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Applications of n-Gorenstein projective and
injective modules
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Abstract
Over a commutative noetherian ring, we introduce a generalization of
Gorenstein projective and injective modules, which we call, respectively,
n-Gorenstein projective and injective modules. These last two classes
of modules give us a new characterization of Gorenstein rings in terms
of top local cohomology modules of flat modules. We also utilize the
n-Gorenstein injective dimension to study an open question of Taka-
hashi. Furthermore, we prove that a nonzero finite module with finite
n-Gorenstein projective dimension satisfies the Auslander-Bridger for-
mula.
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1. Introduction
Throughout this paper, R is a commutative noetherian ring with identity element,

and all R-modules are unital. Also, for any R-module M , Z(M) denotes the set of all
zerodivisors of M .

When R is two-sided and noetherian, Auslander and Bridger [1] introduced the G-
dimension for finitely generated modules. Several decades later, over a general ring R,
Enochs and Jenda in [7] extended this homological dimension to Gorenstein projective
dimension for arbitrary (non-finite) modules. Dually, they defined in [7] the Gorenstein
injective dimension. The Gorenstein projective, injective dimension of a module is defined
in terms of resolutions by Gorenstein projective, injective modules, respectively. Those
modules are constructed from some special acyclic complexes. A complex of R-modules
A = · · · → Ai+1 → Ai → Ai−1 → Ai−2 → · · · is acyclic if H(A)= 0.
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1.1. Definition. (1) An R-module M is said to be Gorenstein projective, if there exists
an acyclic complex of projective modules P = · · · → P1 → P0 → P−1 → P−2 → · · · such
that M ∼= Im(P0 → P−1) and such that the complex HomR(P,Q) is acyclic whenever Q
is projective.

(2) An R-moduleM is said to beGorenstein injective, if there exists an acyclic complex
of injective modules I = · · · → I1 → I0 → I−1 → I−2 → · · · such that M ∼= Im(I0 → I−1)
and such that the complex HomR(E,I) is acyclic whenever E is injective.

Inspired by the definitions of Gorenstein projective/injective modules and sesqui-
acyclic complexes in [13], the main idea of this paper is to introduce and study two
new classes of modules called n-Gorenstein projective/injective modules and related ho-
mological dimensions.

The structure of the paper is summarized below. Section 2 is devoted to introducing
the concept of n-Gorenstein projective (resp., injective) modules. We will find some use-
ful properties of these classes of modules. Section 3 discusses the n-Gorenstein projective
(resp., injective) dimension. We prove that a module of finite n-Gorenstein projective
dimension can be approximated by a module, for which the corresponding classical ho-
mological dimension is finite. Section 4 consists of three applications. Theorem 4.2 states
that if a local ring R admits a nonzero finitely generated R-module M with n-GidRM
finite and dimRM = dimR, then R is Cohen-Macaulay. This result in fact gives a partial
answer to the following question of Takahashi: Is a local ring Cohen-Macaulay if it admits
a nonzero finitely generated module of finite Gorenstein injective dimension? Theorem
4.3 can be regarded as the following expansion of a result of Yoshizawa (see [18, Theo-
rem 2.6]). It shows that a complete Cohen-Macaulay local ring R of Krull dimension d is
Gorenstein if and only if Hd

m(R) is n-Gorenstein injective for some positive integer n. The
last Theorem 4.7, is in fact a generalized version of the Auslader-Bridge formula, which
is proved by Lars in [4, Theorem 1.4.8]. However the method we use here is somewhat
different from theirs.

Let X be a class of R-modules and M an R-module. Following [10], a left X-resolution
of M is an exact sequence of R-modules in X of the form X = · · · → Xn → Xn−1 → · · · →
X0 →M → 0. Now let X be any left X-resolution of M . We say that X is proper if the
sequence HomR(Y, X) is exact for all Y ∈ X. The X-projective dimension of M is defined
as X-pdR(M) = inf{sup{n > 0 | Xn 6= 0} | X is an X-resolution of M}. The right X-
resolution, co-proper right X-resolution and X-injective dimension are defined dually. We
write P(R), I(R) for the classes of projective, injective R-modules, respectively. Following
established conventions, we use abbreviations (pd, id) for the homological dimensions
(P(R)-pd, I(R)-id). For each positive integer n, we denote X⊥n := {M | ExtiR(X,M) = 0
for any X ∈ X and 1 ≤ i ≤ n}. Dually, we have the class ⊥nX.

