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Abstract

In this paper we present the notions of perfect [0, 1]-matroid and closed
[0, 1]-matroid, and investigate some of their basic properties. Moreover,
we prove that a closed and perfect [0, 1]-matroid can be characterized
by means of its [0, 1]-fuzzy rank function.
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1. Introduction

Matroids were introduced by Whitney in 1935 as a generalization of both graphs and
vector spaces. It is well-known that matroids play an important role in mathematics,
especially in applied mathematics. Matroids are precisely the structures for which the
very simple and efficient greedy algorithm works [1, 4]. In [6], Matroid theory was
generalized to fuzzy fields by Shi, and L-fuzzy rank functions were studied. His approach
to the fuzzification of matroids preserves many basic properties of crisp matroids, and
L-matroids can be applied to fuzzy algebras and fuzzy graphs. Based on [6], the aim
of this paper is to study the relation between a [0, 1]-matroid and its [0, 1]-fuzzy rank
function.

In this paper, we obtain two results:

(1) There is a one-to-one correspondence between a closed and perfect [0, 1]-matroid
and its [0, 1]-fuzzy rank function. That is, a closed and perfect [0, 1]-matroid can be
characterized by means of its [0, 1]-fuzzy rank function.

(2) A [0, 1]-matroid (resp., a perfect [0, 1]-matroid, a closed [0, 1]-matroid) and its
[0, 1]-fuzzy rank function are not in one-to-one correspondence in general.
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2. Preliminaries

Throughout this paper, L denotes a completely distributive lattice, and E a nonempty
finite set. LE is the set of all L-fuzzy sets (or L-sets for short) on E. The smallest
element and the largest element in L are denoted by ⊥ and ⊤ respectively. We often do
not distinguish a crisp subset A of E from its characteristic function χA.

An element a in L is called a prime element if a > b∧c implies a > b or a > c. Dually,
a in L is called co-prime if a 6 b ∨ c implies a 6 b or a 6 c [2]. The set of non-unit
prime elements in L is denoted by P (L). The set of non-zero co-prime elements in L is
denoted by J(L). When L is replaced by the interval [0, 1], it is easy to see J(L) = (0, 1]
and P (L) = [0, 1).

For A ⊆ 2E , we define

Max(A) = {A ∈ A : ∀B ∈ A, if A ⊆ B then A = B}.

For A ∈ LE and a ∈ L, we define A[a] = {e ∈ E : A(e) > a}. Some properties of the cut
sets can be found in [3].

For a ∈ L and A ⊆ E, define two L-fuzzy sets a ∧ A and a ∨ A as follows:

(a ∧ A)(e) =

{

a, e ∈ A;

⊥, e 6∈ A.
(a ∨ A)(e) =

{

⊤, e ∈ A;

a, e 6∈ A.

An L-fuzzy set a ∧ {e} is called an L-fuzzy point, and denoted by ea.

2.1. Definition. [5] Let N denote the set of all natural numbers. An L-fuzzy natural

number is an antitone map λ : N → L satisfying

λ(0) = ⊤,
∧

n∈N

λ(n) = ⊥.

The set of all L-fuzzy natural numbers is denoted by N(L).

For any λ ∈ N(L) and any a ∈ J(L), we shall not distinguish n ∈ λ[a] from n 6 |λ[a]|.

2.2. Definition. [5] For any λ, µ ∈ N(L), define the sum λ + µ of λ and µ as follows:
for any n ∈ N,

(λ + µ)(n) =
∨

k+l=n

(λ(k) ∧ µ(l)) .

2.3. Theorem. [5] For any m ∈ N, define m ∈ N(L) such that

m(t) =

{

⊤, if t 6 m;

⊥, if t > m + 1.

Then for any λ ∈ N(L), it follows that

0 + λ = λ. �

2.4. Definition. [6] Let A be an L-fuzzy set on a finite set E. Then the mapping
|A| : N → L defined ∀n ∈ N by,

|A|(n) =
∨

{a ∈ L : |A[a]| > n}

is called the L-fuzzy cardinality of A.

