroids on F is finite. Thus there exist at most finitely many
equivalence classes which are respectively denoted by I1, I>, ..., I,.

Each I; (i = 1,2,...,n) is an interval. We only need to show that Ya,b € I; with a < b,
if ¢ € [a,b], then ¢ € I;. Since a < ¢ < b, by Lemma 3.4, we know that J[b] C J[¢] C J[a].
As a,b € I;, J[a] = I[b]. Thus I[b] = J[c] = I[a], hence ¢ € I; by the definition of I;. This
implies that I; is an interval.

Let a;—1 = infI; and a; =sup I; (i = 1,2,...,n). Clearly, the sequence ao,a1,...,an
is the fundamental sequence for (E,7J). a

3.7. Definition. A [0, 1]-matroid (F,J) with the fundamental sequence ao, a1, ..., an, is
called a closed [0, 1]-matroid if whenever a;—1 < a < a; (1 <4 < n), then J[a] = J[a;].

3.8. Theorem. Let (E,J) be a [0, 1]-matroid with the fundamental sequence ao, a1, .. ., an.
Then (E,3J) is a closed [0, 1]-matroid if and only if I satisfies the following condition:

(*) Vae (0,1 and A2 ifbAA€T forall0<b<a, thenahA€cT.

Proof. Suppose that J satisfies (). Then Va € (ai—1,a:), (¢ = 1,2,...,n), we have
Jla;] € Ja] by Lemma 3.4. Let A € J[a] for all a € (a;—1,a;). Then a A A € T for all
a € (ai—1,a:), thus bA A € J for all 0 < b < a;. Since J satisfies (x), a; A A € J. Thus
A = (ai AN A)q;) € Ia;]. This implies that J[a] C J[as] for all a € (ai—1,a:). Therefore,
Ila] = Ia;] for all @ € (ai—1,a;], i.e. (E,J) is a closed [0, 1]-matroid.

Conversely, assume that (E£,7) is a closed [0, 1]-matroid. Let a € (0,1], A € 2%, and
bAAedforall 0 <b<a. Sincea € (0,1], a € (ai—1,a;] for some i =1,2,...,n. Take
bo € (ai—1,a) C (ai—1,a;], then bg A A € J, thus A € J[bo] = J[as] since (E,7J) is a closed
[0, 1]-matroid, hence a; A A € J. By (L12), a A A € J. This means that J satisfies (x). O

By Example 3.2, we know that a closed [0, 1]-matroid need not be a perfect [0,1]-
matroid. The following example shows that a perfect [0, 1]-matroid need not be a closed
[0, 1]-matroid either.

3.9. Example. Let E be a finite set. Define
J= {AG [0,1]7 : A(z) < % forall:ceE}.
Then we can check that J satisfies (LI1)-(LI4), but it is not closed.

4. Rank functions for closed and perfect [0, 1]-matroids
4.1. Definition. [6] Let (E,J) be an L-matroid. The mapping Ry : L¥ — N(L) defined
by

Ry(A)=\/{|B|: B< A, B €7}

is called the L-fuzzy rank function for (E,J). If A € L¥, Ry(A) is called the L-fuzzy rank
of A in (E,J).
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4.2. Theorem. Let (E,J) be an L-matroid. If Ry : L¥ — N(L) is the L-fuzzy rank
function for (E, J) then

Rj \/{GEL\{J_} n < Rj[a](A[a])} for alln e N|
where Ryjq) is the rank function for (E,J[a]) and
Rg[a] (A[a]) = \/ {|B| :B e J[a], B C A[a]}.
Pmof Let a € {a € L\ {Ll}:n < Rya)(Ap))}, Vn € N. Let Ba € Max(J[a]|a,)). Then
n la] (A[a]) |Ba|.
Since B, €J[a] and Ba € A}, a A B, € Jand a A B, < A. Thus
= (\/{|B| 'B<ABEe :J})(n) > |a A Ba|(n) = a.

Hence Ry(A)(n) > V{a € L\ {L}:n < Ry)(Aq)}-

Conversely, in order to prove Ry(A)(n) < V{a € L\ {1} : n < Ryjq)(Aa))}, we only
need to prove |Bl(n) < \{a € L\ {Ll} : n < Ry(Afa))} for all B < A and B € J.
Let B € J and B < A. Then By, € J[a][a,,, Va € {a € L\ {1} : |By| > n}, thus
n < |Blg)| < Rye)(Afe)), hence a € {a € L\ {L} : n < Ry[e)(A[e))}. This implies that

|Bl(n) = \/{a € L:|Bp| >n} < \/{GGL\{l} n < Rya)(Aga)}

and thus Ry(A)(n) < V{a € L\ {1} : n < Ryjq)(A[a))}- Therefore,
Ry(A)(n) = \/{a € L\ {1} :n < Rg[a]m[a])}
for all n € N. O

4.3. Lemma. Let (E,J) be a closed [0, 1]-matroid and A € [0,1]%. Then there is a finite
sequence 0 = ap < a1 < az < --- < an =1 such that

(1) If a; < a,b < a;iq1, then Rg[a](A[a]) = Rj[b](A[b]), 0<i<n—1;

(2) If ai < a < ait1 < b < aiq2, then Rg[a](A[a]) > Rg[b](A[b]), 0<i<n—2.