2. n-Gorenstein projective and injective modules

We begin with the following

2.1. Definition. (1) Suppose that n is a positive integer, an R-module M is said to
be n-Gorenstein projective, if there exists an acyclic complex of projective modules P =
· · · → P1 → P0 → P−1 → P−2 → · · · such that M ∼= Im(P0 → P−1) and such that for any
projective module Q the complex HomR(P, Q) = · · · → P ∗1 → P ∗0 → P ∗−1 → P ∗−2 → · · ·
is exact at P ∗i for all i ≥ −n, where P ∗i = HomR(P−i, Q). The class of n-Gorenstein
projective modules is denoted by n-GP(R).

(2) Suppose that n is a positive integer, an R-module M is said to be n-Gorenstein
injective, if there exists an acyclic complex of injective modules I = · · · → I1 → I0 →
I−1 → I−2 → · · · such that M ∼= Im(I0 → I−1) and such that for any injective module
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E the complex HomR(E, I) = · · · → I∗1 → I∗0 → I∗−1 → I∗−2 → · · · is exact at I∗i for
all i ≥ −n, where I∗i = HomR(E, Ii). The class of n-Gorenstein injective modules is
denoted by n-GI(R).

Almost by the definitions we have that Gorenstein projective (resp., injective) modules
are n-Gorenstein projective (resp., injective) modules. However, there are n-Gorenstein
projective (resp., injective) modules which are not Gorenstein projective (resp., injec-
tive)(see Example 2.4 below).

2.2. Proposition. Suppose that M is an R-module, and m, n are positive integers such
that m < n, then the following statements hold.

(1) M is n-Gorenstein projective if and only if M belongs to the class ⊥nP(R), and
admits a co-proper right P(R)-resolution.

(2) n-Gorenstein projective modules are m-Gorenstein projective modules.
(3) GP(R) =

⋂∞
n=1 n-GP(R).

(4) If M is n-Gorenstein projective, then there is an exact sequence 0→M → P →
G→ 0 such that P is projective and G is (n + 1)-Gorenstein projective.

Proof. (1). Since every module has a left P(R)-resolution, the statement is clear from
the definition of n-Gorenstein projective modules.

(2) follows immediately from (1).
(3) is true by [10, Proposition 2.3].
(4). Also by the definition of n-Gorenstein projective modules. �

Next we discuss some connections between n-Gorenstein projective modules and n-
Gorenstein injective modules.

2.3. Proposition. Let M and E be R-modules. Then the following statements hold.

(1) If M is a finitely generated n-Gorenstein projective module and E is injective,
then HomR(M,E) is n-Gorenstein injective.

(2) If R is a complete local ring with the residue field k, M is an artinian n-
Gorenstein injective module, then HomR(M,E(k)) is n-Gorenstein projective.

(3) If M is finitely generated, then M is n-Gorenstein projective module if and only
if M is reflexive, ExtiR(M,R) = 0 for 1 ≤ i ≤ n, and ExtiR(M∗, R) = 0 for
i ≥ 1, where M∗ = HomR(M,R).

Proof. (1). Since M is n-Gorenstein projective and finitely generated, there exists an
exact sequence 0→M → P−1 → L→ 0 such that P−1 is a finitely generated projective
module and such that the exact sequence remains exact after applying HomR(−,P(R))
to it. Hence we obtain that Ext1R(L,Q) = 0 for all projective modules Q. Since M is
n-Gorenstein projective, there also exists an exact sequence 0→M → P → G′ → 0 with
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P ∈ P(R), G′ ∈ n-GP(R). Consider the following pushout diagram.