2.5. Lemma. [6] For a finite set E, it holds that |A|[a] = |A[a]| for any A ∈ LE and any

a ∈ J(L). �

2.6. Definition. [6] Let E be a finite set. A subfamily I of LE is called a family of

independent L-fuzzy sets on E if it satisfies the following conditions:
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(LI1) I is nonempty;
(LI2) A ∈ LE , B ∈ I, A 6 B =⇒ A ∈ I;
(LI3) If A, B ∈ I and b = |B|(n) 66 |A|(n) for some n ∈ N, then there exists e ∈

F (A, B) such that (b ∧ A[b]) ∨ eb ∈ I, where

F (A,B) = {e ∈ E : b 6 B(e), b 66 A(e)}.

If I is a family of independent L-fuzzy sets on E, then the pair (E, I) is called an L-

matroid.

2.7. Theorem. [6] Let E be a finite set and I ⊆ LE . Define, ∀ a ∈ L \ {⊥},

I[a] = {A[a] : A ∈ I}.

If (E, I) is an L-matroid, then (E, I[a]) is a matroid for each a ∈ L \ {⊥}.

3. Closed and perfect [0, 1]-matroids

In the sequel we will mainly focus on the case when L is the interval [0, 1].

3.1. Definition. A [0, 1]-matroid (E, I) is called a perfect [0, 1]-matroid, if it satisfies
the following condition:

(LI4) ∀A ∈ [0, 1]E , if a ∧ A[a] ∈ I for all a ∈ (0, 1], then A ∈ I.

3.2. Example. Let E = {3, 5}. Define A ∈ [0, 1]E by

A(x) =

{

1
2
, x = 3;

1
3
, x = 5,

and define

I =
{

B ∈ [0, 1]E : B 6 1
3
∧ {3, 5}

}

∪
{

B ∈ [0, 1]E : B 6 1
2
∧ {3}

}

.

Then we can check that I satisfies (LI1)–(LI3), but it does not satisfy (LI4) since a∧A[a] ∈
I for all a ∈ (0, 1] but A 6∈ I.

3.3. Theorem. Let (E, I) be a [0, 1]-matroid. Then (E, I) is a perfect [0, 1]-matroid if

and only if

I = {A ∈ [0, 1]E : ∀ a ∈ (0, 1], A[a] ∈ I[a]}. �

3.4. Lemma. Let (E, I) be a [0, 1]-matroid. If 0 < a 6 b 6 1, then I[b] ⊆ I[a].

Proof. Let A ∈ I[b]. Then b∧A ∈ I as I satisfies (LI2). Since a 6 b, a∧A 6 b∧A. Thus
a ∧ A ∈ I by (LI2), hence A = (a ∧ A)[a] ∈ I[a]. �

3.5. Theorem. Let I ⊆ [0, 1]E satisfy (LI2) and (LI4). Then the following conditions

are equivalent:

(1) (E, I) is a [0, 1]-matroid.

(2) (E, I[a]) is a matroid for all a ∈ (0, 1].

Proof. By Theorem 2.7, we only need to prove (2) =⇒ (1).

(2) =⇒ (1). Since I satisfies (LI2) and (LI4), I = {A ∈ [0, 1]E : ∀a ∈ (0, 1], A[a] ∈ I[a]}.
It is easy to see that I satisfies (LI1). Now we prove that I satisfies (LI3). Suppose that
A,B ∈ I and b = |B|(n) 66 |A|(n) for some n ∈ N. Then n ∈ |B|[b] and n 6∈ |A|[b], thus
|A|[b] 6⊇ |B|[b]. By Lemma 2.5, |A[b]| 6> |B[b]|, i.e. |A[b]| < |B[b]|. Since A[b], B[b] ∈ I[b],
there exists e ∈ B[b]−A[b] such that A[b]∪{e} ∈ I[b]. In this case, b 6 B(e) and b 66 A(e),
i.e. e ∈ F (A, B). By Lemma 3.4, it is obvious that

