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Abstract

It is argued that quantitative results from statistical surveys and exper-
iments should be communicated as inferences of the model maximising
the log Bayes factor against a reference model penalised by a subjec-
tively chosen constant times the difference in model complexity. Model
complexity is measured by the degrees of freedom. In this study, an
efficient algorithm is proposed to select a model from among a large set
of models with unit penalties in some interval. The algorithm utilizes
the penalised log Bayes factor with only the likelihood ratio statistic,
model dimensions and a constant. This approach seems to be a more
realistic screening device than related criteria similar to the Bayesian
information criterion.

Keywords: Model selection, Bayes factor, Penalty function, Utility function.

2000 AMS Classification: 62 C10.

1. Introduction

A probabilistic model is a simplified description of the phenomenon under study, facil-
itating the reflection of parts of the reality associated with the phenomenon. Throughout
this paper, a model is understood as a likelihood function or similar specification of model
structure. A model should be seen as a device through which to view the world, as in
Gelfand & Ghosh [2]. This view of the likelihood function is just a reformulation of the
original reason for constructing the Bayesian predictive distribution from the prior and
likelihood [8].

Space limitations necessitate that only one or just a few models be singled out for
reporting results from a given scientific experiment or survey, in terms of parameter
estimates and associated inferences. This paper deals with the decision-theoretic problem
of choosing one or more models from a finite set of candidates.

∗Hacettepe University, Department of Statistics, 06800 Beytepe, Ankara, Turkey. E-mail:
mentes@hacettepe.edu.tr



132 T. Menteş

Box’s [1] dictum “all models are wrong, but some are useful” is taken as a premise
here. However, some standard statistical methods for model selection do assume that
a true model exists. Model selection methods yield sensible results most of the time
because of lack of data. In practise, with enough data, there is a tendency for the larger
models to be selected. These techniques are unsound and counterproductive. Model
selection should be based on a criterion maximising a utility depending on more than
just the amount of data.

The alternative to basing inference on one or just a few models is to employ a mixture
of models. This approach reflects model uncertainty and improves predictive perfor-
mance, see e.g. Kass & Raftery [7]. In the scientific literature, only the most important
parameter estimates are given and correlations between parameter estimates are not re-
ported, suggesting that accurate prediction is not a primary concern and that simplicity
is at a premium.

In the Bayesian paradigm, likelihood and prior distributions are used together to
update the person’s belief through the Bayes formula. This is a completely objective
entity, but the subjectively chosen priors play a role in the selection of the model.

The methodology developed for describing the relevant utilities is given in Section 2.
The criteria for choosing the unit penalty is presented in Section 3. A particular approx-
imation of the utilities used in automated model screening is elaborated in Section 4 of
this paper.

2. Defining the utility

Subjective probability measures the degree of belief in a proposition [8]. Therefore it
is the most natural measure of a model’s compatibility with the data at hand, as it is
the probability of the observed data conditional on the model considered.

The dimensions of the parameter space seems to be a natural measure of complexity
of a fixed-effects model without smoothers. It is the measure which will be used for this
model class in Section 4. Here the parameter sample spaces are assumed to be continuous.
In recent years, measuring the dimension, especially of hierarchical and other random
effects models, has received much attention. This effort is aimed at reconciling intuition
with an objective measure of dimension, see for example Spiegelhalter et al. [9], Gelman,
Carlin and Stern [4], Hodges and Sargent [6], and references therein. The suggestions are
not conclusive, and how to count the degrees of freedom in various types of model is left
to the modeler.

Let Ui be the utility of model Mi on data D. Let f(D |Mi) denote the predictive
density function of data D under model Mi, and let C ≥ 0 denote the complexity penalty
constant. Then we may define

U1/U0 = f(D |M1)/f(D |M0).