0

��

0

��
0 // M //

��

P−1
//

��

L // 0

0 // P //

��

G //

��

L // 0

G′

��

G′

��
0 0

So L is n-Gorenstein projective by Proposition 2.6 and Corollary 2.7 below. Continu-
ing in this way gives a co-proper right P(R)-resolution P = 0 → M → P−1 → P−2 →
· · · with each term finitely generated. Because R is commutative, for each injective
R-module I, HomR(I,HomR(P, E)) ∼= HomR(I⊗RP, E) ∼= HomR(P, HomR(I, E)).
Note that HomR(I, E) is flat by [8, Theorem 3.2.16] and every flat module is a direct
limit of finitely generated projective modules. Hence HomR(P,E) becomes a proper
left I(R)-resolution of HomR(M,E) by [9, Lemma 3.1.6]. For each i ≥ 1, we have
ExtiR(I,HomR(M,E)) ∼= ExtiR(TorRi (I,M), E) ∼= ExtiR(M,HomR(I, E)) by [8, Theorem
3.2.1]. Therefore HomR(M,E) is n-Gorenstein injective by a dual statement of Proposi-
tion 2.2(1) and [9, Lemma 3.1.6].

(2) is proved in a fashion similar to [6, Theorem 4.8].
(3) is easy by the definition of n-Gorenstein projective modules.

�

2.4. Example. Let R be the local artinian ring in [14], there exists a family {Ms}s≥1

of reflexive modules such that
(1) ExtiR(Ms, R) = 0 if and only if 1 ≤ i ≤ s− 1.
(2) ExtiR(M∗s , R) = 0 for all i > 0.
Then the following statements hold for any s > 1.
(a) Ms is (s− 1)-Gorenstein projective but not s-Gorenstein projective.
(b) HomR(Ms, E(k)) is (s− 1)-Gorenstein injective but not s-Gorenstein injective.

Proof. (a) is easy since the reflexive module Ms satisfies conditions (1) and (2).
(b). Since Ms is (s-1)-Gorenstein projective by (a), it is deduced from Proposition

2.3(1) that HomR(Ms, E(k)) is (s-1)-Gorenstein injective. Now suppose that HomR(Ms, E(k))
is s-Gorenstein injective. Indeed, since artinian local rings are complete and Ms

∼=
HomR(HomR(Ms, E(k)), E(k)), the Matlis duality between noetherian modules and ar-
tinian modules implies that Ms must be s-Gorenstein projective. It is impossible. So
HomR(Ms, E(k)) is not s-Gorenstein injective for s > 1. �

2.5. Remark. From the construction of Ms (see [14]), we know that there is an exact
sequence 0 → Ms → R2 → Ms+1 → 0 such that Ms+1 is s-Gorenstein projective, Ms is
(s-1)-Gorenstein projective but not s-Gorenstein projective. This implies that n-GP(R) is
not closed under kernels of epimorphisms. Hence n-GP(R) is not a projectively resolving
class (see [10, 1.1]).

The next proposition provides ways to create n-Gorenstein projective modules.
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2.6. Proposition. n-GP(R) is closed under direct sums and extensions.

Proof. By [10, Proposition 1.6], [15, Proposition 7.21] and Proposition 2.2(1), n-GP(R) is
closed under direct sums. It follows from [10, 1.7] that n-GP(R) is closed under extensions.

�

Although n-GP(R) is not projectively resolving, we may show that the class of n-
Gorenstein projective modules is closed under direct summands without using Eilenberg’s
technique (see [10, Proposition 1.4]). This technique is applied by Holm in [10, Theo-
rem 2.5] to show that the class of Gorenstein projective modules is closed under direct
summands.

2.7. Corollary. n-GP(R) is closed under direct summands.

Proof. Let G be an n-Gorenstein projective module and H be a direct summand of G.
Since G ∈ ⊥nP(R), H ∈ ⊥nP(R). By [12, Theorem 4.6(1)], one sees that H has a
co-proper right P(R)-resolution. Now Proposition 2.2(1) gives the result. �

3. n-Gorenstein projective and injective dimensions

In this section, we turn to studying n-Gorenstein projective and injective dimensions.
For an R-module M , we use n-GpdRM (resp., n-GidRM) to denote the n-Gorenstein
projective (resp., injective) dimension of M . Holm in [10, Theorem 2.10] showed that
an R-module M with Gorenstein projective dimension n admits such an exact sequence
0 → K → G → M → 0 with G Gorenstein projective and pdRK = n − 1. The proof
of this result depends on the fact that for an R-module M with Gorenstein projective
dimension n every projective resolution of M has its nth syzygy Gorenstein projective.
However we don’t know weather the same fact is true for modules with finite n-Gorenstein
projective dimension. But by showing in a different way we still have the following result
which is similar to that of Holm.