((b ∧ A[b]) ∨ eb)[a] = A[b] ∪ {e} ∈ I[b] ⊆ I[a]
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for every a 6 b, and ((b ∧ A[b]) ∨ eb)[a] = ∅ ∈ I[a] for every a 66 b. This implies
(b ∧ A[b]) ∨ eb ∈ I. Hence (E, I) is a [0, 1]-matroid. �

3.6. Theorem. Let (E, I) be a [0, 1]-matroid. Then there is a finite sequence 0 = a0 <

a1 < a2 < · · · < an = 1 such that

(1) If ai < a, b < ai+1, then I[a] = I[b], 0 6 i 6 n − 1;
(2) If ai < a < ai+1 < b < ai+2, then I[a] ⊃ I[b], 0 6 i 6 n − 2.

The sequence a0, a1, . . . , an is called the fundamental sequence for (E, I).

Proof. We define an equivalence relation ∼ on (0, 1] by a ∼ b ⇔ I[a] = I[b]. Since E is a
finite set, the number of matroids on E is finite. Thus there exist at most finitely many
equivalence classes which are respectively denoted by I1, I2, . . . , In.

Each Ii (i = 1, 2, . . . , n) is an interval. We only need to show that ∀a, b ∈ Ii with a 6 b,
if c ∈ [a, b], then c ∈ Ii. Since a 6 c 6 b, by Lemma 3.4, we know that I[b] ⊆ I[c] ⊆ I[a].
As a, b ∈ Ii, I[a] = I[b]. Thus I[b] = I[c] = I[a], hence c ∈ Ii by the definition of Ii. This
implies that Ii is an interval.

Let ai−1 = inf Ii and ai = sup Ii (i = 1, 2, . . . , n). Clearly, the sequence a0, a1, . . . , an

is the fundamental sequence for (E, I). �

3.7. Definition. A [0, 1]-matroid (E, I) with the fundamental sequence a0, a1, . . . , an is
called a closed [0, 1]-matroid if whenever ai−1 < a 6 ai (1 6 i 6 n), then I[a] = I[ai].

3.8. Theorem. Let (E, I) be a [0, 1]-matroid with the fundamental sequence a0, a1, . . . , an.

Then (E, I) is a closed [0, 1]-matroid if and only if I satisfies the following condition:

(∗) ∀ a ∈ (0, 1] and A ∈ 2E
, if b ∧ A ∈ I for all 0 < b < a, then a ∧ A ∈ I.

Proof. Suppose that I satisfies (∗). Then ∀ a ∈ (ai−1, ai), (i = 1, 2, . . . , n), we have
I[ai] ⊆ I[a] by Lemma 3.4. Let A ∈ I[a] for all a ∈ (ai−1, ai). Then a ∧ A ∈ I for all
a ∈ (ai−1, ai), thus b ∧ A ∈ I for all 0 < b < ai. Since I satisfies (∗), ai ∧ A ∈ I. Thus
A = (ai ∧ A)[ai] ∈ I[ai]. This implies that I[a] ⊆ I[ai] for all a ∈ (ai−1, ai). Therefore,
I[a] = I[ai] for all a ∈ (ai−1, ai], i.e. (E, I) is a closed [0, 1]-matroid.

Conversely, assume that (E, I) is a closed [0, 1]-matroid. Let a ∈ (0, 1], A ∈ 2E , and
b ∧ A ∈ I for all 0 < b < a. Since a ∈ (0, 1], a ∈ (ai−1, ai] for some i = 1, 2, . . . , n. Take
b0 ∈ (ai−1, a) ⊆ (ai−1, ai], then b0 ∧ A ∈ I, thus A ∈ I[b0] = I[ai] since (E, I) is a closed
[0, 1]-matroid, hence ai ∧A ∈ I. By (LI2), a∧A ∈ I. This means that I satisfies (∗). �

By Example 3.2, we know that a closed [0, 1]-matroid need not be a perfect [0, 1]-
matroid. The following example shows that a perfect [0, 1]-matroid need not be a closed
[0, 1]-matroid either.