WhenM0 and M1 have the same dimension m0 = m1 this implies Ui = f(D |Mi)h(Cmi).
Here it is assumed that h(x) is continuous, strictly positive and strictly decreasing for
x ≥ 0. It is natural to have h(0) = 1 and h′′(x) > 0, since the smaller the model the
larger the consequence of a unit increase in dimensionality. For given C, h(x) is convex
so that M1 with parameter space dimension m1 = m0 + 1 is preferred to M0 depending
on whether f(D |M1)/f(D |M0) > αC > 1 or not, regardless of the value of m0. These
properties are possessed by h(x) = exp(−x). The extreme variation in f(D |Mi) with
sample size and probability space is scaled away by looking at the equation

log(Ui/U0) = log{f(D |M1)/f(D |M0)} −C(mi −m0).
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This is a rank preserving mapping enabling the identification of the optimal model as a
function of C. The quantity LSU (i, C) denotes the log scaled utility, and LSU (C) stands
for maxi LSU (i, C). For convenience, all models satisfy m0 ≤ mi in this development.

The model maximising the log scaled utility is selected for a given C, rather than
averaging over models. Therefore, a prior distribution of models is not necessary, and
there no notion of a “true” model conditional on the universe of models considered.

Having specified the proposed criteria for model selection as just support for the model
in data, and the dimension of the parameter space, it is implicitly understood that the
models being compared are equally plausible a priori in all other respects. Otherwise
it would be necessary to group models into model strata and perform the comparisons
within each group. Choosing between preferred models from different strata would then
need to be based on other criteria.

3. Choosing the unit penalty

The log scaled utility LSU(i, C) for model i is of the form a(i)−Cb(i). It is assumed
in this study that the models considered here are sufficiently regular to ensure that a(i)
is finite. By definition, C ≥ 0 and 0 = b(0) ≤ b(i) <∞. Assuming no ties among the a(i)
’s, the minimal model maximising LSU(C) is unique for any C. Any LSU(i, C) equal to
LSU(C) can occur in only one interval. Defining

m dim(C) = min{b(i) | LSU (i, C) = LSU (C)}.

we see that m dim(C) is non-increasing and attains its minimum for

C ≥ Cmax = min{C | m dim(C) = 0} <∞.

Thus a plot of mdim(C) versus C marks each time a new model generates mdim(C).
This plot provides a shorthand description of the model, and an overview of how the
model selection depends on C.

The plot of mdim(C) versus C could be used to say something about the robustness
of the inference, e.g. that only x out of y models maximised the utility, and that model
z was the maximising function for a very broad range of C. Of course, the same could
be communicated in a tabulation of the models generating mdim(C), and the left end
point of the corresponding interval.

Basically, C should be chosen as the investigator sees fit. It is the minimum im-
provement in fit as measured by the log Bayes factor which is worth an extra parameter.
Tentatively, C should be constrained to an interval defined by δL ≤ mdim(C) ≤ δU . One
often finds nothing of significance in small studies. Even documenting the negative result
requires a model of some minimal dimensionality δL. In large studies an upper bound on
the complexity of the models is important, and this is provided for by δU . If C is at or
near the upper bound, it should be checked whether vastly different models eventually
becomes available, or could be avoided by changing C. If this interval is too wide, it
is necessary to find C by a thought experiment. For instance two hypothetical density
functions f1(D, θ1) and f0(D, θ0) could be considered for the data D, with θ1 = (θ0, α), α
being a one-dimensional parameter of a magnitude exactly large enough to bother about,
and θ0 is fixed. Then C can be chosen as the expected value of the log Bayes factor which
(upon considering f1(D, θ1) as the true density) is the Kullback-Leibler distance between
the two densities.
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4. Priors for model screening

So far we have described how to choose a model, once the utility Ui(C) for each model

is known. Clearly, Ui(C) depends on the ith prior. There may be a logistic problem in
eliciting and assigning a large number of high-dimensional priors to obtain the LSU (C)
using approximations.

The proposed utilities are maximised by delta function priors placed at an MLE;
i.e. the effect of the prior is to penalise the maximum available utility, L(ψ). In the
following it is assumed that all the models possess a MSE. The models are also sufficiently
continuous to ensure that the likelihood function is a mapping of the parameter space, Θ,
into an interval, i.e. L(Θ) = (0, L(ψ)]. Under these circumstances any desired penalising
is possible.