3.1. Proposition. Let M be an R-module with finite n-Gorenstein projective dimension
m. Then there exists an exact sequence 0→ K → G→M → 0, where G is n-Gorenstein
projective and pdRK = m− 1.

Proof. If m = 0, our claim clearly holds. If m = 1, we have an exact sequence 0 →
G1 → G0 →M → 0 with G0, G1 ∈ n-GP(R). Since G1 is n-Gorenstein projective, there
also exists an exact sequence 0 → G1 → P → G′ → 0 with P ∈ P(R), G′ ∈ n-GP(R).
Consider the following pushout diagram.

0

��

0

��
0 // G1

//

��

G0
//

��

M // 0

0 // P //

��

G //

��

M // 0

G′

��

G′

��
0 0
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According to Proposition 2.6, G is n-Gorenstein projective. Therefore 0 → P → G →
M → 0 is the desired sequence. Now suppose m > 1. We will use induction to show
this statement. Since n-GpdRM = m, we have such an exact sequence 0→ K → G0 →
M → 0 with G0 ∈ n-GP(R) and n-GpdFK = m−1. Hence there exists an exact sequence
0→ K1 → G1 → K → 0 with pdFK1 = m−2 and G1 ∈ n-GP(R) by induction. Observe
that G1 is n-Gorenstein projective, there is an exact sequence 0→ G1 → P ′ → G2 → 0
with P ′ ∈ P(R), G2 ∈ n-GP(R). Similarly, consider the following pushout diagram.

0

��

0

��
ε1 : 0 // K1

// G1
//

��

G0
//

��

M // 0

ε2 : 0 // K1
// P ′ //

��

G //

��

M // 0

G2

��

G2

��
0 0

Since G0, G2 ∈ n-GP(R), G ∈ n-GP(R). Let K = Ker(G→M), 0→ K → G→M → 0
is the desired sequence. �

A complement to Proposition 2.6 is given below.

3.2. Corollary. Let 0→ G′ → G→ M → 0 be an exact sequence, where G and G′ are
n-Gorenstein projective and Ext1R(M,Q) = 0 for all projective modules Q. Then M is
n-Gorenstein projective.

If M is n-Gorenstein projective, ExtiR(M,L) = 0 for all i ≥ 1 and all modules L with
finite injective dimension. If N is n-Gorenstein injective, ExtiR(H,N) = 0 for all i ≥ 1
and all modules H with finite projective dimension. Using this fact, we may provide the
following results. Their proofs are similar to those in [11, Theorem 2.1, 2.2].

3.3. Corollary. Let M be an R-module, then:
(1) If pdRM <∞, n-GidRM = idRM .
(2) If idRM <∞, n-GpdRM = pdRM .

Using Propositions 2.2 and 3.1, we get the following result which is analogous to [5,
Lemma 2.17].

3.4. Proposition. Let M be an R-module with n-GpdRM < ∞. There is an exact
sequence 0 → M → H → A → 0, where A is n-Gorenstein projective and pdRH =
n-GpdRM .

4. Applications

For an R-module M , the ith local cohomology module of M with respect to an ideal I
is defined as Hi

I(M) = lim−→n
ExtiR(R/In,M). Let (R,m, k) be a local ring. We say that

R is Cohen-Macaulay if depthR = dimR. R is Gorenstein if it has finite self-injective
dimension.
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A careful reading of the proof in [17, Lemma 1.1], combined with some basic facts
about the n-Gorenstein injective dimension, gives the following vanishing result of local
cohomology modules.

4.1. Lemma. Let M be an R-module with n-GidRM finite, and let I be a nonzero ideal
of R. Then Hi

I(M) = 0 for all i > n-GidRM .

With the aid of Lemma 4.1, We are now in a position to give one of the main results
in this paper, which partially answers a question of Takahashi in [16]. A similar result
was proved by Yassemi([17, Theorem 1.3]).

4.2. Theorem. Let (R,m, k) be a local ring. If R admits a nonzero finitely generated
R-module M with n-GidRM finite and dimRM = dimR, then R is Cohen-Macaulay.