Proof. Let (E,J) be a [0, 1]-matroid and A € [0,1]”. We define an equivalence relation
~on (0,1] by a ~ b <= Ryjq)(A[e)) = Ry (Ap). Since E is a finite set, there exist at
most finitely many equivalence classes which are respectively denoted by I1, I2, ..., I,.

Step 1 For all a,b € (0,1], if a < b, Rypp(Ap)) < Rya)(Apq). Since a < b, I[b] C I[d]
and A[b] g A[a]. Thus

Rypy(Apy) = \/{|B| : B€I[b], B C Ap}
< \AIB|: B €Ja],BC Ay}
= Ryja)(Apa))-

Step 2 Each I;, (i = 1,2,...,n), is an interval. We only need to show that for
any a,b € I; with a < b, if ¢ € [a,b], then ¢ € I;. Since a < ¢ < b, we know that
Ry (Ap) < Ry (Ape)) < Rja)(Aja)) by Step 1. Since a,b € Ii, Ry (Afa]) = Rop)(App)),
thus

Rya)(Afa)) = Raje)(Arg) = Ry (App))-
Hence ¢ € I; by the definition of I;, and then I; is an interval.

Step 3 Let inf I, = a;—1, sup I; = a;. Since FE is a finite set, {J[a]|A[a] ca € (ai-1,a:)}
is a finite family. Let

lalla,  a € (@im1,00)} = Pbillag, Wallag, - Imllag, 1
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where a; > b1 > b2 > -+ > bm > ai—1. Hence I[b1]|a,,; C I[b2]|ay,,, C -+ CIbm]lay,, ;-
Let B € Max(j[blﬂA[bl])? then |B| = Rj[bl](A[bl]) = Rg[b2](A[b2]) == Rj[bm] (A[bm]),
thus B € Max(J[a][a,) for all a € (ai-1,a:). Hence a A B € J and A(z) > a, (Vz € B)
for all a € (ai—1,a;).

Since (E,J) is a closed [0,1]-matroid, a; A B € J and A(z) > a, (Vz € B), ie.
B € J[ail|a, ;. Hence B € Max(J[ai]|a, ;) and then Ry, (A,)) = |B| = Ryja)(Afq)) for
all @ € (ai—1,a;). This implies that sup I; = a; € I;. O
4.4. Theorem. Let (E,J) be a closed [0,1]-matroid and Ry : [0,1]% — N([0,1]) the
[0, 1]-fuzzy rank function for (E,J). Then

Ry (A)g) = Rofa)(Ara)

for all A€ 0,1)%, a € (0,1].

Proof. Let A € [0,1]¥ and a € (0,1]. By Theorem 4.2 and Lemma 4.3, n € Ry(A), if
and only if n < Ry[q)(A[q) for alln € N. Hence Ry (A)(,) = Ry (Apq)), (VA € [0, 1%, ac
(0,1]). a
4.5. Lemma. Let (E,J) be a [0,1]-matroid with fundamental sequence ao,ai,...,an.
For each a € (0,1], define Jo = Ila;], where ai—1 < a < a; and a; = %(ai,1 + a;). Let
I={A€0,1]” :Va € (0,1], A € Ja}, then

(1) (E,7) is a closed and perfect [0, 1]-matroid.

(2) Ry = Rj.
Proof. (1) Obviously, J satisfies (LI1) and (LI2). Let A € [0,1]". If a A Af, € J for all
0 < a < 1, then by the definition of J, Ajg) = (@ A Afg))[q) € Ja for all 0 < a < 1, hence
A € 7. This implies that J satisfies (LI4).

For any a € (0,1], let A € J[a]. Then a A A € J, thus A = (a A A)(y € Ja, hence
Jla] € Ja. Conversely, let A € J,. It is obvious that (a A A)p) = A € Jo C Iy for every
b<aand (ahA)p =0 €Ty for every b > a, hence aAA €7, thus A = (a A A) € I[al.

This implies that J, C J[a]. Therefore, J[a] = J, for all a € (0, 1].

By Theorem 3.5 and the definition of J, (E,7J) is a closed and perfect [0, 1]-matroid.