3.9. Example. Let E be a finite set. Define

I =

{

A ∈ [0, 1]E : A(x) <
1

2
for all x ∈ E

}

.

Then we can check that I satisfies (LI1)-(LI4), but it is not closed.

4. Rank functions for closed and perfect [0, 1]-matroids

4.1. Definition. [6] Let (E, I) be an L-matroid. The mapping RI : LE → N(L) defined
by

RI(A) =
∨

{|B| : B 6 A, B ∈ I}

is called the L-fuzzy rank function for (E, I). If A ∈ LE , RI(A) is called the L-fuzzy rank

of A in (E, I).
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4.2. Theorem. Let (E, I) be an L-matroid. If RI : LE → N(L) is the L-fuzzy rank

function for (E, I), then

RI(A)(n) =
∨

{

a ∈ L \ {⊥} : n 6 RI[a]

(

A[a]

)}

for all n ∈ N,

where RI[a] is the rank function for (E, I[a]) and

RI[a]

(

A[a]

)

=
∨

{

|B| : B ∈ I[a], B ⊆ A[a]

}

.

Proof. Let a ∈ {a ∈ L \ {⊥} : n 6 RI[a](A[a])}, ∀n ∈ N. Let Ba ∈ Max(I[a]|A[a]
). Then

n 6 RI[a](A[a]) = |Ba|.

Since Ba ∈ I[a] and Ba ⊆ A[a], a ∧ Ba ∈ I and a ∧ Ba 6 A. Thus

RI(A)(n) =
(

∨

{|B| : B 6 A, B ∈ I}
)

(n) > |a ∧ Ba|(n) = a.

Hence RI(A)(n) >
∨

{a ∈ L \ {⊥} : n 6 RI[a](A[a])}.

Conversely, in order to prove RI(A)(n) 6
∨

{a ∈ L \ {⊥} : n 6 RI[a](A[a])}, we only
need to prove |B|(n) 6

∨

{a ∈ L \ {⊥} : n 6 RI[a](A[a])} for all B 6 A and B ∈ I.
Let B ∈ I and B 6 A. Then B[a] ∈ I[a]|A[a]

, ∀a ∈ {a ∈ L \ {⊥} : |B[a]| > n}, thus

n 6 |B[a]| 6 RI[a](A[a]), hence a ∈ {a ∈ L \ {⊥} : n 6 RI[a](A[a])}. This implies that

|B|(n) =
∨

{a ∈ L : |B[a]| > n} 6
∨

{a ∈ L \ {⊥} : n 6 RI[a](A[a])},

and thus RI(A)(n) 6
∨

{a ∈ L \ {⊥} : n 6 RI[a](A[a])}. Therefore,

RI(A)(n) =
∨

{a ∈ L \ {⊥} : n 6 RI[a](A[a])}

for all n ∈ N. �

4.3. Lemma. Let (E, I) be a closed [0, 1]-matroid and A ∈ [0, 1]E . Then there is a finite

sequence 0 = a0 < a1 < a2 < · · · < an = 1 such that

(1) If ai < a, b 6 ai+1, then RI[a](A[a]) = RI[b](A[b]), 0 6 i 6 n − 1;
(2) If ai < a 6 ai+1 < b 6 ai+2, then RI[a](A[a]) > RI[b](A[b]), 0 6 i 6 n − 2.

Proof. Let (E, I) be a [0, 1]-matroid and A ∈ [0, 1]E . We define an equivalence relation
∼ on (0, 1] by a ∼ b ⇐⇒ RI[a](A[a]) = RI[b](A[b]). Since E is a finite set, there exist at
most finitely many equivalence classes which are respectively denoted by I1, I2, . . . , In.

