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Abstract

In this work, a very well known tumor-immune system model from the literature, Kuznetsov et al.’s
model, is converted into two different Stochastic Differential Equation (SDE) models and an Itô formalism
of the models are obtained. Furthermore, the models are made discrete by using Euler-Maruyama scheme,
simulation results of the corresponding models are investigated and compared.
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1. Introduction

Tumor is one of the leading causes of death around the world. Many researchers from various disciplines
conduct experiments, construct mathematical models, explore gene expressions relationships in order to find
a relationship of tumor growth with other mechanisms. A tumor cell usually encounters the immune system
firstly. Therefore, investigating the relationship between tumor growth and immune system mechanism plays
an important role especially when one wants to design a treatment that is compatible with the host. Since
the problem is very complex, even in its simplest version, taking into account only tumor cells and immune
cells makes sense. In recent years, deterministic and stochastic mathematical models of tumor-immune
system, their analysis and their simulations have gained an important attention. Many researchers from
different disciplines approached the problem from different perspectives in order to formulate the problem
in a systematic way. To mention some of them, tumor-immune models [12, 15, 16], modeling of treatment
on tumor-immune interactions [5, 11], using different approaches other than classical nonlinear system of
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ordinary differential equations such as cellular automata-partial differential equations [14], game theoretic
formulation [9] or kinetic theory approaches [6] exist in the literature. Among them, Kuznetsov et. al.’s
model [12] is one of the most influential models that is studied the most. For further investigation of the
models and other modeling approaches in the tumor-immune system literature, one may refer to [1, 8].

In this work, a very-well known model in tumor-immune system dynamics, Kuznetsov et al.’s model, is
investigated. By using Allen’s procedure [2, ch. 5], [4, ch. 9] and obtaining an Itô formalism at the end, two
different system of SDEs of the model are obtained. Those models are made discrete and the simulation
results are compared. The methodology described by Allen has been applied to an another tumor-immune
model in [13] and also investigated in terms of viabiliy [7]. Here, we repeat the same procedure and obtain
two SDE models. The organization of the paper can be summarized as follows; in Section 2, the deterministic
model of Kuznetsov et al. is given. The procedure to obtain two different versions of system of SDEs are
described and obtained. In Section 3, the discrete version of the two different SDE models are introduced
and the corresponding simulation results are obtained. The paper finishes with a conclusion section, namely
Section 4.

2. Stochastic Model

Kuznetsov et al.’s model is used to describe the kinetics of growth and is an approximate regression of
the B-Lymphoma BCLl in the spleen of mice [12]. The authors derived and compared their model with
experimental data and statistical estimates of parameters identifying processes that cannot be measured in
vivo [12]. The normalized version of the model has been represented as [12]:

dx

dτ
= σ +

ρxy

η + y
− µxy − δx. (2.1)

dy

dτ
= αy(1− βy)− xy. (2.2)

In this system of equations, the parameter τ stands for the normalized time. In [12], the parameter values
are given as follows:

σ = 0.1181, ρ = 1.131, η = 20.19, µ = 0.00311, (2.3)

δ = 0.3743, α = 1.636, β = 2.0 · 10−3.

By using the nonlinear system of equations (2.1) and (2.2), the authors have investigated the nonlinear dy-
namics in the sense of bifurcation. Since, their model is one of the most influential work among mathematical
models of tumor-immune system, investigating the stochastic versions of this model becomes a necessity.

In order to obtain a stochastic model, comprehending the birth and death ranges of each of tumor
and immune variables is essential. The stochastic models obtained in this work, represents a Markovian
behavior. Precisely, two Continuous Time Markov Chain (CTMC) models are presented by following Allen’s
procedure (see [2, ch. 5] or [4, ch. 9]). For consistency, the same notation will be used as in [2, ch. 5] or [4,
ch. 9]. By choosing a representation for X, instead of x, and Y , instead of y, to be used in the stochastic
model as random variables and by letting Z = (X,Y )T where T stands for the transpose of a matrix, a
table that shows probabilities according to changes in the model can be constructed (see Table 1). The
column "Change (∆Z)i" represents the change in tumor and immune cell population. For example, (1, 0)T

represents the increase in population X and no change in population Y and (0,−1)T represents the decrease
in population Y and no change in population X. Since there is no migration between tumor cells and immune
cells the other probabilities such as (1,−1)T , etc. have been disregarded. The expectation vector and the
corresponding approximate covariance matrix for the change in Z, ∆Z, with respect to a small period of
time, ∆t, can be represented respectively as follows,

E(∆Z)/∆t =

(
4∑

i=1

pi∆Zi

)
/∆t = γ =

 ρXY

η + Y
− µXY − δX

αY (1− βY )−XY

 , (2.4)
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i Change, (∆Z)i Probability, pi

1 (1, 0)T
(
σ +

ρXY

η + Y

)
∆t

2 (−1, 0)T (µXY + δX) ∆t

3 (0, 1)T (αY ) ∆t

4 (0,−1)T
(
αβY 2 +XY

)
∆t

Table 1: The probabilities according to the transition changes of Kuznetsov et al.’s tumor-immune system model.

E(∆Z(∆Z)T )/∆t =

(
4∑

i=1

pi∆Zi(∆Zi)
T

)
/∆t (2.5)

=

 ρXY

η + Y
− µXY − δX 0

0 αY (1− βY )−XY

 .