Proof. Since n-GidRM is finite, by Lemma 4.1, Hi
m(M) = 0 for all i > n-GidRM . On the

other hand, we have HdimRM
m (M) 6= 0 by [2, Theorem 7.3.2]. Hence dimRM 6 n-GidRM

follows. Also by a dual argument of Proposition 3.4, the finiteness of n-Gorenstein
injective dimension of M means that there is an R-module L such that idRL = n-GidRM .
But idRL = sup{depthRp − widthRpLp | p ∈ Supp(L)} by [3, 3.1]. Thus dimR = dimRM
≤ n-GidRM = idRL ≤ depthRp ≤ dimRp for some prime ideal p. Hence p must be the
maximal ideal m. So we get that depthR = dimR, and R is Cohen-Macaulay. �

Enochs and Jenda in [8, Corollary 9.5.13] proved that a local ring R is Gorenstein if
and only if R is Cohen-Macaulay and the top local cohomology module of R, HdimR

m (R),
is isomorphic to E(k). Recently, Yoshizawa in [18] generalized this result. It says that a
complete Cohen-Macaulay local ring R of krull dimension d is Gorenstein if and only if
the top local cohomology module HdimR

m (R) is Gorenstein injective. Motivated by these
established facts, an extended version of this result is presented as follows.

4.3. Theorem. Let R be a complete Cohen-Macaulay local ring of krull dimension d,
then the following statements are equivalent.

(1) R is Gorenstein.
(2) For any positive integer n, Hd

m(F ) is n-Gorenstein injective for every flat R-
module F .

(3) For some positive integer n, Hd
m(F ) is n-Gorenstein injective for every flat R-

module F .
(4) For some positive integer n, Hd

m(R) is n-Gorenstein injective.

Proof. (1) ⇒ (2). Since flat modules are direct limits of finitely generated free modules
and the local cohomology functors commute with direct limits, the result follows from
[18, Theorem 2.6].

(2) ⇒ (3) and (3) ⇒ (4) are trivial.
(4) ⇒ (1). By assumption, Hd

m(R) is n-Gorenstein injective for some positive integer
n. Since Hd

m(R) is artinian, by Proposition 2.3, n-GpdR(HomR(Hd
m(R),E(k))) = 0 .

By [8, Theorem 9.5.16], we know that HomR(Hd
m(R),E(k)) is a dualizing module. Now

Corollary 3.3 says that HomR(Hd
m(R),E(k)) is projective. Note that projective modules

over local rings are free. Hence HomR(Hd
m(R),E(k)) ∼= Rn. Thus R is Gorenstein. �

Now it is natural to ask what can we say about R when the top local cohomology
module has finite n-Gorenstein injective dimension?

4.4. Corollary. The following statements are equivalent for a commutative artinian local
ring R.

(1) R is quasi-Frobenius.
(2) For any positive integer n, H0

m(R) is n-Gorenstein injective.
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(3) For some positive integer n, all modules are n-Gorenstein injective.
(4) For some positive integer n, all modules are n-Gorenstein projective.

Proof. (1) ⇔ (2) is easy directly by Theorem 4.3.
(1)⇒ (4). Because all n-Gorenstein projective modules are Gorenstein projective over

Gorenstein rings, it is a consequence of [8, Exercise 10.3.5].
(4)⇒ (1). Since all modules are n-Gorenstein projective, all injective modules are also

n-Gorenstein projective. Thus every injective module can be embedded into a projective
module. So every injective module is projective. It means that R is quasi-Frobenius.

(1) ⇔ (3) can be shown dually. �

Finally we aim at investigating some applications of n-Gorenstein projective dimen-
sions among the category of all finitely generated R-modules. For convenience, all mod-
ules appeared below are finitely generated.

4.5. Lemma. Let M be an R-module, and let x be an M- and R-regular element. If M
is n-Gorenstein projective, then M/xM is n-Gorenstein projective R/(x)-module.