Step 1 For all a, b ∈ (0, 1], if a 6 b, RI[b](A[b]) 6 RI[a](A[a]). Since a 6 b, I[b] ⊆ I[a]
and A[b] ⊆ A[a]. Thus

RI[b](A[b]) =
∨

{|B| : B ∈ I[b], B ⊆ A[b]}

6
∨

{|B| : B ∈ I[a], B ⊆ A[a]}

= RI[a](A[a]).

Step 2 Each Ii, (i = 1, 2, . . . , n), is an interval. We only need to show that for
any a, b ∈ Ii with a 6 b, if c ∈ [a, b], then c ∈ Ii. Since a 6 c 6 b, we know that
RI[b]

(A[b]) 6 RI[c](A[c]) 6 RI[a](A[a]) by Step 1. Since a, b ∈ Ii, RI[a](A[a]) = RI[b](A[b]),

thus

RI[a](A[a]) = RI[c](A[c]) = RI[b](A[b]).

Hence c ∈ Ii by the definition of Ii, and then Ii is an interval.

Step 3 Let inf Ii = ai−1, sup Ii = ai. Since E is a finite set, {I[a]|A[a]
: a ∈ (ai−1, ai)}

is a finite family. Let

{I[a]|A[a]
: a ∈ (ai−1, ai)} = {I[b1]|A[b1]

, I[b2]|A[b2]
, . . . , I[bm]|A[bm ]

},
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where ai > b1 > b2 > · · · > bm > ai−1. Hence I[b1]|A[b1]
⊂ I[b2]|A[b2]

⊂ · · · ⊂ I[bm]|A[bm ]
.

Let B ∈ Max(I[b1]|A[b1]
), then |B| = RI[b1](A[b1]) = RI[b2](A[b2]) = · · · = RI[bm](A[bm]),

thus B ∈ Max(I[a]|A[a]
) for all a ∈ (ai−1, ai). Hence a ∧ B ∈ I and A(x) > a, (∀ x ∈ B)

for all a ∈ (ai−1, ai).

Since (E, I) is a closed [0, 1]-matroid, ai ∧ B ∈ I and A(x) > ai, (∀x ∈ B), i.e.
B ∈ I[ai]|A[ai]

. Hence B ∈ Max(I[ai]|A[ai]
) and then RI[ai](A[ai]) = |B| = RI[a](A[a]) for

all a ∈ (ai−1, ai). This implies that sup Ii = ai ∈ Ii. �

4.4. Theorem. Let (E, I) be a closed [0, 1]-matroid and RI : [0, 1]E → N([0, 1]) the

[0, 1]-fuzzy rank function for (E, I). Then

RI(A)[a] = RI[a](A[a])

for all A ∈ [0, 1]E , a ∈ (0, 1].

Proof. Let A ∈ [0, 1]E and a ∈ (0, 1]. By Theorem 4.2 and Lemma 4.3, n ∈ RI(A)[a] if

and only if n 6 RI[a](A[a]) for all n ∈ N. Hence RI(A)[a] = RI[a](A[a]), (∀A ∈ [0, 1]E , a ∈

(0, 1]). �

4.5. Lemma. Let (E, I) be a [0, 1]-matroid with fundamental sequence a0, a1, . . . , an.

For each a ∈ (0, 1], define Īa = I[āi], where ai−1 < a 6 ai and āi = 1
2
(ai−1 + ai). Let

Ī = {A ∈ [0, 1]E : ∀a ∈ (0, 1], A[a] ∈ Īa}, then

(1) (E, Ī) is a closed and perfect [0, 1]-matroid.

(2) RI = RĪ.

Proof. (1) Obviously, Ī satisfies (LI1) and (LI2). Let A ∈ [0, 1]E . If a ∧ A[a] ∈ Ī for all

0 < a 6 1, then by the definition of Ī, A[a] = (a ∧ A[a])[a] ∈ Īa for all 0 < a 6 1, hence

A ∈ Ī. This implies that Ī satisfies (LI4).