(2) We need to prove that Ry(A) = Rs(A), VA € [0,1]”. Let A € J. Then A, €
Ila] C I, for all a € (0,1], thus A € J by the definition of J. This implies that J C J.
Hence R3(A) < R5(A).

Conversely, we need to prove R7(A) < Ry(A), i.e. Rj(A), € Ri(A)y, for all a €
(0,1]. Let n € Ry(A),). Then n < Rjj4)(Afq) by Theorem 4.4, i.e. there exists B € J[q]
such that B C A, and n < |B|. By the definition of J, B € J[b] for any 0 < b < a.
Thus bAB € 3, bAB < A for any 0 < b < a and |b A B|(n) = b. Hence Ry(A)(n) >
V{lbA B|(n) : 0 <b<a}=a,ie n€Ry(A),.

This implies that Rj(A),) € Rs(A),). Therefore, we have Ry = Rj. a

By Lemma 4.5, Example 3.2 and Example 3.9, we obtain the following result:

4.6. Remark. In general, a [0, 1]-matroid (resp., a perfect [0, 1]-matroid, a closed [0, 1]-
matroid) is not in one-to-one correspondence with its [0, 1]-fuzzy rank function.

By Lemma 4.5, we can limit our study of fuzzy rank functions for [0, 1]-matroids to
closed and perfect [0, 1]-matroids.

4.7. Theorem. Let (E,J) be a [0, 1]-matroid and Ry : [0,1]F — N([0,1]) the [0, 1]-fuzzy
rank function for (E,J). Then Ry satisfies the following conditions:
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(LR1) For any A € [0,1]%, 0 < Ry(A) < |A];

(LR2) If A,B € [0,1)® and A < B, then Ry(A) < Ry(B);

(LR3) For any A, B € [0,1]¥, Ry(A) + Ry(B) > R3(AV B) + Rs(A A B);
(LR4) For any A € [0,1]” and any a € (0,1], Ry(a A Aja))(a) = Ro(A)[a)-

Proof. By [6, Theorem 3.14], Ry satisfies (LR1)-(LR3). We only need to check that Ry
satisfies (LR4). For any A € J and a € (0, 1], by Theorem 4.4 and Lemma 4.5,
Ry (A)a) = R3(A)ta) = Rgpa)(Ara)) = Ba (@ A Aja))1a) = By(a A Apap)ial
:Rg(a/\A[a])[a]. O

4.8. Lemma. Let (E,J) be a closed and perfect [0, 1)-matroid and Ry : [0,1]F — N([0,1])
the [0, 1]-fuzzy rank function for (E,J). Then A €I <= R3(A) = |A].

Proof. Let A € J, then Ay, € J[a] for all a € (0, 1], hence

n)=\/{a€0,1]:n< Ry(Au)} =\ {a € (0,1 :n < A} = |Al(n)
ie. Ry(A) =|Al
Conversely, let A € [0,1]” and Ry(A) = |A|, then Ry[,)(Ajq)) = Rs(A ) = 1Al
|A[q)| for all a € (0,1] by Theorem 4.4 and Lemma 2.5, i.e. A, € I[a] for all a € (0 1]
hence a A A, € J for all a € (0,1] by (LI2). Since (£,7J) is a perfect [0, 1]-matroid,
Ael. a

4.9. Lemma. For any A, € N(L) and for any a € J(L), it follows that
A+ 1)1a] = Ata) + Ha)

Proof. By [5, Theorem 19], we only need to prove that (A + p)[a] € Aa] + p[a]- Suppose
that n € (A + p1)[q). Then

Cmm =\ OE D) > a.
k+l=n
By a € J(L), we know that there exist k,! € N with n = k + [ such that A(k) A ,u(l) a.
This implies that k& € Mg and [ € pufq], i.e. 1 € g +pi[a). Hence (A-p1)[a] € Aja)+pe)- O
By Lemma 4.9, we can easily obtain the following lemma.
4.10. Lemma. Let E be a finite set and R : [0, I]E — N([0,1]) a mapping satisfying
(LR1)-(LR4). Define Ra : 2 — N for each a € (0,1] by Ra(A) = R(a A A)(,). Then Ra
satisfies the following conditions (R1), (R2) and (R3). Hence there exists a crisp matroid
(E,IR,) such that Rq is the rank function for (E,Jr,):

(R1) For any A € 27,0 < Ro(A) < |A|;
(R2) For each A,B € 2E and A C B, then R, (A) < Ra(B);
(R3) For each A, B € 27, Ro(A) + Ro(B) > Ra(AU B) + Ro(AN B), where
={A€2": R(4) = |A]}. 0
4.11. Lemma. Ifa 2 b, then Jr, C IR,
Proof. Let A € Jr,. Then |A] = R.(A) = R(a N A)jq) < R(a AN A)p. By (LR4),
R(aNA)p = R(bA A)p) = Ry(A). Hence |[A| < Ry(A), thus |A| = Ry(A) by (R1), i.e.
A € Jg,. This implies that Jr, C Jr,. O
4.12. Theorem. Let E be a finite set and R : [0,1]F — N([0,1]) a mapping satisfying
(LR1)-(LR4). Define Ir = {A € [0,1]” : Va € (0,1], Ay € Ir, }, then
(1) Jr={A€[0,1]F : R(A) = |A|}.
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(2) (E,IR) is a closed and perfect [0, 1]-matroid.
(3) R is the [0, 1]-fuzzy rank function for (E,JR).