When considering a set of nested models, it is natural to expect the penalties caused
by the choice of priors to increase monotonically with model dimension. This may not
always be so in practise, but it is a good approximation. The simplest way to obtain this
result is to have the following utility for the ith model,

Ui = Li(ψi)h(−κmi) exp(−Cmi).

Here mi the dimension of the ith model, h is a strictly positive and increasing function,
and κ > 0.

As a side effect, this implies that for models i and j with mi ≥ mj and Li(ψi) <
Lj(ψj), model j is preferred for any C ≥ 0. Thus this procedure picks the model with
the largest maximum likelihood for each model dimension, and may be viewed as the
model with the largest potential. For reasons of symmetry the natural choice of h is
exponential. Then the log scaled utility for model i is defined as follows:

LSU(i, C) = log(λi) −
1

2
π[2κ+ 2C],

where λi = Li(ψi)/L0(ψ0), pi is the difference in model dimensions between models i
and 0, and κ > 0.

When the set of candidate models forms a binary tree the function m dim(C) may
be obtained by evaluating a small fraction of these models. This is done by sweeping
the model universe in such a way that a sub tree is discarded if a hypothetical model
combining the fit of the largest model in the sub tree with the complexity of the smallest
model in the sub tree does not change the current estimate of the function mdim(C).
Here the fit is the maximum log-likelihood.

5. Conclusion

The proposed approach fits into the modern tradition of explorative rather than con-
firmatory data analysis. The novelty is the flexibility in choosing the trade-off between
compatibility with data and penalising model complexity. The deliberate aim of penalis-
ing model complexity in itself, rather than just as a quest for consistent model selection
and/or good predictive performance sets it apart from other model selection criteria in
the literature. Most model selection criteria in the literature utilize a log likelihood-ratio
penalised by some function Cf(p, n), where p is the difference in model dimensions, n
the sample size, and C some fixed positive constant, see Gelfand & Day [3] for a re-
view. These criteria are not meant to answer the important question “What is the most
useful representation of the information embedded in the data at hand?”. Only the
study of Goutis and Robert [5], which provides the same order of flexibility in penalising
complexity, is an alternative approach to the one proposed here.
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In this study, model criticism is hardly mentioned. One may devise some initial model
selection based on an evaluation of some particularly unsatisfactory model feature(s).
However, this is rarely done. The main use for model criticism is as an aid in the creative
process of inventing better models for consideration. Nonetheless, if some model criticism
criterion could be formalised it could be entered into the model selection process proposed
here, by screening and eventually dropping models which maximise LSU (C) for a given
C.

References

[1] Box, G. E.P. Robustness in the strategy of scientific model building, In Launer, R. L. &
Wilkinson, G.N. (eds.) Robustness in Statistics (Academic Press, New York, 1979).

[2] Gelfand, A.E. and Ghosh, S.K. Model choice: A minimum posterior predictive loss approach,
Biometrika 85, 1–11, 1998.

[3] Gelfand, A. E. and Dey, D.K. Bayesian Model Choice: Asymptotics and Exact Calculations,
J. R. Statist. Soc. B 56, 501-514, 1994.

[4] Gelman, A., Carlin, J. and Stern, A. Bayesian Data Analysis (Chapman & Hall, 2003).
[5] Goutis, C. and Robert, C.P. Model choice in generalised linear models: A Bayesian approach

via Kullback-Leibler projections, Biometrika 85, 29–37, 1998.
[6] Hodges, J. S. and Sargent D. J. Counting degrees of freedom in hierarchical and other richly-

parameterised models, Biometrika 88, 367–379, 2001.
[7] Kass, R. E. and Raftery, A. E. Bayes Factors, J. Am. Statist. Assoc. 90, 773–95, 1995.
[8] O’Hagan, A. Kendall’s Advanced Theory of Statistics. Volume 2B. Bayesian Inference

(Arnold, London, 1994)
[9] Spiegelhalter, D., Thomas, D., Best, N. and Carlin, B.P. Bayesian deviance, the effective

number of parameters, and the comparison of arbitrarily complex models, J. R. Statist. Soc.
B., 35–42, 1998.