For any a ∈ (0, 1], let A ∈ Ī[a]. Then a ∧ A ∈ Ī, thus A = (a ∧ A)[a] ∈ Īa, hence

Ī[a] ⊆ Īa. Conversely, let A ∈ Īa. It is obvious that (a ∧ A)[b] = A ∈ Īa ⊆ Īb for every

b 6 a and (a∧A)[b] = ∅ ∈ Īb for every b > a, hence a∧A ∈ Ī, thus A = (a∧A)[a] ∈ Ī[a].

This implies that Īa ⊆ Ī[a]. Therefore, Ī[a] = Īa for all a ∈ (0, 1].

By Theorem 3.5 and the definition of Ī, (E, Ī) is a closed and perfect [0, 1]-matroid.

(2) We need to prove that RI(A) = RĪ(A), ∀A ∈ [0, 1]E . Let A ∈ I. Then A[a] ∈
I[a] ⊆ Īa for all a ∈ (0, 1], thus A ∈ Ī by the definition of Ī. This implies that I ⊆ Ī.
Hence RI(A) 6 RĪ(A).

Conversely, we need to prove RĪ(A) 6 RI(A), i.e. RĪ(A)[a] ⊆ RI(A)[a] for all a ∈

(0, 1]. Let n ∈ RĪ(A)[a]. Then n 6 RĪ[a](A[a]) by Theorem 4.4, i.e. there exists B ∈ Ī[a]

such that B ⊆ A[a] and n 6 |B|. By the definition of Ī, B ∈ I[b] for any 0 < b < a.
Thus b ∧ B ∈ I, b ∧ B 6 A for any 0 < b < a and |b ∧ B|(n) = b. Hence RI(A)(n) >
∨

{|b ∧ B|(n) : 0 < b < a} = a, i.e. n ∈ RI(A)[a].

This implies that RĪ(A)[a] ⊆ RI(A)[a]. Therefore, we have RI = RĪ . �

By Lemma 4.5, Example 3.2 and Example 3.9, we obtain the following result:

4.6. Remark. In general, a [0, 1]-matroid (resp., a perfect [0, 1]-matroid, a closed [0, 1]-
matroid) is not in one-to-one correspondence with its [0, 1]-fuzzy rank function.

By Lemma 4.5, we can limit our study of fuzzy rank functions for [0, 1]-matroids to
closed and perfect [0, 1]-matroids.

4.7. Theorem. Let (E, I) be a [0, 1]-matroid and RI : [0, 1]E → N([0, 1]) the [0, 1]-fuzzy
rank function for (E, I). Then RI satisfies the following conditions:
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(LR1) For any A ∈ [0, 1]E , 0 6 RI(A) 6 |A|;
(LR2) If A, B ∈ [0, 1]E and A 6 B, then RI(A) 6 RI(B);
(LR3) For any A,B ∈ [0, 1]E , RI(A) + RI(B) > RI(A ∨ B) + RI(A ∧ B);
(LR4) For any A ∈ [0, 1]E and any a ∈ (0, 1], RI(a ∧ A[a])[a] = RI(A)[a].

Proof. By [6, Theorem 3.14], RI satisfies (LR1)-(LR3). We only need to check that RI

satisfies (LR4). For any A ∈ I and a ∈ (0, 1], by Theorem 4.4 and Lemma 4.5,

RI(A)[a] = RĪ(A)[a] = RĪ[a](A[a]) = RĪ[a]((a ∧ A[a])[a]) = RĪ(a ∧ A[a])[a]

= RI(a ∧ A[a])[a]. �

4.8. Lemma. Let (E, I) be a closed and perfect [0, 1]-matroid and RI : [0, 1]E → N([0, 1])
the [0, 1]-fuzzy rank function for (E, I). Then A ∈ I ⇐⇒ RI(A) = |A|.

Proof. Let A ∈ I, then A[a] ∈ I[a] for all a ∈ (0, 1], hence

RI(A)(n) =
∨

{

a ∈ (0, 1] : n 6 RI[a](A[a])
}

=
∨

{

a ∈ (0, 1] : n 6 |A[a]|
}

= |A|(n),

i.e. RI(A) = |A|.