Proof. (1) Let A € Jr. Then |A|4) = |Aa)] = R(a A Ag)) ) = R(A)q) for all a € (0,1]
by Lemma 2.5 and (LR4), hence |A| = R(A).

Conversely, let A € [0,1]” with |[A] = R(A). Then |Ay)| = |Alj = R(A) =
R(a A Ap))ia] = Ra(Apy) for all a € (0,1] by (LR4) and the definition of R.(A[,)), hence
A[a] € Jg, for all a € (0,1] by the definition of Jr,. By the definition of I, A € Ig.

(2) Step 1 Obviously, Jr satisfies (LI1) and (LI2). Let A € [0,1]”. If a A Ay € IR
for all 0 < a < 1, then by the definition of Jr, A[s] = (@A Ajg))[e] € IR, for all 0 < a < 1,
hence A € Jr. This implies that Jr satisfies (LI4).

Step 2 We prove Jrla] = Jr, (Va € (0,1]). For each a € (0, 1], let A} € Ir[a], where
A € Jr. By the definition of Jr, A, € Jr,. This implies that Jr[a] C Ig, .

Conversely, let A € Jgr,, then |A| = R(a A A),). For all b € (0,1], (aANA)p = A €
IR, C Jr, for each b < a by Lemma 4.11, (a A A) = 0 € IR, for each b > a. Thus
aNA€Ig, hence A= (aA Ay €Ir[a]. This implies that Jr, C Ir[a].

Step 3 Let A € 2 and a € (0,1]. IfbA A € I for all 0 < b < a, then

RanA)> \/ ROAA) = \/ [bAA =anA|
0<b<a 0<b<a
by (LR2) and (1), hence R(a A A) = |a A A| by (LR1). By (1), a A A € Ir.

Step 4 By Step 1, Step 2 and Theorem 3.5, (E,Jg) is a perfect [0, 1]-matroid. Thus
(E,JR) is a closed and perfect [0, 1]-matroid by Step 3 and Theorem 3.8.

(3) VA € [0,1]%,a € (0,1]. By Theorem 4.4, Step 2 and (LR4),

Ry (A)a] = Ry pla)(Agal) = Rog, (Afa)) = Ra(Ar) = Rla A Apa))(a) = B(A)1a)-
Hence, Ry, (A) = R(A), (VA € [0,1)F), thus Ry, = R, i.e. R is the [0, 1]-fuzzy rank
function for (E,Jg). a

4.13. Theorem. Let (E,J) be a closed and perfect [0, 1]-matroid, then Ir, = 7.

Proof. By Lemma 4.8 and Theorem 4.12 (1), we have A € ] <= R3(A) = |4] <=
A € Jr,. This implies that Jr, =7J. O

4.14. Remark. For any [0, 1]-matroid (E,J), we have Jr, = J. Indeed, by Lemma 4.5,
(E,J) is a closed and perfect [0,1]-matroid and Ry = R;. Hence Jr, = Jr; = J by
Theorem 4.13.

By Theorem 4.12 and Theorem 4.13, the following theorem is obvious.

4.15. Theorem. A closed and perfect [0,1]-matroid is in one-to-one correspondence
with its [0, 1]-fuzzy rank function. That is, a closed and perfect [0,1]-matroid can be
characterized by means of its [0, 1]-fuzzy rank function. O

5. Conclusions

The notions of closed [0, 1]-matroid and perfect [0, 1]-matroid are presented, and some
of their basic properties are studied. For any [0, 1]-matroid (E,J), we can find a closed
and perfect [0, 1]-matroid (E,J) such that J = Jg, and Ry = Rj. Therefore, a [0, 1]-
matroid (resp., a perfect [0, 1]-matroid, a closed [0, 1]-matroid) and its [0, 1]-fuzzy rank
function are not in one-to-one correspondence in general. Also, we can limit our study of
fuzzy rank functions of [0, 1]-matroids to closed and perfect [0, 1]-matroids. A closed and
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perfect [0, 1]-matroid can be characterized by means of its [0, 1]-fuzzy rank function. That
is, a closed and perfect [0, 1]-matroid and its [0, 1]-fuzzy rank function are in one-to-one
correspondence.
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