Depending on the transition probabilities given by Table 1, and assuming entries of the matrix in equation
2.5, Itô SDE model for Kuznetsov et. al.’s model has two different representations, such as

dZ(t) = γ(Z(t), t)dt+ S(Z(t), t)dW (t), (2.6)

dZ(t) = γ(Z(t), t)dt+B(Z(t), t)dW ∗(t), (2.7)

in compact form. In equations (2.6) and (2.7), the drift vector, namely, γ, is common, however, the matrices S
and B represent diffusion matrices of size 2×2 and 2×4, respectively, andW andW ∗ stands for independent
Wiener processes of (2.6) and (2.7), respectively. The drift terms are the same for those two equations (2.6)
and (2.7), however diffusion matrices are different. In order to obtain two equivalent SDEs, the condition
S2 = V = BBT has to be satisfied [2, 3, 4]. By using the procedure of Allen (see [2, ch. 5] or [4, ch. 9]), the
following two different system of Ito SDEs are obtained,

dX(t) =

[
σ +

ρX(t)Y (t)

η + Y (t)
− µX(t)Y (t)− δX(t)

]
dt (2.8)

+

√
σ +

ρX(t)Y (t)

η + Y (t)
− µX(t)Y (t)− δX(t)dW1(t)

dY (t) = [αY (t)(1− βY (t))−X(t)Y (t)] dt

+
√
αY (t)(1− βY (t))−X(t)Y (t)dW2(t),

and

dX(t) =

[
σ +

ρX(t)Y (t)

η + Y (t)
− µX(t)Y (t)− δX(t)

]
dt (2.9)

+

√
σ +

ρX(t)Y (t)

η + Y (t)
dW ∗

1 (t)−
√
µX(t)Y (t) + δXdW ∗

2 (t),

dY (t) = [αY (t)(1− βY (t))−X(t)Y (t)] dt

+
√
αY (t)dW ∗

3 (t)−
√
αβY (t)2 +X(t)Y (t)dW ∗

4 (t).

The equations (2.8) and (2.9) are explicit versions of (2.6) and (2.7), respectively. Obtaining other equivalent
SDE models are also possible, however this is out of the scope of this paper and therefore they are omitted.



N. Gökgöz, Results in Nonlinear Anal. 2 (2019), 1–6 4

3. Euler-Maruyama Method and Simulation Results

In this section, a numerical approximation for the two system of SDEs obtained in Section 2 are repre-
sented. Depending on the simulation results, they have been compared with each other. If Euler-Maruyama
method is applied to the equations (2.8) and (2.9) the following equations, (3.1) and (3.2), are obtained. By
letting (X(ti), Y (ti)) = (Xi, Yi) where ti = 0,∆t, 2∆t, ..., T and i = 0, 1, 2, ..., k − 1, we have,

Xi+1 =Xi +

[
σ +

ρXiYi
η + Yi

− µXiYi − δXi

]
∆t (3.1)

+

√
σ +

ρXiYi
η + Yi

− µXiYi − δXi ∆W1i

Yi+1 =Yi + [αYi(1− βYi)−XiYi] ∆t

+
√
αYi(1− βYi)−XiYi ∆W2i,

and

Xi+1 =Xi +

[
σ +

ρXiYi
η + Yi

− µXiYi − δXi

]
∆t (3.2)

+

√
σ +

ρXiYi
η + Yi

∆W ∗
1i −

√
µXiYi + δXi ∆W ∗

2i,

Yi+1 =Yi + [αYi(1− βYi)−XiYi] ∆t

+
√
αYi ∆W ∗

3i −
√
αβY 2

i +XiYi ∆W ∗
4i.

The variables ∆W1i and ∆W2i in (3.1) and the variables ∆W ∗
1i, ∆W ∗

2i, ∆W ∗
3i and ∆W ∗

4i in (3.2) are written
instead of

√
tϑ where for each of those ∆W variables there will be a different ϑ and they represent random

variables that are sampled from a normal distribution with zero mean and unit variance. Moreover, the
parameters σ, ρ, η, µ, δ, α and β are constant values as in (2.3). The initial values x(0) = 5 and y(0) = 50
are used as proposed in [12] and the simulations are obtained using MATLAB. As it can be seen from Figure
1 and Figure 2, even though the randomness differs, the two SDE models are consistent with each other.
The values of y(t), colored with blue in the figures, takes approximate values at the end of 100 days and
moreover, the values of x(t), colored with red, drops to 0 within 0− 5 days in both of those models.

4. Conclusion

In this work, two different system of SDEs for Kuznetsov et al.’s model are obtained. They have been made
discrete and simulated. The two SDE models are compared with each other and also they are compared with
the deterministic version of the model. The simulation results show that even though the random behavior
is different in the two stochastic models, they show alike behaviors. The models obtained have not been
investigated in the sense of viability [7] and therefore it can be concluded that the obtained SDE models
may show complete different behaviors from the deterministic version, in the sense of stability. As a future
work, the stability of the proposed system of SDEs will be investigated and moreover, the viability of them
will be investigated. Even though the two different SDE models do not make a big difference for the model
of Kuznetsov et. al this may not be the case for other biological models. Therefore, there is a need to
explore more general rules e.g. upper and lower bound for the errors, the domain of the parameter values,
the stability properties depending on those observations. Moreover, as mentioned, other equivalent SDE
models can be obtained by the same procedure. Thus, all possible equivalent SDE models will be classified
and their most general forms will be investigated in terms of stability and viability.
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Figure 1: the simulations of model given by (2.8) and (3.1). The blue line corresponds to x(t) and the red line corresponds to
y(t) and the initial values are taken as x(0) = 5 and y(0) = 50.

Figure 2: The simulations of model given by (2.9) and (3.2). The blue line corresponds to x(t) and the red line corresponds to
y(t) and the initial values are taken as x(0) = 5 and y(0) = 50.
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