Conversely, let A ∈ [0, 1]E and RI(A) = |A|, then RI[a](A[a]) = RI(A)[a] = |A|[a] =

|A[a]| for all a ∈ (0, 1] by Theorem 4.4 and Lemma 2.5, i.e. A[a] ∈ I[a] for all a ∈ (0, 1],
hence a ∧ A[a] ∈ I for all a ∈ (0, 1] by (LI2). Since (E, I) is a perfect [0, 1]-matroid,
A ∈ I. �

4.9. Lemma. For any λ, µ ∈ N(L) and for any a ∈ J(L), it follows that

(λ + µ)[a] = λ[a] + µ[a].

Proof. By [5, Theorem 19], we only need to prove that (λ + µ)[a] ⊆ λ[a] + µ[a]. Suppose
that n ∈ (λ + µ)[a]. Then

(λ + µ)(n) =
∨

k+l=n

(λ(k) ∧ µ(l)) > a.

By a ∈ J(L), we know that there exist k, l ∈ N with n = k + l such that λ(k)∧ µ(l) > a.
This implies that k ∈ λ[a] and l ∈ µ[a], i.e. n ∈ λ[a]+µ[a]. Hence (λ+µ)[a] ⊆ λ[a]+µ[a]. �

By Lemma 4.9, we can easily obtain the following lemma.

4.10. Lemma. Let E be a finite set and R : [0, 1]E → N([0, 1]) a mapping satisfying

(LR1)-(LR4). Define Ra : 2E → N for each a ∈ (0, 1] by Ra(A) = R(a ∧ A)[a]. Then Ra

satisfies the following conditions (R1), (R2) and (R3). Hence there exists a crisp matroid

(E, IRa
) such that Ra is the rank function for (E, IRa

):

(R1) For any A ∈ 2E , 0 6 Ra(A) 6 |A|;
(R2) For each A, B ∈ 2E and A ⊆ B, then Ra(A) 6 Ra(B);
(R3) For each A, B ∈ 2E , Ra(A) + Ra(B) > Ra(A ∪ B) + Ra(A ∩ B), where

IRa
= {A ∈ 2E : Ra(A) = |A|}. �

4.11. Lemma. If a > b, then IRa
⊆ IRb

.

Proof. Let A ∈ IRa
. Then |A| = Ra(A) = R(a ∧ A)[a] 6 R(a ∧ A)[b]. By (LR4),

R(a ∧ A)[b] = R(b ∧ A)[b] = Rb(A). Hence |A| 6 Rb(A), thus |A| = Rb(A) by (R1), i.e.
A ∈ IRb

. This implies that IRa
⊆ IRb

. �

4.12. Theorem. Let E be a finite set and R : [0, 1]E → N([0, 1]) a mapping satisfying

(LR1)-(LR4). Define IR = {A ∈ [0, 1]E : ∀a ∈ (0, 1], A[a] ∈ IRa
}, then

(1) IR = {A ∈ [0, 1]E : R(A) = |A|}.
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(2) (E, IR) is a closed and perfect [0, 1]-matroid.

(3) R is the [0, 1]-fuzzy rank function for (E, IR).

Proof. (1) Let A ∈ IR. Then |A|[a] = |A[a]| = R(a ∧ A[a])[a] = R(A)[a] for all a ∈ (0, 1]
by Lemma 2.5 and (LR4), hence |A| = R(A).

Conversely, let A ∈ [0, 1]E with |A| = R(A). Then |A[a]| = |A|[a] = R(A)[a] =
R(a∧A[a])[a] = Ra(A[a]) for all a ∈ (0, 1] by (LR4) and the definition of Ra(A[a]), hence
A[a] ∈ IRa

for all a ∈ (0, 1] by the definition of IRa
. By the definition of IR, A ∈ IR.