Proof. Set M̄ = M/xM and R̄ = R/(x). Since M is n-Gorenstein projective, there is an

exact complex of free modules F = · · · → F1
d1→ F0

d0→ F−1
d−1→ F−2 → · · · such that M ∼=

Im(F0 → F−1) and such that the complex F∗ = · · · → F ∗1 → F ∗0 → F ∗−1 → F ∗−2 → · · ·
is exact at F ∗i for all i ≥ −n, where F ∗i = HomR(F−i, R). Let Mi = Imdi for each i.
Since x is Mi-regular for each i, by [4, Lemma 1.3.4(a)], applying − ⊗R R̄ to the exact
complex F gives an exact complex F̄ = · · · → F̄1 → F̄0 → F̄−1 → F̄−2 → · · · . Again by
[4, Lemma 1.3.4(a)], there is a complex · · · → F ∗1 → F ∗0 → F ∗−1 → F ∗−2 → · · · , which is
exact at F ∗i for all i ≥ −n. It is deduced from [4, Lemma 1.3.4(b)] that HomR̄(F̄−i, R̄)
∼= F ∗i . Therefore M̄ is n-Gorenstein projective R̄-module. �

4.6. Proposition. If R is a local ring, and suppose that there exists an exact sequence
0 → M → N → H → 0 with n-GpdRM ≤ pdRN < ∞ and H n-Gorenstein projective.
Then depthRM = depthRN .

Proof. Case 1: depthR=0. Since pdRN < ∞, we infer by the Auslander-Buchsbaum
formula that N is projective and depthRN = 0, and hence M is n-Gorenstein projec-
tive. Now assume that depthRM ≥ 1, so there is a regular element x of M . Note that
M is n-Gorenstein projective. Applying HomR(−, R) to the exact sequence 0 → M

x→
M → M̄ → 0 yields an exact sequence 0 → M̄∗ → M∗

x→ M∗ → Ext1R(M̄,R) → 0.
Applying HomR(−, R) to this exact sequence gives the following exact sequence 0 →
Ext1R(M̄,R)∗ → M∗∗

x→ M∗∗. As M is reflexive by Proposition 2.3(3), Ext1R(M̄,R)∗ =
0. We get from the formula Ass(Ext1R(M̄,R)∗) = Supp(Ext1R(M̄,R)) ∩ AssR that
Ext1R(M̄,R) = 0. Therefore M∗ = xM∗. It follows from the Nakayama’s lemma that
M∗ = 0. Hence M = 0, which is a contradiction.

Case 2: depthR ≥ 1. Because M is a submodule of N , depthRM = 0 implies that
depthRN = 0. So we may assume that depthRM ≥ 1. Since depthR ≥ 1, there must be
an element x ∈ R\Z(M)∪Z(R). Moreover x is H-regular element as H can be embedded
into a free module. By Lemma 4.5 and [4, Lemma 1.3.4(a)], tensoring the exact sequence
0 → M → N → H → 0 gives an exact sequence 0 → M̄ → N̄ → H̄ → 0 such that H̄
is n-Gorenstein projective and n-GpdR̄M̄ ≤ n-GpdRM . Note that pdR̄(N̄) = pdRN .
We have that n-GpdR̄M̄ ≤ pdR̄(N̄). Hence, as depthR̄ = depthR −1, we obtain, by
induction on depthR, depthR̄M̄ = depthR̄N̄ . Therefore depthRM = depthRN . �

4.7. Theorem. If R is a local ring, M is a nonzero R-module with n-GpdRM finite.
Then n-GpdRM+depthRM = depthR.
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Proof. There exists an exact sequence 0→ M → H → A→ 0 with n-GpdRM = pdRH
and A n-Gorenstein projective by Proposition 3.4. Then by Proposition 4.6 we have
that depthRM = depthRH. But we know from the Auslander-Buchsbaum formula that
pdRH+depthRH = depthR. Hence we get the result. �

We end this section with the following corollary.

4.8. Corollary. If R is a Gorenstein local ring and M is a nonzero R-module. Then
GpdRM = n-GpdRM .

Proof. Since R is Gorenstein, GpdRM < ∞ by [8, Theorem 12.3.1]. Furthermore we
have GpdRM = depthR − depthRM by [4, Theorem 1.4.8]. But n-GpdRM < GpdRM ,
it now follows from Theorem 4.7 that n-GpdRM = depthR − depthRM . Hence the
result is true. �
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