(2) Step 1 Obviously, IR satisfies (LI1) and (LI2). Let A ∈ [0, 1]E . If a ∧ A[a] ∈ IR

for all 0 < a 6 1, then by the definition of IR, A[a] = (a∧A[a])[a] ∈ IRa
for all 0 < a 6 1,

hence A ∈ IR. This implies that IR satisfies (LI4).

Step 2 We prove IR[a] = IRa
(∀a ∈ (0, 1]). For each a ∈ (0, 1], let A[a] ∈ IR[a], where

A ∈ IR. By the definition of IR, A[a] ∈ IRa
. This implies that IR[a] ⊆ IRa

.

Conversely, let A ∈ IRa
, then |A| = R(a ∧ A)[a]. For all b ∈ (0, 1], (a ∧ A)[b] = A ∈

IRa
⊆ IRb

for each b 6 a by Lemma 4.11, (a ∧ A)[b] = ∅ ∈ IRb
for each b > a. Thus

a ∧ A ∈ IR, hence A = (a ∧ A)[a] ∈ IR[a]. This implies that IRa
⊆ IR[a].

Step 3 Let A ∈ 2E and a ∈ (0, 1]. If b ∧ A ∈ IR for all 0 < b < a, then

R(a ∧ A) >
∨

0<b<a

R(b ∧ A) =
∨

0<b<a

|b ∧ A| = |a ∧ A|

by (LR2) and (1), hence R(a ∧ A) = |a ∧ A| by (LR1). By (1), a ∧ A ∈ IR.

Step 4 By Step 1, Step 2 and Theorem 3.5, (E, IR) is a perfect [0, 1]-matroid. Thus
(E, IR) is a closed and perfect [0, 1]-matroid by Step 3 and Theorem 3.8.

(3) ∀A ∈ [0, 1]E , a ∈ (0, 1]. By Theorem 4.4, Step 2 and (LR4),

RIR
(A)[a] = RIR[a](A[a]) = RIRa

(A[a]) = Ra(A[a]) = R(a ∧ A[a])[a] = R(A)[a].

Hence, RIR
(A) = R(A), (∀A ∈ [0, 1]E), thus RIR

= R, i.e. R is the [0, 1]-fuzzy rank
function for (E, IR). �

4.13. Theorem. Let (E, I) be a closed and perfect [0, 1]-matroid, then IRI
= I.

Proof. By Lemma 4.8 and Theorem 4.12 (1), we have A ∈ I ⇐⇒ RI(A) = |A| ⇐⇒
A ∈ IRI

. This implies that IRI
= I. �

4.14. Remark. For any [0, 1]-matroid (E, I), we have IRI
= Ī. Indeed, by Lemma 4.5,

(E, Ī) is a closed and perfect [0, 1]-matroid and RI = RĪ . Hence IRI
= IR

Ī
= Ī by

Theorem 4.13.

By Theorem 4.12 and Theorem 4.13, the following theorem is obvious.

4.15. Theorem. A closed and perfect [0, 1]-matroid is in one-to-one correspondence

with its [0, 1]-fuzzy rank function. That is, a closed and perfect [0, 1]-matroid can be

characterized by means of its [0, 1]-fuzzy rank function. �

5. Conclusions

The notions of closed [0, 1]-matroid and perfect [0, 1]-matroid are presented, and some
of their basic properties are studied. For any [0, 1]-matroid (E, I), we can find a closed
and perfect [0, 1]-matroid (E, Ī) such that Ī = IRI

and RI = RĪ . Therefore, a [0, 1]-
matroid (resp., a perfect [0, 1]-matroid, a closed [0, 1]-matroid) and its [0, 1]-fuzzy rank
function are not in one-to-one correspondence in general. Also, we can limit our study of
fuzzy rank functions of [0, 1]-matroids to closed and perfect [0, 1]-matroids. A closed and



Rank Functions 39

perfect [0, 1]-matroid can be characterized by means of its [0, 1]-fuzzy rank function. That
is, a closed and perfect [0, 1]-matroid and its [0, 1]-fuzzy rank function are in one-to-one
correspondence.
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